用户名: 密码: 验证码:
高分辨地震勘探仪器设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是战略资源,目前我国石油对外依存度超过50%,已经威胁到了国家安全。我国地质条件复杂,石油、天然气勘探程度低,石油的储采比为14:1,远低于世界平均水平40:1。目前,东部地区油气田面临持续稳产的迫切需要,西部地区勘探条件复杂需要突破,海上更面临开辟前新生代海相残留盆地油气勘探新领域的挑战。如何提高深层(3500m或更深)地震勘探的分辨率成为勘探攻关的难点。
     地震勘探仪器是油气勘探的关键设备,其勘探能力直接决定了国家对油气资源的掌握。在地震仪器研制方面,我国长期处于落后状态,目前所使用的地震仪器设备全部依赖进口,核心技术受发达国家严格限制无法引进,严重制约了我国物探事业和石油工业的发展。
     计算机技术、网络通信技术、电路工艺技术、电源技术、微机械加工技术、材料科学技术等领域的技术进步,给我们提供了跨越式发展地震勘探仪器的机遇。然而在地震勘探仪器的设计中,如果单纯从电子信息技术角度去提高地震仪的性能指标,很难做出“好的仪器”,不仅会造成研制成本的增加和难度的加大,往往还很难达到理想的勘探结果。因此本文一方面着重从理论上研究了我国深层地质条件对地震仪器性能指标的要求,另一方面研究了不断改进的资料数据处理的方法、手段和能力对地震仪器结构和获取数据的要求,从而从勘探活动的全过程来探讨未来我国高分辨地震仪器的发展。
     物理原理是地震勘探的基础,地震勘探仪器设计也必须从充分了解物理背景出发。本文第2章首先从地震分辨率的概念、地震子波与分辨率的关系等出发,研究地震波的传播特点与规律;在调研我国地球物理研究成果的基础上,选取了我国华北地区的典型地层数据,通过建模仿真研究了地层衰减吸收的规律,认真分析了影响地震分辨率的地质因素,搞清楚了高分辨勘探需要捕获信号的范围和特点。
     对设计一个高分辨地震勘探仪器来说,最重要的指标包括:道间距、排列长度、总道数、采样间隔、瞬时动态范围、谐波失真、功耗等。这些指标与勘探目标的深度及需要采集信号的频率有着密切关系:需要分辨的地层越薄,则需要记录的信号频率越高;而勘探目标地层越深,则反射波信号中低频部分与高频部分的振幅差异就越大。好的地震仪器必须将信号的低频和高频部分同时记录下来。本文第3章里利用已经建立的地层吸收衰减模型,以DFS-V地震仪和SN388地震仪为例,选择Ricker子波为震源,仿真计算了仪器对各目标深度地层反射波信号的记录能力及分辨能力;分析了为达到高分辨效果仪器所需要的瞬时动态范围以及噪声对仪器的影响;明确阐述了高分辨地震仪器用于深层勘探必须具有大瞬时动态范围、小道间距、多道数、超低的谐波失真以及相应的采样间隔。这些指标确定以后,又决定了仪器的拓扑结构和数据传输能力,他们之间符合一定的定量和定性关系。
     上述两章内容反映了地震仪器与勘探目标的物理关系,是本文重点研究的内容之一。
     作为地震仪接收记录地震信号的第一步,其最前端的地震检波器应有理想频带和足够大的动态范围。高分辨地震勘探对检波器的精度要求也更高。检波器设计不是本文的研究方向,但检波器的特性和使用方式,对仪器整机的设计有较大的影响,因此本文接下来第4章阐述几种主要检波器,讨论了检波器组合使用的效果,对比了动圈检波器和MEMS数字检波器的各自优势。其中,MEMS数字检波器动态范围和瞬时动态范围都远高于传统检波器;幅频特性和相位一致性都好于传统检波器;谐波失真较低。就高分辨和信号保真而言,采用MEMS数字检波器改善检波器的技术特性要比提高采集站的瞬时动态显得更为迫切和重要。同时采用高质量数字检波器将会使整个地震仪的设计思想发生重要变化,不但使野外采集方式发生了改变,也使后期资料处理更灵活更丰富。然而动圈式检波器通过增加反馈电路等措施尚有不少可挖掘的潜力。如果能在此基础上改进成动圈式数字检波器,将会使现有的地震资料采集质量得到很大的提高。
     地震仪器设计是整个勘探活动全过程中的一个环节,要达到最终高分辨勘探的良好效果,数据采集是基础,数据处理是关键。论文在第5章描述地震资料后期处理的方法和手段,并反过来研究它们对仪器结构和获取数据的要求。论文从整体系统观的角度来研究地震仪器设计如何与后期资料处理的方法相适应,最大限度地发挥作用,来提高勘探的分辨率。噪声滤波、叠加处理、偏移处理等方法和能力的改进,对数据的抽取、覆盖的次数等提出了相应的要求,决定了仪器要提供的道间距、排列长度、采样间隔、总道数等主要参数。一些新兴的高分辨勘探技术的出现,如:高密度勘探技术、宽方位角三维地震技术、AVO技术、多波多分量地震技术等,实际上也是后期资料处理手段和能力不断发展的反映,它们对仪器结构、特征和性能提出了新的要求,决定了仪器的发展方向,对将来仪器的设计有着很大的影响。因此本文在第6章介绍了这些新兴技术的发展历程和应用状况,探讨了其主要原理和特点,分析了他们对仪器主要指标的要求。这两章讨论构成了本文的另一重要研究内容。
     论文第7章介绍了本人参加的中石油十一五重大专项“陆上大型地震数据采集记录系统”中关键的部分“基于LRE-PHY的地震勘探数传采集系统”项目。项目的目标是研制出总体功能和指标达到国际同类仪器水平的陆上石油地震勘探系统。我们承担的任务包括:电源站、采集站、交叉站接口部分的全套软硬件及相关的纵缆传输部分研制。经过约一年时间艰苦的开发工作,一个构成最小验证系统的原理样机已经开发完成,开发中采用了电子学领域的一些新技术,具有高水平的系统指标,样机已经于通过中石油专家组的验收并受到高度评价。本文利用前述各章的研究结果,对完成的样机的性能特点和整机能力进行了讨论和分析。
     在此基础上,论文最后针对我国华北地区深层高分辨勘探需要,具体分析了所需仪器的物理参数,讨论了仪器的结构和主要的系统指标,给出了一个面向未来的新一代大型地震勘探仪器的概念设计。
     通过本文的研究取得了以下主要成果:
     1)从物理原理出发,围绕高分辨勘探仪器设计对地震勘探相关领域的理论知识进行了融会贯通,结合电子信息技术的实现方法进行了交叉集成,进而得到指导设计石油地震勘探仪器的原则。在地层吸收模型进行仿真的基础上,仔细探讨了地震仪器对深层高频信号的记录能力,通过分析影响分辨率的主要因素,提出了适合我国高分辨地震采集勘探仪器的改进策略和方向;
     2)提出地震仪器设计要用系统、整体和发展的理念来进行,即把地震仪器的设计看成是整个油气勘探全过程中的一个局部环节,这一环节的实现要服从于整体目标以达到最佳。在深入了解地震资料处理的主要流程和方法的基础上,尝试利用已有理论、方法、资料,制定出适合未来高分辨地震仪的结构和参数设计要求,充分体现集成创新的成效。
     3)中石油十一五重大专项“基于LRE-PHY的地震勘探数据采集系统”项目的研制成功本身是一大创新成果,本人参加了部分开发工作;在此基础上结合上述集成创新的理念对项目进行了分析总结,最后用发展的眼光针对具体勘探需要给出一个下一代仪器的概念设计。
