用户名: 密码: 验证码:
塔里木盆地英吉苏凹陷侏罗系砂岩成岩演化机制与天然气成藏效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
英吉苏凹陷位于塔里木盆地东部地区,勘探面积达15×10~4km~z。该区发育了寒武系-下奥陶统和侏罗系两套烃源岩。最新资源评价结果表明油气资源丰富,石油总资源量为2.7~3.2亿吨,天然气总资源量为1.75~2.94万亿立方米,该区具备形成大中型油气田的资源基础。
     英吉苏凹陷英南2井侏罗系油气藏是一个特殊盖层的油气藏。它以致密岩屑砂岩作为油气藏盖层,深部气源是油气藏形成的基础,该区古生界地层具有广泛分布生烃强度较高的烃源岩,烃源岩生烃中心位于致密砂岩下倾方向的深部坳陷之中。侏罗系具有气水倒置(上水、下油气)现象,反映深盆气藏性质。
     致密砂岩段沉积环境主要以扇三角洲前缘水下分流河道和扇三角洲泛滥平原辫状河道为主,夹有分流河口砂坝和远砂坝及决口扇等沉积环境。含油气砂岩段主要以三角洲前缘水下分流河道和水下分流河口砂坝沉积微相为主。
     致密砂岩盖层形成机理是由于含量较高伊蒙--绿蒙混层粘土(一般大于10%)均匀分布于砂岩孔隙中,较强的成岩压实和胶结作用使伊蒙--绿蒙混层粘土具有网格状结构,使砂岩孔隙变成微孔隙、微孔喉。这种微孔隙、微孔喉具有很高的毛细管压力,并与地层水产生水锁现象,可以使原始渗透性能下降到10~(-4)~10~(-6)级别,大大降低砂岩的渗透性,使之成为油气盖层。
     侏罗系成岩阶段划分为晚成岩A1阶段,在成岩作用中以压实作用和胶结充填作用为主。致密砂岩段压实减孔量平均为15.95%;胶结减孔量平均为10.87%,压实作用和胶结作用产生的孔隙度损失为26.82%。含油气砂岩段压实减孔量平均为17.19%,胶结减孔量平均为6.43%,压实作用和胶结作用产生的孔隙度损失为23.62%(比致密砂岩段少损失2.82%)。
     侏罗系主要目的层储层评价以Ⅱ类为主,次为Ⅲ类储层,Ⅱ类储层占地层45%、Ⅲ类储层占地层25%。英南2井产油气层段平均孔隙度14.4%,平均渗透率17.73×10~(-3)μm~2。
     晚期成藏是本区油气发育史的又一特征,英吉苏地区侏罗系储层成岩作用控制油气藏形成。成岩作用中--晚期以后发生的油气成藏事件有效。侏罗系储层经历两次主要油气运移期,燕山晚期和喜山晚期。燕山晚期致密砂岩埋深较浅,致密砂岩盖层未形成,为油气无效聚集期;喜山晚期致密砂岩盖层形成,油气聚集
    
    成藏。
     在详细研究天然气成藏因素的盖层和储层的成岩一成孔演化的基础上,结合
    天然气的运移和聚集,建立了该区侏罗系的成岩一成藏模式,认为英吉苏凹陷侏
    罗系属于具有深成性质的断一盖控制型的晚期成藏模式,气源断层和封盖层的有
    机配套是天然气藏形成的充分必要条件。其中控源断层是必要条件,而砂质岩
    盖层的有效性是关键成藏要素,它决定了气藏的分布规模和丰度。通过盖层形
    成史研究表明,第三纪未期这套砂质岩盖层才开始具备封堵天然气的有效性,
    即此时期英南2井气藏才开始形成。在平面上,龙口1井和华英参1井明显缺
    乏良好的盖层而未形成气藏。根据该区的成藏条件和规律,预测维马1井以东、
    龙口1井和华英参1井以北、英南1井东南等地区是有利的气藏分布区。
Yingjishu depression is located in the Easter of Tarim and exploration area amount to 15 X 104km2. There are two sets of source rock, which include Cambrian to Lower Ordovician and Jurassic. The latest resources assessment result indicated that oil-gas resources is plentiful where total petroleum resources is 2.7-3.2 hundred million tons and that of nature gas is 1.75-2.94 X 104 hundred million cubic meter. It shows that there can form middle or large oil-gas field.
