用户名: 密码: 验证码:
鄂尔多斯盆地上古生界煤的生烃动力学及其分子特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地是我国重要的含油气沉积盆地之一,上古生界煤是盆地内上古生界天然气藏的主要的气源岩。过去的大量研究工作主要集中在气源岩的评价上,并取得了一系列的成果,基于生烃动力学实验的煤成气的生成和运移历史的研究较少。开展这方面的研究对于鄂尔多斯盆地上古生界煤成气的勘探开发具有重要的意义。
     本论文以鄂尔多斯盆地上古生界太原组和山西组的煤为研究对象,采用目前最接近地质生烃过程的有压力存在的黄金管限定体系系统地进行了生烃动力学模拟,结合盆地实际对盆地上古生界生烃史和天然气的运移史进行了恢复。同时,采用Py-GC-MS和钌离子催化氧化(RICO)手段,系统地研究了这两组原煤、其中的非共价键物理缔合结构的组分以及共价键骨架结构的组分的分子特征,这些对于进一步了解煤的生烃机理可以提供有意义的信息。
     热解动力学实验结果表明,两组原煤的生烃动力学参数和镜质体反射率(Ro)动力学参数均存在差异。通过生烃动力学恢复的煤成烃的生烃史说明,鄂尔多斯盆地上古生界烃源岩在盆地后期的抬升降温过程中不会发生大规模的二次生烃。由Ro动力学计算的最大古地温和砂岩气液包裹体的均一温度的对比结果显示,盆地中部和东部上古生界地层内的气水界面已经发生迁移,而盆地北部上古生界地层中的气水界面未完全迁移。这表明,盆地中部和东部具有良好的天然气勘探前景。
     Py-GC-MS和RICO结果显示,两组原煤及其CS_2-NMP混合溶剂的抽提物和抽余物的分子特征都存在差别,正是这种差别内在地引起了两组原煤的生烃行为的差异。进一步的研究显示,原煤的CS_2-NMP混合溶剂的抽余物由大量复杂的稠合芳香组分以及连接在其上的少量的烷基构成,结构相对稳定,仅在芳香族内部的组成上存在差别。另一方面,CS_2-NMP的抽提物的组成复杂多变,与常见的认识不同,其中同样有复杂的稠合芳香组分以及连接在芳香结构上的烷基。
     论文最后讨论了抑制和破坏煤及干酪根中的非共价键缔合作用生烃的可能性,认为物理缔合结构对于生烃具有十分重要的意义,并以此解释了许多地质和实验的事实。
It is reported that the Upper Paleozoic coals are the major gas-source rocks in Ordos
    basin, one of the most important oil-gas sedimentary basin in our country. Remarkably
    successes have achieved in the evaluation on hydrocarbons potentials of the source rocks. However, the researches about the generation and transformation evolution of coal-derived hydrocarbons based on the new technique-kinetic of the hydrocarbon generation are limited. However, it is important for the natural gas exploration and recovery.
    Regarding the Upper Paleozoic coals (Taiyuan coal and Shanxi coal) in Ordos Basin, the present paper aims to discuss the geological and geochemical problems related with these coals, such as the generation and transformation evolution of coal-derived hydrocarbons by pyrolysis kinetic under constant high pressures, and these coals molecular properties by Py-GC-MS and Ruthenium-Ion-Catalyzed-Oxidation (RICO) reaction, including those of the raw coals, their covalent bond networks and non-covalent
    bond associated fractions. These results may supply helpful information to the mechanism
    on the hydrocarbons generation.
    The results of pyrolysis kinetic indicate that there are differences between these two coal's kinetic parameters of the hydrocarbon generation and of vitrinite reflectance. The coal-derived hydrocarbons' generation and transformation evolutions reconstructed by the kinetic of the hydrocarbon generation suggest that, large-scale secondary hydrocarbon generation is not likely during the uplifting and cooling process of Ordos basin. Compared the homogenization temperature of fluid inclusion with the maximum palaeotemperarure from the Ro kinetic, it infer that, the water-gas interfaces have migrated out of the strata driven by the natural gas in the middle and the east of Ordos basin, and the natural gas formed have not driven the water out in the north of Ordos basin. These results imply the good natural gas exploration foreground in the middle and the east of Ordos basin.
    The results from Py-GC-MS and RICO indicate that, there are differences in the
    molecular characterization between these two raw coals, their extracts and residues of
    CS2-NMP mixed solvents, which is the key lead to the differences in their hydrocarbons generation behaviors. Further researches suggest the molecular structures, which are composing with abundant complex condensed aromatic fractions and a few alkyl groups attached to aromatic nuclei, are relatively constant of the residues of CS2-NMP mixture,
    
    
    
    and the differences are only in the composition of aromatic fractions. On the other hand, the molecular structure of the CS2-NMP mixture extracts, which are relatively variable, unexpectedly, have some complex condensed aromatic fractions and alkyl groups attached to aromatic nuclei.
    The paper discusses the possibility of hydrocarbons generation by the destroying and restraint of the associated structure and think that associated structure is important to hydrocarbons generation. A great deal of the geological and experimental facts can satisfactory explain with the existence of associated structure in coal and source rocks.
引文
陈茺,许学敏,高晋生,等.1998. 煤中氢键类型的研究.燃料化学学报.26(2) :140-144.