Petroleum is the important strategic resource. The degree of China depending on overseas oil is already more than 50%. It has been a threat to our national security. Because of the complex geological conditions, the level of our oil and gas exploration is low, and our petroleum reserve-production ratio is 14:1 well below the world average of 40:1. At present, we face to the urgent need that the oil and gas fields continued to produce stably in the eastern regions, and the breakthrough need for the complex exploration conditions in the western regions, and the challenge to open a new oil and gas exploration field for pre-Cenozoic marine residual basins. It is difficult and hot focus to improve the seismic exploration resolution in deep stratum (below 3500m).
     The seismic exploration system is the kernel equipment for the oil and gas exploration and its exploring ability directly determines the level to control the state's oil and gas resources. In the development of exploration equipments, China has been in a backward state for a long time. Our seismic exploration equipments are all rely on imports, the core technology couldn't be introduced for the stringent restrictions by the developed countries. This seriously hampers the development of our oil exploration and the petroleum industry.
     The technological progress in the fields of computer, network communication, circuit, power, micro-machining, material science and such areas has provided us an opportunity to great-leap-forward develop seismic exploration equipments. However, if the instrument performance is improved in the seismic instrument design just from the electronic information technology, it is difficult to make a "good instrument". It will bring not only an increasing costs and difficulty to develop, but also difficult to achieve the desired results of the exploration. Therefore, on the one hand this dissertation focuses on the seismic equipment performance requirements for the deep stratum geological conditions, on the other hand studies the improving data processing methods, means and capacity to the seismic instrument's requirements on its structure and data acquisition, and thus discusses the development the high resolution seismic equipment from the entire process on exploration activities.
     Physical principle is the basis of seismic exploration, seismic equipment design also must comprehend the physical background enough. At first, Chapter 2 studies on the seismic wave propagation characteristics and laws from the concept of the seismic resolution, and the relationships between the seismic wavelets and the resolution; By the research of geophysics, this dissertation selects the typical data of North China Cenozoic basin, studies on the attenuation laws of the stratum absorption by computer simulating, analyses of the geological influencing factors to the seismic resolution, and finds out the scope and characteristics of the seismic wavelet signal need to be captured in the high resolution seismic exploration.