    There is a special cover oil-gas reservoir of Jurassic in Yingnan 2 well in Yinggishu depression and its cover is fine rock scrap and deep gas source is the base of oil-gas forming. Palaeozonic has extensive source rock and the produce center of hydrocarbon is located in deep sag and the fine sandstone down direction. The Jurassic is deep gas reservation and reflected by the feature of the gas and water inversion.
    Sedimentary environment of the fine sandstone main includes the underwater distributary's channel of delta frontier, braid channel of flood plain in fan-delta, estuary dam, distal bar and crevasse fan. The environment of sandstone containing oil and gas includes underwater distributary's channel and estuary dam in the delta frontier. The stronger digenetic and compaction make illite-montmorillonite-chlorite clay occupying in sandstone pore and results in sandstone pore decreasing and the fine sandstone cover formed. This kind of micro-pore has high capillary pressure, and result in stratum water blocking and make the primitive permeate descend to 10-4-10-6 d class rating. So the cap rock formed.
    The diagenesis stage belonging to Al period of late digenetic and compression, cementation and filling are main diagenesis. The compression-decreasing amount of fine sandstone member is average for 15.95% and cementation pore decreasing member is 10.87%. The loss of pore is 26.82% due to compression and cementation. The compression deceased pore amount of oily sandstone average for 17.19%, and that of cementation is 6.13%. The pore loss controlled by compression and
    
    
    cementation is average for 23.62%.
    The main target stratum reservoir appreciation in Jurassic system relied on the II type, occupying 45 percent in stratum, the next was the III type reservoir, occupying 25 percent in stratum, The average porosity of the Yingnan 2 well producing hydrocarbon was 14.4 percent, and the average permeability was 17.73 X 10-3 um2.
    Later accumulation was another character of oil and gas development history in this area, reservoir diagenesis in Jurassic system controlled hydrocarbon reservoir formation in Yingjishu area. Since the middle-late diagensis period, the hydrocarbon accumulation event was effective. Jurassic reservoir experienced two main hydrocarbon migration, they were Later Yanshan period and Later Xihan period. Depth of burial condensation sandstone was shallow, so the condensation cap rock did not format, and the period was hydrocarbon ineffective accumulation period. The condensation cap rock formatted in the Later Xihan period, and hydrocarbon accumulated to be reservoir.
    Through the study of cap rock formation history, the sandstone cap rock of the Later Tertiary began to have the ability to cap natural gas, for another words; in that period Yingnan 2 well reservoir began to format.
    In the plat surface, the Longkou 1 well and the Huayingcan 1 well obviously lacked of good cap rock, so they did not format hydrocarbon reservoir. According to accumulation condition and rule in the area, forecasted that in the east of Weima 1 well and in the north of Longkou 1 well and Hueyingcan 1 well and in the east-south of Yingnan 1 well etc. area were prospecting hydrocarbon reservoir distribution area.