    陈传平,梅博文,贾发敬.1994. 生油岩产生低分子量有机酸的模拟实验研究.地球化学.23(2) : 155-160.
    陈践发,李春园,沈平,等.1995. 煤型烃类组分的稳定碳、氢同位素组成研究.沉积学报.13(2) : 59-69.
    陈能贵,张润合,武金云,等.2000. 主要含气盆地有效气源岩发育特征与形成大中型气田的关 系.长庆石油勘探局(内部资料).
    戴金星.1990. 概论有机烷烃气碳同位素系列倒转的成因问题.天然气工业.10(6) :15-20.
    戴金星.1993. 天然气碳氢同位素特征和各类天然气鉴别.天然气地球科学.13(2) :1-40.
    傅家谟 刘德汉.1992. 天然气运移、储集及封盖条件.北京:科学出版社,5-29.
    傅家谟,刘德汉,盛国英主编.1992. 煤成烃地球化学.北京:科学出版社,1.
    傅家谟,秦匡宗主编.1995. 干酪根地球化学.广州:广东科技出版社,375-376.
    郭绍辉,李术元,陈志伟等.2000. 低熟烃源岩的超强混合溶剂抽提及其地球化学意义.石油大 学学报(自然科学版).24(3) :50-53.
    姜峰,杜建国,王万春,等.1998. 高温超高压模拟实验研究,I.温压条件对于有机质成熟作用 的影响.沉积学报.16(3) :153-159.
    姜峰,杜建国,谢鸿森,等.2000. 高温高压模拟实验气态产物碳同位素演化特征.地球化学.29 (1) :73-76.
    李超.2001. 蓟县剖面元古宙沉积物(1. 8-0. 85Ga)的分子有机地球化学研究.中国科学院博士学 位研究生学位论文.
    李丽,王新洲.1985褐煤煤化作用的模拟实验。实验与天然气地质,6(2) :121-126。
    李术元,郭绍辉,沈润梅.2001. 沥青质催化降解特征及动力学研究.沉积学报.19(1) :136-140.
    李术元,郭绍辉,郑红霞.1997. 褐煤催化降解生烃过程的动力学研究.石油勘探与开发.24(3) : 21-23.
    李振铎,胡义军,谭芳.1998. 鄂尔多斯盆地上古生界深盆气研究.天然气工业.18(3) :10-16.
    廖泽文.2000. 沥青质地球化学行为研究及其在石油勘探开发中的应用前景.中国科学院博士学 位研究生学位论文.
    刘金钟,唐永春.1998. 用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报.43(11) : 1187-1191.
    刘金钟,唐永春.1998. 用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报.43(11) : 1187-1191.
    刘洛夫,毛东风,妥进才等.1997. 源岩生烃模拟实验的研究现状.矿物岩石地球化学通报.16 (1) : 55-57.
    刘文汇,徐永昌,张守春,等.2000. 一种新的成烃机制-力化学作用及其实验证据.沉积学报.18 (2) : 314-318.
    刘孝汉,王欣,黄钢,等.1998. 鄂尔多斯盆地上古生界气水分布和地层压力.低渗透油气田(内 部发行).3(2) :32-36.
    刘新社,付金华,席胜利,等.1999. 鄂尔多斯盆地上古生界盆地分析模拟及资源潜力研究.长 庆石油勘探局(内部资料).
    卢家烂.1995. 干酪根成烃模拟实验及其应用.干酪根地球化学.傅家谟,秦匡宗主编.广州:广 东科学出版社, 473-517.
    卢家烂.1990. 煤成烃的模拟实验.煤成烃地球化学.傅家谟,刘德汉,盛国英主编.北京: 科
    
     学出版社,37-51.
    卢书锷,1987. 泥质沉积物排烃模拟.石油实验地质.9(1) :22-23.
    卢双舫,王子文,付晓泰,等.1996. 镜质体成烃反应动力学模型的标定及其在热史恢复中的应 用.沉积学报.14(4) :24-29。
    闵琪,付金华,席胜利,等.1999. 鄂尔多斯盆地上古生界天然气运移聚集特征.第4届全国油 气运移学术研讨会论文.
    闵琪,刘孝汉,马振芳,等.1997. 鄂尔多斯盆地上古生界深盆气形成的地质条件研究.长庆石 油勘探局(内部资料).
    闵琪,刘孝汉,王欣,等.1998. 鄂尔多斯盆地上古生界形成深盆气藏区域地质研究.低渗透油 气田(内部发行).3(2) :7-12.
    潘长春,周中毅,谢启来.1996. 油气和含油气包裹体及其在油气地质地球化学研究中的意义.沉 积学报.14(4) :15-23。
    秦匡宗,郭绍辉,李术元.1998. 煤结构的新概念与煤成油机理的再认识.科学通报.43(18) : 1912-1918.
    秦匡宗.1995. 干酪根结构.干酪根地球化学.傅家谟,秦匡宗主编.广州:广东科技出版社, 426-430.
    秦志宏,宗志敏,刘建周,等.1997. 煤岩组分在二硫化碳-N-甲基-2-吡咯烷酮混合溶剂中的可 溶性.燃料化学学报.25(6) :549-553.
    任战利.1999. 中国北方沉积盆地构造热演化史研究.北京:石油工业出版社,59-60.
    沈平,徐永昌,王先彬,等.1991. 气源岩和天然气地球化学特征及成气机理研究.兰州:甘肃 科学技术出版社,117-123.