     To design a high resolution seismic exploration instrument, the most important parameters include the group interval, the spread length, the sampling interval, the gross trace number, the instantaneous dynamic range, harmonic distortion, power, and so on. These parameters have close relationships to the depth of the exploration target stratum and the seismic signal frequency need be collected:the thinner the stratum need to distinguish, the higher the seismic signal frequency need to collect; the deeper the exploration target stratum, the higher the seismic signal frequency, and the greater amplitude attenuation on the high-frequency components of the reflected waves to its low-frequency components. A good seismic instrument can record the signal including the high-frequency components and low-frequency components at the same time. Chapter 3 makes use of the stratum absorbtion model, and chooses Ricker wavelet and the DFS-V and SN388 seismic instruments to simulate the instrument's record capability and resolution to the reflected wave signal from the different depth stratum; and analyzes the requirements of the instantaneous dynamic range for the high resolution effect and the influence of noise on the instrument; explains that a high resolution seismic equipment for in-depth exploration must have high indexes of the large transient dynamic range, the small group interval, the multi-channel, the ultra-low harmonic distortion, and the suitable sampling interval. When these indexes to be determined, then the equipment topology and data transmission capacity are determined, they must comply with the qualitative and quantitative relations.
     These two chapters focus on the physical relationships between the seismic equipment and the exploration targets, and they are important content of the dissertation.
     As the infront-end of a seismic instrument received seismic signals, the geophones should have ideal band and sufficiently large dynamic range. The high resolution seismic exploration needs the high accuracy of seismic detectors. The designing of the detector is not this dissertation's research direction, but the detector features and usages have a greater influence on the whole instrument design. So Chapter 4 describes some of the main detectors, discusses the usages of detector group, and then compares the respective advantages between the geophone and MEMS digital detector. Hereinto, the MEMS digital detector has wider dynamic range and instantaneous dynamic range than the traditional detector, and its amplitude and phase consistency are better than the traditional detector, and its harmonic distortion is lower. On the high resolution and signal fidelity, the use of MEMS digital detector to improve the instrument technical characteristics is more urgent and important than to improve instantaneous dynamic of the collection station. At the same time, the use of high quality digital detector will make the whole design of the seismic exploration equipment significant changes, not only the wild collection methods, but also the latter data processing --more flexible, more abundance. However, by increasing the feedback circuit, the geophone has more potential. If you can improve it to the digital geophone that will make the seismic data quality greatly improved in the existed equipments.
     However the seismic exploration instrument design just is a link of the chain of the entire exploration activities process, the data collection is the basis and the data processing is the key for achieving the good ultimate results of the high resolution exploration. Chapter 5 of the dissertation describes the seismic data latter processing methods and means, and then studies on the requirements for the instrument structure and data acquisition, and how the seismic instrument design to suit the latter data processing method to maximize the improvement of the seismic resolution from the view of the overall system. The improvement to the noise filtering, stack, migration and other methods provides the corresponding requirements to the data extraction and stacking fold, determines the instrument main parameters, such as the group interval, the spread length, the sampling interval, the gross trace number, and so on.
     The continued improving for the data processing means and capacity results in the emergence of high resolution exploration new technologies, such as the high-density space exploration, the wide azimuth angle 3-D seismic exploration, the AVO technique and the multi-wave and multi-component seismic exploration. These new techniques provide the new requirements to seismic instrument structure, characteristics and capacity, and have great impact on the seismic instrument design, and determine the direction of the instrument development. Therefore, Chapter 6 introduces the situation of the development and the application of these new technologies, and discusses their essential elements and features, and analyzes their equipment on the instrument main parameters. These discussions are another important research of the dissertation.
     Chapter 7 introduces the research and development of the Seismic Data Acquiring and Transferring System (SDARS) based on the LRE-PHY, one of the important and key projects of the 11th Five Year Development Program of the China National Petroleum Corporation (CNPC). Objective of this project is to develop a land large scale seismic exploration system with the high level of the overall function and key indexes. The author participated in the project, our lab is responsible for development of the Power Management Unit, the Data Acquisition Unit, the Interface to the Line Management Unit, and the Vertical Transmission Cable related to the full hardware and software. After about a year of hard work, a small prototype verification system had been implemented with high performance electronics for using some electronics new techniques in the development, the prototype had been passed inspection and acceptance by the CNPC expert group and got a high evaluation. This dissertation gives a discussion and an analysis on the prototype machine's performance characteristics and its capability.
     On this basis, the dissertation analyzes the physical parameters of the instrument, discusses the structure of the instrument and the main electronics indexes met with the deep stratum high resolution exploration in North China, and gives a conceptual design of the new generation of large-scale seismic instrument for the future.
     This dissertation presents the following major achievements:
     1) From the physical principles, this dissertation integrates seismic exploration theoretical knowledge with the electronic technology around the high resolution exploration to guide the instrument design, discusses in detail on the instrument capability to record the high-frequency components of the deep stratum reflected waves with the stratum absorption simulation model, suggests the development improving strategy and direction to suit for China's high resolution seismic exploration instrument through analyzing the influencing factors of the seismic resolution.