    On basis of above studies, the accumulation factors of natural gas, cap rock, reservoir, diagenesis and pore-forming evolution, combing with the natural gas migration and accumulation. The model of accumulation and diagensis in the area of Yingjishu depression on Jurassic is established, the depression belongs to the control of hypogene break-cov
引文
[1] 陈丽华、赵澄林等,碎屑岩天然气储集层次生孔隙三种成因机理。石油勘探与开发,1999年,第5期。
    [2] 陈丽华,许怀先,生储盖层评价,北京,石油工业出版社,1999
    [3] 陈丽华,储层实验测试技术,石油工业出版社,1993。
    [4] Dullien,F.A.L,杨富民、黎用启译,多孔介质—流体渗移与孔隙结构。石油工业出版社,1990。
    [5] 黄思静 侯中键,地下孔隙度、渗透率在空间和时间上的变化及影响因素。沉积学报,2001年第3期。
    [6] 刘民中,美国、加拿大深层致密砂岩气藏勘探:现状、地质特征及主要勘探技术,国外油气勘探,
    [7] 康毅力,颜婉荪,致密砂岩储层与成岩圈闭,天然气勘探与开发,1991,vol.1(1~7)
    [8] 闵琪,刘孝汉,鄂尔多斯盆地上古生界形成深盆气藏区域地质研究,低渗透油气田,1998,vol.3(2)(7~12)
    [9] 潘一览,毕建霞,潘翔,东濮凹陷低渗致密砂岩气藏采气工艺技术研究,断块油气田,2002,vol,6
    [10] 邸世祥等著,中国碎屑岩储集层的孔隙结构。西北大学出版社,1991。
    [11] 寿建峰,碎屑岩储层控制因素及钻前定量地质预测。海相油气地质,1999年,第1期。
    [12] 寿建峰、朱国华,砂岩储层孔隙保存的定量预测。地质科学,1998年,第32卷第2期。
    [13] 寿建峰、斯春松等,库车坳陷下侏罗统砂岩储层性质的控制因素,地质论评,2001-47-3.1990,vol,2(4)(27~34)
    [14] 宋岩,洪峰,四川盆地川西坳陷深盆气地质条件分析,石油勘探与开发2001,2,Vol.28,No.2(11~14)
    [15] 宋岩,洪峰,四川盆地川西坳陷深盆气地质条件分析,石油勘探与开发2001,2,Vol.28,No.2(11~14)
    [16] 王金琪,中国大型致密砂岩含气区展望,天然气工业,2000,vol,20(1)(10~16)
    [17] 王金琪,超致密砂岩含气问题,石油与天然气地质,1993,vol,14(3)(169~180)
    [18] 王振奇,张昌民,侯国伟,安棚深层系扇三角洲低渗致密砂岩储层综合评价,江汉石油学院学报,2002,vol,3
    [19] 王允诚,油气储层评价。石油工业出版社,1999.12,TE112.2/49
    [20] 王鑫,合肥盆地侏罗系低渗透致密砂岩储层的成因与优质储层发育的潜力,石油实验地质,1997,vol,1
    [21] 王振奇,侯国伟,张昌民,赵凹油田安棚区深层系低渗致密砂岩储层特征,石油天然气地质,2001,vol,4
    [22] 王振奇,何贞铭,鄂尔多斯盆地葫芦河地区三叠系延长组低渗致密砂岩储层特征研究,江汉石油学院学报,1998.vol,2
    [23] 王群,宋延杰,张淑梅,大庆地区深部致密砂岩气层识别方法,大庆石油学院学报,1994,vol,2
    [24] 沃尔特·施密特著,砂岩成岩过程中的次生储集孔隙。石油工业出版社,1982。
    [25] 项焕章(译),控制致密含气砂岩渗透率的粘土成因.北京,石油工业出版社,1990.4
    [26] 向阳,向丹,杜文博,致密砂岩气藏应力敏感的全模拟试验研究,成都理工学院学报,2002,vol,6
    [27] 余敏.颜其彬,致密砂岩气层的识别方法,天然气工业,1995,vol,6
    [28] 杨晓宁,王国林,塔里木盆地英南2井侏罗系气藏性质,新疆石油地质,2003(3)(218~220)
    [29] 袁政文,许化政,阿尔伯达深盆气研究,北京,石油工业出版社,1996
    [30] 袁政文,许化政,阿尔伯达深盆气研究,北京,石油工业出版社,1996
    [31] 袁政文,东濮凹陷低渗致密砂岩成因与深层气勘探,石油与天然气地质,1993,vol.14(1)(14~22)
    [32] 朱国华,碎屑岩储集层孔隙的形成、演化和油藏。沉积学报,1992,10卷,3期。
    
    
    [33] 张金川,金之钧,深盆气资源量—储量评价方法,天然气工业2001,4,Vol.21,No.4(32~34)
    [34] 张金亮、常象春,深盆气地质理论及应用,地质出版社,2002年11月。
    [35] 张文正,李剑峰,鄂尔多斯盆地上古生界深盆气形成的气源条件研究,低渗透油气田,1998,vol.3(2)(13~23)
    [36] 张传林,赵省民.准葛尔盆地南缘辫状河三角洲沉积特征,新疆石油地质,2003,vol,(3)(202~204)
    [37] 张金亮,常象春,民和盆地致密砂岩油藏油气充注史及含油气系统研究,特种油气藏,2002,vol,4
    [38] 朱国华,陕北浊沸石次生孔隙砂体的形成与油气关系。石油学报,1985,第1期。
    [39] 朱彤,成岩作用对致密砂岩储层储集性的控制作用研究,成都理工学院学报,1999,vol,2
    [40] Aamodt,C.,Leith,D.,and Ringas,J.E et al, 1996,Geological Facies Models and Stochastic methods.SAND/08/96.pp.73.