    盛国英.1992. 煤中可溶有机质与生物标志物.煤成烃地球化学,傅家谟,刘德汉,盛国英主编.北 京: 科学出版社。138-168.
    盛国英,傅家谟,Brassell S C.,et al.1986. 膏盐盆地高硫原油芳烃馏分中特征性标志化合物的 检出.中国科学院地球化学研究所有机地球化学开放实验室研究年报.贵阳:贵州人民出版 社,50-64.
    石卫,郭绍辉,秦匡宗.1992. 烃源岩在水介质下热压模拟的研究.第五届有机地球化学学术讨论 会论文摘要.广州.238.
    史斗,刘文汇.1999. 油气形成的力化学作用--油气地质理论思考之一.地球科学进展.14(4) : 340-345.
    宋岩.准噶尔盆地天然气聚集区带地质特征.1995. 北京:石油工业出版社.23-48.
    王剑秋,吴肇亮,钱家麟.1995. 干酪根热解动力学.干酪根地球化学.傅家谟 秦匡宗主编.广 州:广东科技出版社.541-551.
    熊永强,耿安松 王云鹏,等.2001. 干酪根二次生烃动力学模拟实验研究.中国科学.31(4) : 315-320.
    熊永强,耿安松,王云鹏,等.2001. 干酪根二次生烃动力学模拟实验研究.中国科学.31(4) : 315-320.
    熊永强,耿安松,盛国英,等.2001. 生排烃过程中正构烷烃碳同位素组成的变化特征及其研究 意义.沉积学报.19(3) :469-473.
    徐永昌,沈平,申歧祥,等.1986. 煤系有机质热模拟产物的化学特征及地质意义.中科院兰州 地质研究所生物气体地球化学开放实验室研究年报.
    杨天宇 王涵云.1987. 岩石中有机质高温高压模拟实验.石油与天然气地质.8(4) :380-390.
    杨天宇,王涵云.1987. 岩石中有机质高温高压模拟实验.石油与天然气地质,8(4) :380-390.
    增建忠,孔庆云.1995. 显微热台油气生成模拟实验.石油勘探与开发.15(3) :38-43.
    
    
    张成君,孙柏年,崔彦立.2001. 湖相碳酸盐岩有机质热演化产物及其碳同位素组成特征. 兰州 大学学报(自然科学版).37(1) :87-92
    张国防,吴德云,马金钰.1995. 盐湖相石油早期生成.石油实验地质.17(4) :357-366.
    张金亮,常象春,张金功.1999. 鄂尔多斯盆地上古生界深盆气藏研究.第四届全国油气运移学 术研讨会论文.
    张文正,李剑峰,昝川莉.1998. 鄂尔多斯盆地上古生界深盆气形成的气源条件研究.低渗透油 气田(内部发行).3(2) :13-23.
    张文正,裴戈,关德师.1991. 烃源岩轻烃生成与演化的热压模拟实验研究.石油勘探与开发,18 (3) :1-15。
    张学义,马镇涛,卢家烂.1994. 褐煤变质作用的热模拟实验研究.中国煤田地质.6(1) :37-42.
    张在龙,孙燕华,劳永新.1998. 生油岩矿物低温催化脂肪酸脱羧生烃的活性评价.地球化学.28 (6) :589-595.
    张在龙,孙燕华,劳永新,等.1998. 未熟生油岩中含铁矿物对脂肪酸低温催化脱羧生烃的作用. 科学通报.43(24) :2649-2652.
    郑承光,范正平,侯云东,等.1995. 陕甘宁盆地上古生界沉积体系及天然气有利富集区带评价.长 庆石油勘探局(内部资料).
    郑建京,吉利明,孟仟祥.1999. 天然气碳同位素部分反序与乙烷碳同位素特征的模拟研究.沉 积学报17(增刊):811-814.
    钟宁宁,陈恭洋,黄光辉.2000. 鄂尔多斯和塔里木盆地含煤建造特征与大中型气田的关系.“九 五”国家重点科技攻关项目《中国大中型气田勘探开发研究》成果报告.(内部资料).
    周中毅,潘长春主编.1992沉积盆地古地温测定方法及其应用.广州:广东科技出版社.
    朱训,主编.1995. 中国矿情 第一卷《总论·能源矿产》.北京:科学出版社,194.
    邹艳荣,刘金钟,彭平安.2000. 压力对高硫干酪根轻烃产率的影响.地球化学.29(5) :431-444.
    Amble A., Halim M., Jacquesy J C., et al.1994. Characterization of kerogen from Timahdit shale (Y-layer) based on multistage alkaline permanganate degaration. Fuel. 73:17-24.
    Acevedo S., Mendez B., Rojas A., et al. 1985. Asphaltene and resins from Orinoco basin. Fuel. 64: 1741-1747.
    Barker C E. 1989. Temperature and time in the thermal maturation of sedimentary organic matter. Thermal history of sedimentary basin-methods and case histories, (Eds: Naeser N D and Mccullon T H). New York: springer-verlag, 75-98.
    Barker C E., and Pawlewicz M J. 1986. The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Paleogeothermics, lecture notes in earth sciences (eds G. Buntebarth and L Stegena). New York: springer-verlay, 79-228.
    Baudet N., Amble A., Jacquesy J C., et al. 1994. Transalkylation applied for the structural characterization of kerogen. Fuel. 73 (10) : 1594-1599.