     2) This dissertation suggests that the seismic instrument design should comply with the principle of systematic view, whole view, development view, and comply with the overall goal to be achieved best, because the seismic instrument design is just a link of the chain of the oil and gas exploration entire process. Based on the understanding of the seismic data processing method and the primary process, this dissertation tries to give the seismic instrument structure and design parameters suitable for future high resolution exploration with the extracted theories, methods, means, reflects the effect of integrated innovation.
     3) It is an important innovation that we have successfully achieved the key project of "the research and development of the seismic data acquiring and transferring system based on the LRE-PHY". Base on the experiences in this project, the dissertation summarizes the prototype verification system. On this basis, the thesis finally gives a conceptual design of the new generation of large-scale seismic instrument for the future.
引文
蔡希玲.2000.俞氏子波在地震数据处理中的应用研究,《石油地球物理勘探》,(8):497-507
    曹广华,袁子龙.1999.地层吸收衰减效应的理论研究与计算机模拟.大庆石油学院学报.(6)
    曹平.2007.勘探地震数据获取系统设计.博士学位论文.合肥:中国科技大学图书馆
    曹务祥.2006.单道接收地震资料的室内组合方法.石油地球物理勘探.(12):615-618
    曹务祥.2006.高空间密度采样资料分析.《勘探地球物理进展》.(6):178-182
    柴书常.2005.用于地震采集的MEMS数字加速度计之设计与生产.物探装备.12(2):92-94
    陈传仁.2000.小波谱自化方法提高地震资料的分辨率.石油地球物理勘探.(12月)
    陈建江.2007.AVO三参数反演方法研究.东营:中国石油大学博士学位论文
    陈金鹰等.2007.地震检波器技术与发展研究.物探化探计算技术.29(5):382-385
    陈敬国.2006.7.波场模拟中的震源--Ricker子波浅析. 《中国科技论文在线》.http://www.paper.edu.cn
    陈相府,安西峰.2007.地震横波勘探及其在浅层岩土分层中的应用.地球物理学进展.22(5):1655-1659
    陈祖传.1997.发展适应我国需要的新一代物探仪器.石油仪器.11(5):3-10
    程敬原.2007.海洋油气勘探仪器参数设计研究.博士学位论文.合肥:中国科技大学图书馆
    程忆敏.2004.混合遥测地震数据采集系统IT简介.物探装备.14(1):24-27
    单娜琳等.2006年.工程地震勘探.冶金工业出版社.1版
    狄帮让.2006.面元大小对地震成像分辨率的影响分析.石油地球物理勘探.41(4):363-368
    狄帮让等.2002.三维地震物理模型技术的效果与精度研究.石油地球物理勘探.37(6):562-568
    邸志欣,谭绍泉,姜维才.2005.川东北地区山地三维高分辨率地震采集技术.石油物探.44(5):517-524
    东方地球物理公司.2007.“基于LRE_PHY高速数传采集系统研制”项目任务需求报告1.2版.
    董敏煜.2000.地震勘探.北京:石油工业出版社.1版
    董敏煜.2002.多波多分量地震勘探.北京:石油工业出版社.1版
    董世泰,高红霞.2005.单点单检波器地震勘探技术.石油仪器.(4):66-68
    付清峰.2005.地震检波器新技术发展方向.石油仪器.19(6):1-4
    蒋连斌等.1998.高分辨率地震野外参数的选取.长春科技大学学报.28(1):89-95
    蒋连斌等.2000.震检联合组合在高分辨率地震资料采集中的应用.石油物探.(9):73-78
    居兴华.1996.反Q滤波在煤田地震资料处理中的应用.中国煤田地质.(12):63~67
    黄子齐译,Andy Peters著.2001.陆上地震采集技术新突破.石油物探丛译.(1):41-44
    孔令纲.2005.MEMS传感器原理与结构简析.国外油田工程.21(10):36-37
    快电子学实验室.2007.8“基于LRE-PHY技术的数传采集系统”总体设计报告V2.0,中国科学技术大学
    李辉峰,王旭.2002.地震勘探中检波器组合之组内距选择方法探讨.物探化探计算技术.(11):
    李剑峰,黄卫等.2005.基于微机电系统的数字检波器研制和性能分析.石油物探.44(5):449-453
    李庆忠.1992.高分辨率地震勘探对地震仪器的技术改进要求.石油物探装备.2(1):9-12
    李庆忠.1993.走向精确勘探的道路.石油工业出版社.1版
    李庆忠.1997.地震高分辨率勘探中的误区与对策.石油地球物理勘探.32(6):751-783
    李庆忠.2007.多波地震勘探的难点与展望.青岛:中国海洋大学出版社.1版
    李庆忠.2007.高密度地震采集中组合效应对高频截止频率的影响.石油地球物理勘探.42(4):363-368
    李生杰等.2001.地层衰减数据体的建立.新疆地质.19(2):146-149
    李幼铭,吴永刚.1997.我国油储地球物理学研究的现状及思考.地球物理学报.40(supp):326-332
    李忠等.2007.四川盆地多波多分量地震勘探技术研究与进展.天然气工业.27增刊A:491-494
    梁劲等.2008.AVO属性分析在天然气水合物地震解释中的应用.物探化探计算技术.30(1):22-26
    梁运基,李桂林.2005.陆上高分辨率地震勘探检波器性能及参数选择分析.石油物探.(11):60-644
    廖声刚.2005.24位地震数据采集系统进行高精度石油地震勘探的局限性.江汉石油科技.15(3):13-15
    凌云.2001.大地吸收衰减分析.石油地球物理勘探.(2):1-8
    刘百红等.2006.通_南_巴三维地震采集参数设计方法.物探与化探.(4):312-318
    刘财等.2006.勘探地震资料处理新方法及新技术.北京:科学出版社,1版
    刘光鼎.2002.回顾与展望—21世纪固体地球物理.地球物理学进展.17(2):185-191
    刘洋,魏修成.2005.转换波地震勘探中的最大炮检距设计.勘探地球物理进展.28(3):178-182
    刘益成等.1997.高分辨率地震勘探采集站参数选择[J].石油物探.36(2):116-123
    陆基孟.1993.地震勘探原理.中国石油大学出版社.(2版2006.12印.)