    [41] Alam M.M, Diagenesis and porosity evolution of the Jaisalmer sandstones, Jaisalmer formation (Middle Jurassic), Rajasthan, India, Indian J. Pet. Geol, 1998, vol,7(1)(59~70)
    [42] Albert, F and Modot,v.,1992,Stochastic models of reservoir heterogeneties: Impact on connectivity and averge permeabilities.SPE 24893,SPE Annual Technical conference and Exhibition. Wasshington DC.P.355—370.
    [43] Anketell J. M, Depositional environment and diagenesis of the Eocene Jdeir formation, Gabes-Tripoli basin, western offshore, Libya, J. Pet. Geol, 2000, vol,23(4) (425~447)
    [44] Ashton, M.(eds), Advences in Reservoir Geology. Geological Society special publication, 1993, No.69.
    [45] Baker J.C, Diagenesis and petrophysics of the Early Permian Moogooloo sandstone, southern Carnarvon basin, Western Australia, AAPG Bull, 2000, vol.84(2) (250~265)
    [46] Barclay S. A, Geochemical modelling of diagenesis reactions in a sub-arkosic sandstone ,Clay Minerals 2000, vol.35(1) (57~67)
    [47] Barrenechea J.F, Clay mineral variations associated with diagenesis and low grade metamorphism of early Cretaceous sediments in the Cameros basin, Spain, Clay Minerals, 1995,vol,30(2) (119~133)
    [48] Berg R P, Capillary pressure in stratigraphic trap, AAPG Bull, 1975, vol,59(6) (939~956)
    [49] Berg R P. Capillary pressure in stratigraphic trap, AAPG Bull, 1975, 59(6): (939~956)
    [50] Bjorlkke K, Effects of burial diagenesis on stresses, compaction and fluid flow in sedimetary basins, Mar. Pet. Geology, 1997, vol,14(3)(267~276)
    [51] B. M. Cross and D. leythaeuser, Qxperimchtai Measurement of the Diffusion parameters of light Hydrocarbons in water-safurated sedimentary rocks, Org. Geochem, 1987, vol.10 No. 3,1986.vol. 11
    [52] Bonnell L.M, Reservoir quality prediction through simulation of sandstone diagenesis: Cusiana field, eastern Colombia, AAPG Bull, 1998,vol,82(10) (1894~1899)
    [53] Damslesh,E.et al, A Two—stage stochastic Model Applied to a North sea Reservoir. 1992, JPT, April, P404—408.
    [54] David F. R. G, Relation between facies, diagenesis,and reservoir quality of Rotliegende reservoirs in north Germany, AAPG Bull, 1993,77(9) (1617~1628)
    [55] Deutsch,C.V.and Journel,A.G,1992,GSLIB,Geostatistical software library and user's Guide,Oxford Press.