    Behar F., and Vandenbroucke M. 1996. Experimental determination of the rate constants of the n-C15 thermal cracking at 120, 400 and 800 bar: implications for high-pressure/high-temperature prospects. Energy & Fuels. 10: 932-940.
    Behar F., and Vandenbroucke M.1987. Chemical modeling of kerogens. Organic Geochemistry. 11 (1) : 15-24.
    Behar F., Kressmann S., Rudkiewicz J L., et al. 1992. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry. 18: 173-190.
    Behar F., Tang Y, and LIU J. 1997. Comparison of rate constants for some molecular tracers generated during artificial maturation of kerogens: influence of kerogen type. Organic Geochemistry. 26:
    
    281-287.
    Boucher R J., Standen G., and Egliton G. 1991. Molecular characterization of kerogens by mild selective chemical degradation-ruthenium tetroxide oxidation. Fuel. 70: 695-702.
    Boucher R J., Standen G., Patience R L., et al. 1990. Molecular characterization of kerogen from the Kimmeridge clay faormation by mild selective chemical degradation and solid state 13C-NMR. Advances in Organic Geochemistry 1989. Organic Geochemistry. 16: 951-958.
    Braun R L., and Burham A K. 1987. Analysis of chemical reaction kinetics using a distribution of activation energy and simple models. Energy & Fuel. 10: 153-161.
    Brook B T. 1952. Evidence of catalytic action in petroleum, Ind. Eng. Chem. 44 (11) : 2570-2574.
    Bumham A K., and Braun R L. 1999. Global kinetic analysis of qomplex materials, Energy & Fuels. 13 (1) : 1-22.
    Cagninant D., Gruber R., Lacorduire C., et al. 1990. Solvolysis of three Polish coal samples by treatment with NMP and NaOH/CH3OH mixture. Fuel. 69: 902-910.
    Cannon J. 1974. Time-temperature relation in oil genesis. AAPG Bulletin. 58: 2516-2521.
    Carlson G A. 1992. Computer simulation of molecular structure of bituminous coal. Energy & Fuels. 6: 771-778.
    Carr AD. 1991. A pressure dependent kinetic model for vitrinite reflectance. In Organic Geochemistry: Advance and Applications in Energy and Environment (edited by Manning D), 285-287.
    Carr A D. 1999. A vitrinite reflectance kinetics model incorporating overpressure retardation. Marine Petroleum Geology. 16: 355-377.
    Cecil B., Stanton R., Allshouse S., et al. 1979. Effects of pressure on coalification. Ninth International Congress of Carboniferous Stratigraphy and Geology. University of Illinois, Urbana, Illinois, 19-26 May, abstracts of papers. 32.
    Cecil B., Stanton R., and Robbins E. 1977. Geologic factors controlling coalification and hydrocarbon maturation. Bull. Am. Assoc. Pet. Geol. 61: 775-786.
    Choudhury D., Sanyal P K., and Banerjee A K. 1988. Stepwise fragmentation of Coal by H2O2 trifuoroacetic acid oxidation. Fuel. 72 (2) :177-181.
    Cody G D., Obeng M., and Thiyagarajan P. 1997. Characterization of the soluble and insoluble fractions of Upper Freeport coal in NMP/CS2 and pyridine using small angle neutron scattering. Energy & Fuels. 11: 495-501.
    David D., and Antia J. 1986. Kinetic method for modeling vitrinite reflectance. Geology. 14: 606-608. *Derbyshire F J., Odoerfer G A., and Whitehurst D D. 1984. Coal liquefaction in nitrogen compounds. Fuel. 63: 56-60.
    Derbyshire F., Marzec A., Schulten H R., et al. 1989. Molecular structure of coals: a debate. Fuel. 68: 1091-1106.
    Domine F. 1989. Kinetics of hexane pyrolysis at very high pressure, Ⅰ. Experimental study. Energy & Fuels. 3: 89-96.
    Domine F. 1991. High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane, Ⅱ is pressure an important geochemical parameter? Organic Geochemistry. 17: 619-634.
    Domine F., and Enguehard F. 1992. Kinetics of hexane pyrolysis at very high pressure,Ⅲ-Application to geochemical modeling. Organic Geochemistry. 18 (1) : 41-49.
    Durfee S L., and voorhess K J. 1985. Pyrolysis-mass spectrometry prediction of liquefaction reactivity and structural analysis of coals. Analysis Chemistry. 57: 2378-2384.
    Eglinton T I., Douglas A G., and Rowland S J.1988. Release of aliphatic, aromatic and sulfur
    
    
    compounds from kimmeridge kerogen by hydrous pyrolysis: a quantitative study. Organic Geochemistry. Advances in Organic Geochemistry 1987. 13: 655-663.
    Evans R I, and Felbeck G. 1983. High temperature simulation of petroleum formation-Ⅱ. Effect of inorganic sedimentary constituents on hydrocarbon formation. Organic Geochemistry. 16: 155-160.
    Faulon J R, Vandenbroucke M., Drappier J M., et al. 1990. 3D chemical model for geological macromolecules. Organic Geochemistry. 16: 981-993.
    Freund H., Close J A., and Often G A. 1993. Effect of pressure on the kinetics of kerogen pyrolysis. Energy & Fuel. 7: 1088-1094.
    Given P H. 1960. The distribution of hydrogen in coals and relation to coal structure. Fuel. 39: 147-152.