    罗斌等.2005.炮检距对地震分辨率影响的研究.石油物探.44(1):16~20
    罗福龙.2004.地震仪器概述及其指标分析(二).物探装备.14(4):278-283
    罗福龙.2005.地震勘探仪器技术发展综述.石油仪器.19(2):1-5
    罗福龙,易碧金,罗兰兵.2005.地震检波器技术及应用.物探装备.15(1):6-14
    马在田.1989.三维地震勘探方法.北京:石油工业出版社1版
    牛毓荃.1985.《反射波地震勘探技术》,北京:石油工业出版社1版
    潘仁芳.2006.AVO的内涵与外延.石油天然气学报.(4):50-55
    潘中印.1993.定点和浮点地震数据采集系统对比.石油仪器.7(3):140-144
    潘中印.2000.浅谈国产地震勘探仪器的技术现状及发展.石油仪器.14(5):11-14
    潘中印.2003.微电子—机械系统传感器及其应用.物探装备.13(4):219-222
    彭才等.2006.多波多分量直接油气检测方法研究.西南石油学院学报.28(3):44-47
    彭晓.2006.高密度空间采样技术在准噶尔盆地腹部的应用.石油天然气学报.(6):267-269
    乔崇.2005.长双绞线信号传输的研究.博士学位论文.合肥:中国科技大学图书馆
    钱绍瑚.1994.横波的分辨率比纵波高吗?石油物探.33(4):1-9
    钱绍瑚等.1996.地震仪器对高频信息可记录性的影响及其试验.石油物探.35(1):38-51
    商建领.1997.常规与面元细分三维观测系统浅析.石油地球物理勘探.32(5):709-716
    施行觉等.1995.岩石的含水饱和度对纵、横波速及衰减影响的实验研究.地球物理学报.38(增1):281-287
    史斗等.2003.深层气理论分析和深层气潜势研究.地球科学进展.18(2):236-244
    史松群等.2007.苏里格气田全数字地震勘探技术及应用.中国石油勘探.(3)33-42
    石金成,于淑贤.1995.采样误差分析.石油仪器.9(3):154-159
    宋玉龙、杨长春.2004.宽方位角三维地震勘探技术的现状与进展.http://www.co-sail.com/CN/Manage/discuss/upload/20047306122.pdf
    孙传友,潘正良.1996.地震勘探仪器原理,东营:石油大学出版社.1版
    孙传友,唐美斌.2007.论检波器组合的连接方式.传感器与微系统.(7):13-15
    谭绍泉.2004.深层油气地震勘探数据采集与处理方法.地质出版社1版
    唐东林等.2008.用于地震勘探的新型高精度地震检波器研究.振动与冲击.27(2):162-165
    唐建明.2007.宽方位三维三分量地震资料采集观测系统设计.石油物探.46(3):310-318
    唐晓刚,颜永安等.2006.石油勘探MEMS加速度传感器在煤田勘探的应用.仪表技术与传感器.(6):50-51
    田立新等.2005.多分量地震勘探在渤海海域的应用.石油勘探与开发.32(3):78-83
    田梦等.2007.宽方位角地震勘探与常规地震勘探对比研究.大庆石油地质与开发.(6):138-142
    田晓红.2005.多波多分量地震勘探的现状与进展.大庆石油地质与开发.24(4):94-96
    王百成.2000.我国地震勘探仪器的发展.物探装备.(9):3-10
    王德志.2006.基于勘探目标的观测系统设计.石油地球物理勘探.41(5):498~504
    王栋.2007.AVO技术的研究探讨.内蒙古石油化工.(8):16-19
    王辉明,宋志翔,马国庆.2005.MEMS加速度传感器开发及在地球物理勘探中的应用.勘探地球物理进展.28(3):223-226
    王建民等.2006.多分量地震勘探技术在大庆探区的应用.石油地球物理勘探.41(4):426-430
    王文良.2002,世界地震勘探仪器装备技术发展概述.物探装备,12(1):1-10
    王文良.2004,地震勘探仪器的发展、时代划分及其技术特征.石油仪器,18(1).1-8
    王熙明等.2002.广角反射方式下观测系统设计与优化.物探化探计算技术.24(4):298-303