    [56] Elsass F, Diagenesis of silica minerals from clay minerals in volcanic soils of Mexico, Clay Minerals, 2000, vol,35(3) (477~489)
    
    
    [57] Finkelstein D. B, Origin and diagenesis of lacustrine sediments, Upper Oligoncene Creede formation, south western Colorado, Geol. Soc. Amer. Bull, 1999,vol,111(8) (1175~1191)
    [58] Gibling M. R, Fluid evolution and diagenesis of a Carboniferous channel sandstone in the Prince Colliery, Nova Scotia, Canada, Bull. Can. Pet. Geol, 2000, vol,48(2) (95~115)
    [59] Gier S, Clay minerals and organic diagenesis of the Lower Oligocene Schoneck Fishshale, Western Austrian Molasse basin, Clay Minerals, 2000,vol,35(4) (709~717)
    [60] Gluyas J, Diagenesis of the Rotliegend sandstone: the answer ain't blowin' in the wind, Mar. Pet. Geology, 1995, vol, 12(5) (491~497)
    [61] Han G, Palaeozoic clay mineral sedimentation and diagenesis in the Dinant and Avesnes basins (Belgium, France): relationship with Variscan tectonism, Sedimentary Geology, 2000, vol,136(11) (217~238)
    [62] Hunt J M, Generation and migration of petroleum from abnormally pressured fluid compartment, AAPG, 1990, vol, 74(1~12)
    [63] Hunt J M. Generation and migration of petroleum from abnormally pressured fluid mpartment,AAPG,1990,74(1~12)
    [64] Leythaeuser et al, Diffusion of light Hydrocarbons through near-surface rocks, Nature 1980, vol, 284(10)
    [65] Ko J, Illite/Smectite diagenesis in the Beaufort-Mackenzie basin, Arctic Canada: relation to hydrocarbon occurrence, Bull. Can. Pet. Geol, 1998, vol,46(1) (74~88)
    [66] Meissinger V, Diagenesis in the Upper Lotena formation, Late Jurassic, Neuquen basin, Argentina, AAPG Bull, 1998,vol,82(10) (1942~1949)
    [67] Osborne M. J, Diagenesis in North Sea HPHT clastic reservoirs—consequences for porosity and overpressure prediction, Mar. Pet. Geology, 1999, vol,16(4) (337~353)
    [68] Rae E.I.C, Experimentary-deter mined solute yields from kaolinite-illite/muscovite assemblages under diagenetic conditions of pressure and temperature, Clay and Clay Minerals, 1996,vol,31(4) (537~547)
    [69] Rezaee M.R, Influence of depositional environment on diagenesis and reservoir quanlity: Tirrawarra sandstone reservoir, southern Cooper basin, Australia, J. Pet. Geol, 1996,vol,19(4) (369~391)
    [70] Roucky J.M, Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca basin(SE Spain)during the Messinian, Sedimentary Geology, 1998, vol,121(1-2) (23~55)
    [71] Tang Zhaohui, Diagenesis and reservoir potential of Permian-Triassic fluvial/lacustrine sandstones in the southern Junggar basin, northwestern China, AAPG Bull, 1997,81(11) (1843~1865)
    [72] Thomerson M.D, Diagenesis, morphology and reservoir effects of authigenetic illite and chlorite in the Cherry Canyon formation, Delaware Mountain group, Screwbean field, Reeves county, Texas, AAPG Bull, 1995,vol,79(6) (913~921)
    [73] Worden R. H, Surface temperature, sequence stratigraphy and deep burial diagenesis, Clay Minerals, 2000, vol,35(1) (13~23)
    
    
    [74] Salem A. M, Diagenesis and reservoir-quality evolution of fluvial sandstones during progressive burial and uplift: evidence from the Upper Jurassic Boipeba member, Reconcavo basin, northeastern Brazil, AAPG Bull, 2000, vol,84(7)(1015~1040)
    [75] Wilson A.M, Cacium mass transport and sandstone diagenesis during compaction-driven flow: Stevens sandstone, San Joaquin basin, California, Geol. Soc. Amer. Bull, 2000, vol,112(6) (845~856)
    [76] Zhang Lifei, The composition of shales from the Ordos basin, China: effects of souce weathering and diagenesis, Sedimentary Geology, 1998, vol, 116(1-2) (129~141)
    [77] Salem A.M.K, Diagenesis of shallowly buried cratonic sandstone, southwest Sinai, Egypt, Sedimentary Geology, 1998, vol,119(3-4) (311~335)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700