    Given P H., Merzec A., Barton W A., et al. 1986. The concept of a mobile or molecular phase within the macromolecular network of coals: a debate. Fuel. 65: 155-163.
    Given P H., and Merzec A.1988. protons of differing rotational mobility in coals. Fuel. 67: 242-244.
    Goldstain T P. 1983. Geocatalysic reaction in formation and maturation of petroleum. AAPG Bulletin. 41: 152-159.
    Haenel M W. 1992. Recent progress in coal structure research. Fuel. 71: 1211-1223.
    Hao F., Li S., Sun Y., et al.1996. Characteristics and origin of the gas and condensate in the Yinggehai basin, offshore South China Sea, evidence for effects of over pressure on petroleum generation and migration. Organic Geochemistry. 24 (3) : 365-375.
    Hao R, Sun Y, Li S., et al. 1995. Overpressure retardation of organic mater maturation and petroleum generation: a case study from the Yinggehai and Qiongdongnan basins, South China Sea. Am. Assoc. Petrol. Geologists. 78: 551-562.
    Harper A M., Meuzzelaar H L C., and Given P H. 1984. Correlations between pyrolysis mass spectra of Rocky Mountain coals and conventional coal parameters. Fuel. 63: 793-802.
    Hartgers W A., Sinninghe D J S., and de Leeuw J W. 1992. Identification of C2-C4 alkylated benzenes in flash pyrolysates of kerogens, coals and asphaltenes. Journal of Chromatography. 606: 211-220.
    Hartgers W A., Sinninghe D J S., de Leeuw J W., et.al. 1994. Molecular characterization of flash pyrolysates of two carboniferous coals and their constituting maceral fractions. Energy & Fuels. 8: 1055-1067.
    Hatcher P G. 1988. Dipolar dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structure units during coalification. Energy & Fuels. 2: 48-58.
    Hatcher P G., Lerch H E Ⅲ., Bates A L., et al. 1989a. Solid-state 13C nuclear magnetic resonance studies of coalified gymnosperm xylem tissue from Australian brown coals. Org. Geochem. 14: 145-155.
    Hatcher P G., Lerch H E Ⅲ, and Verheyen T V. 1989b. Organic geochemical studies of the transformation of gymnosperm xylem during peatification and coalification to subbituminous coal. Int. J. Coal. Geol. 13:67-97.
    Hatcher P G., Wilson M A., Vassallo A M., et al. 1989c. Studies of angiospermous wood in Australian brown coal by nuclear magnetic resonance and analytical pyrolysis: new insight into the earls coalification process. J. Coal. Geol. 13: 99-126.
    Hatcher P G. 1990. Chemical structural models for coalified wood (vitrinite) in low rank coal. Organic Geochemistry. 16: 959-968.
    Hatcher P G., Breger I A., Szeverenyi N., et al. 1982. Nuclear magnetic resonance studies of ancient
    
    
    buried wood: Ⅱ. Observations on the origin of coal from lignite to bituminous coal. Organic Geochemistry. 4: 9-18.
    Hatcher P G., and Clifford D J. 1997. The organic geochemistry of coal: from plant materials to coal. Org. Geochem. 27(5/6) : 251-274.
    Hayashi Jun-ichiro., Aizawa S., Kumagai H., et al. 1999. Evaluation of Macromocular structure of a brown coal by means of oxidative degradation in aqueous phase. Energy & Fuels. 13(1) : 69-76.
    Hayatsu R., Botto R E., McBeth R L., et al. 1988. Chemical alteration of a biological polymer "sporopollenin" during codification: origin, formation, and transformation of the coal maceral sporinite. Energy & Fuels. 2: 843-847.
    Hill R J., Tang Y., Kaplan I R., et al. 1996. The influence of pressure on the thermal cracking of oil. Energy & Fuels. 10: 873-882.
    Hoering T C. 1984. Thermal relation of kerogen with added water, heavy water and pure organic substances. Organic Geochemistry. 5: 267-278.
    Hood A., Gutjaahr C M and Peacock R L. 1975. Organic metamorphism and the generation of petroleum. AAPG Bulletin. 59: 986-996.
    Huang W L. 1996. Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry. 24 (2) :233-241.
    Huiziga B J., Tannembaum E., and Kaplan I R. 1987. The role of minerals in the thermal alteration of organic matter-Ⅲ. Generation of bitumen in laboratory experiments. Organic Geochemistry. 11: 591-604.
    Hunt J M. 1979. Petroleum Geochemistry and Geology. Freeman, San Francisco, 617-618.
    Iino M., Takanohashi T, Obara S., et al. 1989. Characterization of extracts and residues frome CS2-N-methyl-2-pyrrolidinone mixed solvent extraction. Fuel. 68: 1588-1593.
    Iino M., Takanohashi T, Ohkawa T.,et al. 1991. On the solvent soluble constituents originally existing in Zao Zhuang coal. Fuel. 70: 1236-1237.
    Iino M., Takanohashi T., Ohsuga H., et al. 1988. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature-effect of coal rank and synergism of the mixed solvent. Fuel. 67 (12) : 1639-1647.
    Ishizuka T, Taknohashi T., Ito O., et al. 1993. Effects of additives and oxygen on the extraction yield with CS2-NMP mixed solvent for Argonne premium coal samples. Fuel. 72 (2) : 579-580.