    王喜双等.2007.高密度空间采样地震技术发展与展望.中国石油勘探.(1):49-53
    王永刚等.2003.复杂地表条件下检波器组合的特性分析.石油地球物理勘探.(4):126-130
    王志等.2002.高速屏蔽层下弱反射层地震勘探—广角反射.勘探地球物理进展.25(5):23-27
    王志等.2003.广角反射波场特征研究及正演模拟分析.地球物理学进展.18(1):116-121
    吴迪,李海翔,关业志.2007.组合接收和激发采集技术中的组合中心研究.勘探地球物理进展.(4):104-107
    吴志强等.2006.广角地震勘探技术及在南黄海古近系油气勘探中的应用前景.海洋地质地态.22(4):26-30
    夏祥瑞.2007.关于国产地震勘探仪器研制的思考.物探装备.17(1):21-23
    湘赣.2001.地震勘探仪器的现状及发展.物探装备.11(1):1-8
    谢力.2000.Q系统是地震采集革命的信号吗?国外石油动态。14(76):1-4
    熊翥.2003.我国物探技术的进步及展望.石油地球物理勘探,38(3):34-33,(4):447-459,(5):565-578,(6):701-706
    熊翥.2004.我国物探技术的进步及展望.石油地球物理勘探,39(2):237-243,(3):354-358,(4):488-49,(5):618-623,627
    熊翥.我国物探技术的进步及展望.石油地球物理勘探,2005,40(1):123-12
    徐仲达.1996.P—SV转换波反射系数与野外采集观测系统设计.石油物探.35(1):1-12
    杨德宽等.2000.对深层地震勘探中随机噪音的一点认识.石油物探.39(3):50-61
    杨举勇.2003.塔里木山地地震测线部署与采集参数设计原则.石油地球物理勘探.(6):22 1-224
    杨素玉.2003.地震检波器串组合的性能分析.物探装备.(3):21-23
    杨毅.MLVDS标准介绍及德州仪器SN65MLVD200系列.http://et.zqsplc.net/ Article_Show.asp?ArticleID=789
    姚本全.2004.三维地震采集设计方法研究.江汉石油学院学报.26(sup):54-60
    姚姚.2005.多波地震勘探的发展历程和趋势展望.勘探地球物理进展.(6):169-173
    叶卸良.1994.遥测地震数据采集系统中频谱整形滤波器的作用及与之有关的若干问题的讨论.石油物探装备.4(2):1-9
    叶卸良.1997.24位遥测地震采集系统为何不需加低截滤波器.物探装备.7(1):14-16
    易碧金等.2004.当前地震勘探仪器的应用技术分析.地球物理学进展.19(4):837-846
    尹成.2006.基于地球物理目标参数的三维观测系统优化设计.石油物探.45(1):74-78
    尹成等.2005.三维观测系统属性分析与优化设计.石油地球物理勘探.40(5):495~509
    尹成等.2006.基于地球物理目标参数的三维观测系统优化设计.石油物探.(1):74-78
    余景奎.2005.提高分辨率处理的几种途径.特种油气藏.(10)
    俞寿朋.1993.高分辨地震勘探.北京:石油工业出版社.1版
    俞寿朋.1996.宽带Ricker子波.石油地球物理勘探.31(5):605-615
    袁子龙.2004.地层吸收衰减与地震仪器记录性能.石油物探.43(5):450-452
    袁子龙等.2003.高分辨率地震数据采集系统中的低切滤波器.仪器仪表学报.24(3):297-299
    袁子龙等.2004.激发信号与反射信号的主频、振幅衰减及分辨率.石油物探.(6):537-540
    袁子龙等.2004.△-∑A/D转换技术及在地震勘探中的应用.地球物理学进展.19(2):300-303
    袁子龙等.2005.层状吸收介质地震反射参数的计算.大庆石油学院学报.29(3):4-9
    袁子龙等.2006.地震勘探仪器原理.北京:石油工业出版社1版
    云美厚.2005a.On seismic resolution,地震分辨率[J].勘探地球物理进展.(2):12-18
    云美厚,丁伟.2005b.地震子波频率浅析.石油物探.44(6):578-581.