    Khavari K G., and Michelsen J K. 1994. The effects of overpressure, lithology, chemistry and heating rate on vitrinite reflectance evolution, and its relationship with oil generation. APEA Jour. 34: 418-435.
    Khorasheh F., and Gray M R.1993. High-pressure thermal cracking of n-hexadecane in tetralin. Energy & Fuels. 7 (6) : 960-967.
    Kinney Jr I W., and Cook G L. 1952. Identification of thiophene and benzene honologs. Mass spectral correlation. Anal. Chem. 24 (9) : 1391-1396.
    Kribii A., Lemee L., Chaouch A., et.al. 2001. Structural study of the Moroccan Timahdit (Y-LAYER) oil shale by selective degradations. Fuel. 80: 681-691.
    Landais P L., Michels R., and Elie M. 1994. Are time and temperature the only constraints to the simulation of organic matter maturation? Organic Geochemistry. 22: 617-630.
    Larter S R. 1988. Some pragmatic perspectives in source rock geochemistry. Marine and petroleum geology. 5: 194-204.
    Larter S R., and Horsfield B. 1993. Determination of structural components of kerogen by the use of
    
    
    analytical pyrolysis methods. In: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry, Principles and Applications. New York, Plenum Press, 271-287.
    Lewan M D and Williams J A. 1987. Evaluation of petroleum generation from resinites by hydrous pyrolysis. AAPG Bulletin. 71(2) : 207-214.
    Lewan M D.1985. Evalution of petroleum generation by hydrous pyrolysis. Phil Tras R Soc Lond A. 315: 123-134.
    Li C., Ashida S., and Iino M. 2000. Coal dissolution by heat treatments in 1,4,5,8,9,17-Hexahydroanthracene and their mixed solvents: a large synergistic effect of the mixed solvents. Energy & Fuels. 14 (1) : 190-196.
    Mallya N., and Zingaro R A. 1984. Ruthenium tetroxide with the potential for the study of oxygen functionalities in coal. Fuel. 63: 423-425.
    Mango F D. 1992. Transition metal catalysis in the generation of petroleum and natural gas. Geochinmica et Cosmochimica Acta. 56: 553-555.
    Masters J A.1979. Deep basin gas trap, Western Canada. AAPG Bulletin. 34: 152-181.
    McTavish R A. 1979. Pressure retardation of vitrinite diagenesis, offshore northwest Europe. Nature. 271: 648-650.
    Meuzelaar H L C., Harper A M., Hill G R., et al. 1984a. Characterization and classification of Rocky Mountain coals by Curie-point pyrolysis mass spectrometry. Fuel. 63: 640-652.
    Meuzelaar H L C., Harper A M., Pugmire R J., et al. 1984. Characterization of coal maceral concentrates by Curie-point pyrolysis mass spectrometry. International Journal of Coal Geology. 4: 143-171.
    Meuzelaar H L C., Haverkamp J and Hileman. F D. 1982. Py-MS of Recent and Fossil Biomaterial-Compendiam and Atlas. Amsterdam, Elsevier.
    Meuzelaar H L C., Yun Y, Chakravarty T., et al. 1992. Computer-enhanced pyrolysis mass spectrometry: A new windows on coal structure and reactivity. In: Meuzelaar H L C. (Ed.) Advances in coal spectroscopy. Plenum Press, New York, 275-294.
    Meuzelaar H LC., Harper A M., Hill G R., et al. 1984. Characterization and classification of Rocky Mountain coals by Curie-point pyrolysis mass spectrometry. Fuel. 63: 640-652.
    Minkova V., Dobal V., and Angelova G. 1985. Chemical deploymerization of oil shale. Fuel. 66: 1579-1583.
    Mojelsky T W., Ignasiak T M., Frakman Z., et al., 1992. Structural Features of Alberta oil sang bitumen and heavy oil asphaltenes. Energy & Fuels. 6: 83-96.
    Monthioux M., Landais P., and Mand D B. 1986. Comparison between extracts from natural and aritifical maturation series of Mahakam delta coals. Organic Geochemistry. In Advances in Organic Geochemistry 1985. 10: 299-311.
    Monthioux M., Landais P., and Monin J. 1985. Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Organic Geochemistry. 8(4) : 275-292.
    Monthioux M.1988. Expected mechanisms in nature and in confined-system pyrolysis. Fuel. 67: 843-847.
    Morrow D W, and Issler D R. 1993. Calculation of vitrinite reflectance from thermal histories: a comparison of some methods. AAPG Bulletin. 77: 610-624.
    Muratas S., U-esaka K., Ino-ue H., et al. 1994. Studies on aliphatic portion of coal organic materials based on Ruthenium Ion Catalyzed Oxidation. Energy & Fuels. 8 (6) : 1379-1383.
    Murgich J., Abanero J A., and Strausz O P. 1999. Molecular recognition in aggregates formed by
    
    
    asphaltene and resin molecules from the Athabasca oil sand. Energy & Fuels. 13 (2) : 278-286.
    Nip M., Tegelaar E W., Brindhuis H., et al. 1986a. Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: Recognition of a new, highly aliphatic and resistant bioloymer. In Advances in Organic Geochein. 10: 769-778.