    云美厚等.2005c.地震道空间分辨力研究.地球物理学进展.(9):741-746
    云美厚等.2005d.陆相薄互层油藏四维地震监测存在的问题与建议.石油地球物理勘探.40(4):444-450
    詹世凡,冉贤华.2000.方形排列干扰波调查方法及应用.石油地球物理勘探.(6):307-314
    张爱敏.1997.采区高分辨三维地震勘探.北京:中国矿业大学出版社.1版
    张宏乐,曹金栋.2002.用于地球物理勘探的MEMS速度传感器.石油仪器.16(2):1-4
    张军等.2005.地震勘探仪器的现状及趋势分析.小型油气藏.10(2):64-67
    张军等.2005.地震勘探仪器的现状及趋势分析.小型油气藏.10(2):64-67
    张军华等.2007.地震采集技术新进展.物探化探计算技术.29(5):373-381
    张军华等.2007.宽方位角地震勘探技术评述.石油地球物理勘探.42(5):603-609
    张莉等.2006.基于微电子系统(MEMS)加速度地震勘探三分量数字检波器简介.中国煤田地质.18(2):57-59
    张伟等.2007.地震处理新技术在临盘油田的应用.内蒙古石油化工.(7):87-88
    张伟等.2007.三维观测系统参数的退化性处理试验.石油物探.46(1):69~73
    张晓江等.2006.关于三维地震勘探设计思路的探讨.石油天然气学报.(3):270-272
    张秀红等.2003.深层三维地震勘探数据采集技术.石油地球物理勘探.38(4):358-362
    张颖等.1996.东部油区深层勘探中的地震处理技术.勘探家.6(2):50-52
    张云花,孟红星.2006.高分辨三维地震勘探观测系统设计研究.中国煤田地质.18(sup):53~55
    章建宏.2005.24位遥测地震勘探仪器前放增益的选择.石油仪器.19(3):83-84
    赵雪凤等.2007.深部海相碳酸盐岩储层孔隙发育的主控因素研究.天然气地球科学.18(4):514-521
    赵冶,谢求成.1997.简谐信号采样误差的计算分析.数据采集与处理.12(4):308-310
    郑忠刚,周杭山.2007.高分辨地震勘探野外采集系统简介.西部探矿工程.(5):82-80
    周洁玲,成世琦.2002.反褶积与信噪比的关系研究.西安石油学院学报.(7):24-27
    朱广生,陈传仁,桂志先编.2006.勘探地震学教程.武汉大学出版社.1版
    朱铱.2002.数字地震仪的发展历史及展望.地球物理学进展.17(2):301-304
    Guido Baeten and Hubert Van Der Heijden.2008. Improving S/N for high frequencies. The Leading Edge. (2)144-153
    Baeten, G. J. M, V. Belougne, L. Combee, E. Kragh, A. Laake, J.Martin, J. Orban, A. Ozbek, and P. L. Vermeer,2000, Acquisition and processing of point receiver measurements in land seismic.70th Annual International Meeting, SEG, Expanded Abstracts:41-44
    Blacquiere, G. and Ongkiehong. L. Single sensor recording:Antialias filtering, perturbations and dynamic range,70th,2000
    TIM BRICE, Houston.2008. An introduction to this special section:Seismic acquisition. The Leading edge. (7):870-871
    Jack Caldwell.1999. Shear Waves Shine Brightly[J]. Oilfield Review. Spring:2-15
    Cordsen A, Galbraith M.2002, Narrow-versus wide-azimuth land 3D seismic surveys[J]. The Leading Edge,21(8):764-770
    Cambois G, Ronen S, Zhu X.2002, Wide-azimuth acquisition:True 3D at last [J]? The Leading Edge,21(8):763
    Satinder Chopra.2005. Expert answers:Digital geophones. The Leading Edge. (2):131-135
    Mougenot D.2004. How digital sensors compare to geophones?[J]. Expanded Abstracts of 74th Annual Internat SEG Mtg.:5~8
    Mark Farine and Nigel Thorburn,2003, General Application of MEMS Sensors for Land Seismic Acpuisition-Is it Time? Sercel, Houston, Texas, http://www.cspg.org/conventions/ abstracts/2003 abstracts/218S0130.pdf
    Dennis Freed.2008. Cable-free nodes:The next generation land seismic system. The Leading edge. (7):878-881
    Bob Heath.2003. Hybrid cellular seismic telemetry system= a solution to the industry's profit and data quality problems? THE LEADING EDGE. (10):962-968
    Heath R. G.2003. Hybrid cellular seismic telemetry systems. The Leading Edge.22(10): 962-968
    Heath R.G.2008. Trends in land seismic instrumentation. The Leading edge. (7):872-877
    H.H普济廖夫.1993.横波和转换波法地震勘探北京:石油工业出版社.1版
    M.S. Hons, et al.2008. Field data comparisons of MEMS accelerometers and analog geophones. The Leading edge. (7):896-903
    Michael Hons.2008. Accelerometer vs. Geophone Response:A Field Case History. CSPG CSEG CWLS Convention.271-275
    Jack, I.2003. Land seismic technology:Where do we go from here? First Break, (21)
    James L A, Carolyn P P.1993. Some AVO failures and what(we think)we have learned. The Leading Edge.12(3):162-167
    Kallweit R. S. Wood L C.1982. The limits of resolution of zero-phase wavelets[J]. Geophysics.47(7):1035-1046
    O. Koefoed.1981. Aspects of Vertical Seismic Resolution. Geophysical Prospection. 29(1):21-30
    Peter Maxwell et al.2001. Design through to production of a MEMS digital accelerometer for seismic acquisition[J]. First Break.19(3):141-143
    Peter Maxwell et al.2002. Design and production of MEMS digital accelerometer used for seismic acquisition. EGP.12(2):92-94
    Newman, P., and JT Mahoney.1973. Patterns—With a pinch of salt. Geophysical Prospecting.21:197-219
    Denis Mougenot,2004, MEMS-based 3C accelerometers for land seismic:Is it time? Sercel, Carquefou Cedex, France. The Leading edge.:246-250
    Denis Mougenot.2004. How digital sensors compare to geophones. Expanded Abstracts CPS/SEG. International Geophysical Conference Volume I
    Ongkiehong, L. and Askin, H.J.,1988. Towards the universal seismic acquisition technique. First Break.6(2):46-63
    Ongkiehong, L. and Huizer, W. Dynamic range of the seismic system:First Break,05, No. 12,1987
    Ostrander W J.1984. Plane waves reflection coefficients for gas sands at normal angles of incidence[J]. Geophysics.49(10):1637-1648
    Padhi T, Holley T K.1997, Wide azimuths—why not?[J] The Leading Edge,16(2):175-177
    Rongjun Qian.et al.2006. Challenges and solutions for land seismic exploration in China. The Leading edge. (11):1380-1382
    Rached, G., and A. Al-Fares.2006. Single-sensor 3D land seismic acquisition in Kuwait. 76th Annual International Meeting. SEG. Expanded Abstract:61-65
    Ralph W. Knapp.1990. Vertical resolution of thick beds, thin beds, and thin bed cyclothems. Geophysics.55(9):1183-1190
    Charles Ramsden, et al.2005. High-resolution 3D seismic imaging in practice. The Leading Edge. (4):423-428
    AbdulBaset Refae.2008. Increasing bandwidth with single sensor seismic data. First Break. The Leading Edge.26(2):79-84
    W. Richard et al.1999. Long offset acquisition and processing for sub-basalt imaging. Expanded Abstracts of 69th SEG Mtg
    Ricker N.1953. Wavelet contraction, wavelet expression, and the control of seismic resolution[J]. Geophysics.18 (6):769-792
    Norman Ricker.1940. The form and nature of seismic waves and the structure of seismograms. Geophysics.5:348-367
    Norman Ricker.1953. The form and laws of propagation of seismic wavelets. Geophysics. 18:10-41
    Stewart R. R., J. E., Gaiser, R. J. Brown, and D. C. Lawton,2003, Converted-wave seismic exploration:Applications. Geophysics.68:40-57
    Shuey R T.1985. A Simplification of the Zoeppritzps equations. Geophysics.50(4):609-614
    Stefano Savazzi and Umberto Spagnolini.2008. Wireless geophone networks for high-density land acquisition:Technologies and future potential. The Leading edge. (7):882-886
    Ayman Shabrawi, et al.2005. How single-sensor seismic improved image of Kuwait's Minagish Field, First Break. The Leading Edge.23:63-69
    Yuefeng Sun.2004. Modeling seismic reflections from thin-bed dolomite layers in diatomite formation, The Island Arc.13:227-241
    Leon Thomsen.1999. Converted-wave reflection seismology over inhomogeneous, anisotropic media. Geophysics.64(3):678-690
    G.J.O. Vermeer.1998. Factors affecting spatial resolution. The Leading EDGE.17(8): P1025-1030,1161
    G.J.O. Vermeer,1999. Factors affecting spatial resolution, Geophysics.64(3):P942-953
    G.J.O. Vermeer.2003. Responses to wide-azimuth acquisition special section[J]. The Leading Edge,22(1):26-30
    Verma R K, Roy A.1970. A graphical method for computing geophone group response. Geophysics. (35):704~707
    M.B. Widess,1982. Quantifying resolving power of seismic systems[J]. Geophysics.47(8): 1160-1173
    Ling Yun. et al.2006. Wide-and narrow-azimuth seismic surveys over fault zones and stratigraphic traps. The Leading edge. (11):1418-1422
    Hongliu Zeng, Hentz T.F.2004. High-frequency sequence stratigraphy from seismic sedimentology:Applied to Miocene, Vermilion Block 50, Tiger Shoal area, Offshore, Louisiana. AAPG Bulletin.88(2):153-174
    Xuefeng Zou.2007.3C/3D Seismic Exploration Technology and Application Results. SEG/San Antonio Annual Meeting.1059-1063
    Multipoint-LVDS Line Driver and Receiver?. sn65mlvd201.pdf. http://www.ti.com/en/lit/ gpn/sn65mlvd201
    Q-Land-Increasing bandwidth and vertical in the Hassi Messaoud field, Algeria. http://www.westerngeco.com/content/resources/casestudies/algeria.asp?
    The Geophysical Advantages of Q-Land Technology, http://www.westerngeco.com/content/ services/q_technology/q_land/geophysical.asp?
    TIA/EIA-485和M-LVDS的功率和速度比较http://focus.ti.com.cn/cn/general/docs /lit/getliterature.tsp? baseLiteratureNumber=slla106
    VectorSeis Digital Sensor Datasheet. Input/Output INC.技术资料.http://www.iongeo. com/content/includes/docManager/1018-040000 D_Datasheet_VectorSeis.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700