    Nip M., Tegelaar E W., DE Leeuw J W., Schencd P A., et al. 1986b. A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles: evidence from pyrolysis and resistant
    biopolymer in plant cuticles: evidence from pyrolysis and 13C-CMR analysis of present day and fossil plants. Naturwissenschaften 73: 579-585
    Nip M., de Leeuw J M., and Crelling J C. 1992. Chemical structure of bituminous coal and its constituent maceral fractions as revealed by flash pyrolysis. Energy & Fuels. 6: 125-136.
    Nip M., de Leeuw J W., and Schenck P A. 1988. The characterization of eight maceral concentrates by means of Curie-point pyrolysis-gas chromatography and Curie-point pyrolysis-gas chromatography-mass spectrometry. Geochimica and Cosmochimca Acta. 52: 637-648.
    Nishioka M. 1991. Rank dependence of associative equeilibra of coal. Energy & Fuels. 5(3) : 487-491.
    Nishioka M. 1992. The associated molecular nature of bituminous coal. Fuel. 71: 941-948.
    Nomura M., Artok L., Muratas S., et al. 1998. Structural evalution of Zao Zhuang coal. Energy & Fuels. 12: 512-523.
    Peng P., Fu J M., and Sheng G Y., et al. 1999b. Ruthenium-Ions-Catalyzed Oxidation of an immature asphaltene: structural features and biomarker distribution. Energy & Fuels. 13: 266-277.
    Peng P., Morales-Izquierdo A., Hogg A., et al. 1999a. Chemical structure and biomarker content of Jinghan Ashphatenes and kerogens. Energy & Fuels. 13: 248-265.
    Price L C. 1981. Aqueous solubility of crude oil to 400℃, 2000,2000 bars pressure in the presence of gas. Petroleum Geology. 4: 195-223.
    Price L C., and Wenger L M. 1992. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Organic Geochemistry. 19: 141-160.
    Price L C.1983. Geologic time as a parameter in organic metamorphism and vitrinite reflectance us an absolute paleothermometer. Journal of petroleum Geology. 6: 5-36.
    Roger K., and Mclimans. 1987. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs. Applied Geochemistry. 2: 585-603.
    Rosa D L., Pruski M., Lang D., et al. 1992. Characterization of the Argonne Premium Coals by using 1H and 13C NMR and FT-IR spectroscopies. Energy & Fuels, 6 (4) : 460-468.
    RullkOtter J., and Michaelis W. 1990. Structure of kerogen and'related materials. A review of recent progress and future trends. Organic Geochemistry. Advances in Organic Geochemistry 1989. 16 (4-6) : 829-852.
    Sharma D K., and Mishra S. 1990. 13C-NMR spectral studies of the depolymerized coal obtained by acidic phenolation. Fuel Science and Technology Int'1. 8 (4) : 351-377.
    Shen J L., Takanohashi T., and lino M. 1992. Thermal behavior of coals at temperatures as low as 100-350℃: heat treatment of THF-Insoluble extract from CS2-NMP mixed solvent extraction of Zao Zhuang coal. Energy & Fuels. 6 (6) : 854-858.
    Shimoyama A., and Johns W D. 1972. Formation of alkanes from fally acids in the presence of CaCO3. Geochinmica et Cosmochimica Acta. 36: 87-91.
    Shinn J H. 1984. From coal to single-stage and two-stage products: a reactive model of coal structure. Fuel. 63: 1187-1196.
    Sinninghe Damste J S., Kohnen M E L., and de LEEUW J W. 1990. Thionpenic biomarkers for
    
    palaeoenviromental assessment and molecualr stratigraphy. Nature. 345 (14) : 609-611.
    Sinninghe Damste J S., Kohnen M E L., and Horsfield B. 1998. Origin of low-molecular-weight alkylthiophenes in pyrolysates of sulphur-rich kerogens as revealed by micro-scale sealed vessel pyrolysis. Organic Chemistry. 29 (8) : 1891-1903.
    Stach E., Mackowsky M., Teichmuller M., et al. 1982. Coal Petrology. Gebruder Bornstranger, Belin, 428.
    Stalker L., Farrimond P., Larter S R. 1994 water as an oxygen source for the production of oxygenated lompounds during kerogen maturation. Organic Geochemistry. 22: 477-485.
    Standen G., Boucher R J., Rafalska-B J., et al. 1991. Ruthenium tetroxide oxidation of natural organic macromolecules: Messel kerogen. Chemical Geology. 91: 297-313.
    Stock L M., and Kwok-tuen Tse. 1983. Ruthenium Tetraoxide Catalysed Oxidation of Illinois No.6 coal and some representative hydrocarbons. Fuel. 62: 974-976.
    Stock L M., and Wang S-H. 1985. Ruthenium Tetraoxide Catalysed Oxidation of Illinois No.6 coal: The formation of volatile monocarboxylic acids. Fuel. 64: 1713-1717.
    Stock L M., and Wang S-H. 1986. Ruthenium tetraoxide catalysed oxidation of coals: The formation of aliphatatic and benzene carboxylic acids. Fuel. 65: 1552-1562.
    Stock L M., and Wang S-H. 1987. The ruthenium (Ⅷ)-catalysed oxidation of Illinois No.6 bituminous coal (an appliction of g.c.-FT-i.r.spectroscopy for structural analysis. Fuel. 66: 921-924.
    Stout S A., Boon J J., and Spackman W. 1988. Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods. Geochimica et Cosmochimica Acta. 52: 405-414.
    Strausz O P., Mojelsky T W, and Lown E M. 1999b. Structural features of Boscan and Duri asphaltenes. Energy & Fuels. 13: 228-247.
    Strausz 0 P., Mojelsky T W., Faraji F., et al.1999a. Additional structural details on Athabasca asphaltene and their ramifications. Energy & Fuels. 13: 207-227.
    Sweeney J J., and Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin. 74: 1559-1570.
    Takahashi K., and lino M. 1995. Investigation of associated structure of Upper Freeport coal by solvent swelling. Energy & Fuels. 9: 788-793.
    Takahashi K., Nakamura K., Terao Y., et al. 2000. Computer simulation of solvent swelling of coal melecules: effect of different solvents. Energy & Fuels. 14: 393-399.
    Takahashi K., Norinaga K., Masui Y., et al. 2001. Effect of addition of various salts on coal extraction with carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent. Energy & Fuels. 15: 141-146.
    Takahashi K., Ohkawa T, Yanagida T., et al. 1993. Effect of maceral composition on the extraction of bituminous coals with carbon disulphide-N-methyl-2-pyrrolidinone mixed solvent at room temperature. Fuel. 72: 51-55.
    Takeda N., Sato S., and Machihara T. 1990. Study of petroleum generation by compaction pyrolysis-I . Construction of a novel pyrolysis system with compaction and expulsion of pyrolyzate from source rock. Organic Geochemistry. Advances in Organic Geochemistry 1989. 16: 143-153.
    Tang Y., Jenden P D., Nigrini, A., et al. 1996. Modeling early methane generation in coal. Energy & Fuel. 10: 659-671.
    Tegelaar E W., de Leeuw J W., Derenne S., et al. 1989a. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta 53: 3103-3106.
    
    
    Tegelaar E W., Mattheaing R., Jansen J B H., et al. 1989b. Possible origin of n-aldanes in high-wax crude oils. Nature. 342:529-531.
    Teichmuller M., and Teichmuller R. 1981. The significance of coalification studies to geology-a review. Bull. Cent. Rech. Explore. 5: 491-534.
    Tilley B J., Nesbitt B E., and Longstaffe F J. 1989. Thermal history of Alberta Deep Basin: Comparative study of fluid inclusion and vitrinite reflectance data. AAPG Bulletin. 73 (10) : 1206-1222.
    Tissot B P., Durand B., Espitalie J., et al. 1974. Influence of the nature and diagensis of organic matter in the formation of Petroleum. AAPG Bulletin. 58: 499-506.
    Tissot B P., Welte D H.1984. Petroleum formation and occurrence.. Berlin: Springen, 131-160.
    Ungerer P. 1990. State of the art of research in kinetic modeling of oil formation and expulsion. Organic Geochemistry. 16 (1-3) : 1-25.
    Ungger P., and Pelet R. 1987. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basin. Nature. 327: 52-54.
    van Bergen P R, Collinson M E., and de Leeuw J W. 1993. Chemical composition and ultrastructure of fossil and extant salvinialean microscope massule and megaspores. Geochimica et Cosmochimica Acta 57: 5327-5335.
    van Bergen P R, Collinson M E., Sinninghe Damste J S., et al.,1994. Chemical and microscopic characterization of outer seed coats of fossil and extant water plants. Grana Suppl. 1: 18-30.
    Vandenbroucke M., Behar R, and Rudkiewicz J L. 1999. Kinetic modeling of petroleum formation and cracking implications from the high-pressure/high-temperature Elgin Field (UK, North Sea). Organic Geochemistry. 30: 1105-1125.
    Van Krevelen D W. 1961. Coal. Elsevier, Amsterdam. 395.
    Vayisoglu E S., Harput O B., Johnson B R., et al. 1997. Characterization of oil shales by extraction with NMP. Fuel. 76: 353-356.
    Visser W. 1982. Maximum diagenetic temperature in petroleum source-rock from Venezuela by fluid inclusion geothermometry. Chemical Geology. 37: 95-101.
    Vitorovic D., Amble A., Bajc S., et al. 1994. Kerogen diversity demonstrated by oxidation. Ⅰ : Type Ⅰ kerogens. Journal of the Serbian Chemical Society. 59: 85-95.
    Vitorovic D., Amble A., Cvetkovic O., et al. 1996. Kerogen diversity demonstrated by oxidation. Ⅱ:Type Ⅱ kerogens. Journal of the Serbian Chemical Society. 61: 137-147.
    Waples D W. 1980. Time and temperature in petroleum exploration: application of Lopatin's method to petroleum exploration. AAPG Bulletin. 64: 916-926.
    Warton B., Alexander R., Kagi R I. 1999. Characterization of the ruthenium tetroxide oxidation products from the aromatic unresolved complex mixture of a biodegraded crude oil. Organic Geochemistry. 30: 1255-1272.
    Wilson M A., Pugmire R J., Karas J., et al. 1984. Carbon distribution in coal and coal macerals by CP/MAS C-13 NMR spectroscopy. Anal Chem. 56: 933-943.
    Winters J C., Williams J A., and Lewan M D. 1983. A laboratory study of petroleum generation by hydrous pyrolysis. In advances in Organic Geochemistry, 1981 (Eds. M Bjoroy et al.), 524-533.
    Wood D A. 1988. Relationships between thermal maturation indices calculated using Arrhenius equations and Lopation method: implications for petroleum exploration. AAPG Bulletin. 72:115-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700