用户名: 密码: 验证码:
基于n-ZnO/p-聚芴异质结构的有机无机异质结形成及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来氧化锌(ZnO)材料因为其独特的优势,例如较大的禁带宽度(3.37ev)、较大的激子束缚能(60mev)以及良好的化学稳定性、热稳定性、生物兼容性等,使得其在光电器件方面的应用研究受到了越来越大的关注。
     另外氧化锌(ZnO)材料不但能通过脉冲激光沉积(PLD)、磁控溅射、电化学沉积、金属有机物化学气相沉积(MOCVD)等方法制备成为薄膜材料,同时可以通过多种方法制备成具有更大表体面积、量子尺寸效应以及在较大晶格适配衬底上应力较小的纳米材料,例如纳米线、纳米棒、纳米管、纳米团簇等。其中低温水溶液生长ZnO纳米棒的方法由于其低廉的成本,简单的操作以及较好的环境兼容性使其成为一大研究热点。由于目前ZnO材料稳定可靠的p型掺杂技术还存在很多困难,研究者又把目光转向ZnO基异质结纳米器件,包括纯无机ZnO基异质结纳米器件(如p-GaN/n-ZnO结构)和有机-无机复合结构ZnO基异质结纳米器件。特别是n型ZnO纳米线阵列与p型有机半导体结合构成有机无机复合结构器件,因其可以结合ZnO纳米结构和有机半导体的优势又能避开ZnO材料p型掺杂难题而在最近几年备受关注。而且聚芴(Pf)作为一种高效的蓝光发射物质,结合ZnO纳米棒与深能级相关的较宽的可见光区缺陷发光,使得ZnO/Pf结构具有白光LED发射潜质。本文分为两大部分:
     1.在ITO玻璃衬底上,利用低温水溶液法成功制备了n-ZnO纳米棒/p-聚芴有机无机异质结结构。通过实验结果得知,密集生长、均匀分布的ZnO纳米棒材料成功的生长在无晶向的有机聚芴薄膜上,通过对该有机无机异质结结构的电学特性研究得出,此类方法制备的n-ZnO纳米棒/p-聚芴有机无机异质结结构呈现一种典型的pn结整流特性。
     2.在ITO玻璃上,水溶液法生长的ZnO纳米棒材料与磁控溅射生长的薄膜材料分别与有机薄膜聚芴形成ZnO/聚芴有机无机异质结结构。并对此两种结构进行了定量的对比分析研究。结果表明,水溶液法生长的ZnO纳米棒材料基的ZnO/聚芴有机无机异质结结构表现出更好的整流特性,这也表明纳米棒材料相对于薄膜材料更有利于制备高性能的光电子器件。
Because of its wide band gap (3.37eV) and relatively large exciton binding energy (60meV) at room temperature, and other unique advantages, such as good chemical stability, thermal stability, biological compatibility, ZnO has become one of the hottest research topics in advanced materials and devices.
     As a material, ZnO can be grown as thin films through pulsed laser deposition (PLD), magnetron sputtering, electrochemical deposition, metal organic chemical vapor deposition (MOCVD) and others, at the same time it can be prepared into nanostructures Including the nanowires, nanorods, nanotubes, nano-clusters, etc, through a variety of methods. The nanostructure have a bigger table body area, quantum size effect, and less stress on the substrate of larger lattice contrast the film materials, these features in the application of electronic components play a crucial role. Low-temperature aqueous chemical growth method has been proven to be a high performance growth technique for ZnO NRs, due to its excellent advantages such as low cost, low temperature, non-toxic operation and environmental friendliness. However, the highly efficient and reliable p-type ZnO is still difficult to be achieved, which has significantly limited the development of ZnO homojunction devices. Other p-type materials have been combined with n-ZnO to fabricate heterojunction LEDs, such as GaN, Si, diamond, even organic polymers. There are different options of the choice for the p-type polymers to be combined with n-type ZnO to form the inorganic/organic hybrid junction devices. Among the possible candidates, Polyfluorene (Pf) is a novel and promising blue light emitting materials with extremely high efficiency. The ZnO NR/PF heterostructure has the potential to emit white-light, the white-light electroluminescence is attributed to the greatly enhanced green-yellow emission associated with the ZnO surface defects at the ZnO NR/PF heterostructure and the blue emission from the PF.
     1. The inorganic-organic hybrid junction with n-ZnO nanorods/p-polyfluorene (PF) structure was grown with low-temperature aqueous chemical growth method. The results indicate that densely and uniformly distributed ZnO nanorods were successfully grown on the PF layer, and a p-n junction with reasonable rectifying behavior was formed at the interface between ZnO NR inorganic layer and PF organic layer.
     2. A comparative study was performed through quantitative analyzing the performance of the as-grown ZnO based inorganic/organic hybrid junction with film and nanorods structure, respectively. The great advantage of aqueous chemical grown ZnO nanorods over the sputtered film in view of inorganic/organic hybrid junction was quantitativel demonstrated, and a p-n junction with obviously rectifying behavior was achieved unde optimal conditions. These results indicate that the ZnO nanorods based inorganic/organi hybrid junction possess very interesting electrical and optical properties, thus they are mor suitable and promising for the fabrication of high-performance optoelectronic devices.
引文
[1]OZGUR 0, ALIVOV YA I, LIU C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics,2005,98:041301 (1)-041301 (103).
    [2]COLEMAN V A, JAGADISH C. Zinc oxide bulk, thin films and nanostructures:processing, properties and Applications [M]. Elsevier:UK,2006.
    [3]张德恒,王卿璞,薛忠营.不同衬底上的ZnO薄膜紫外光致发光[J].物理学报,2003,52(6):1484-1487.
    [4]孙景昌.稳定p-ZnO薄膜和ZnO发光器件的制备与研究[D].大连:大连理工大学物理与光电工程学院,2009.
    [5]刘晓通.ZnO d0铁磁性的研究[D].吉林:吉林大学物理学院,2009.
    [6]MITZNER K D, STERNHAGEN J, GALIPEAU D W. Development of a micromachined hazardous gas sensor array [J].Sensors and Actuators B-Chemical,2003,93:92-99.
    [7]HAHN B, HEINDEL G, Pschorr-Schoberer E, et al. MOCVD layer growth of ZnO using DMZn and tertiary butanol [J]. Semiconductor Science and Technology,1998,13:788-791.
    [8]GUO X L, TABATA H, KAWAI T. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source [J]. Journal of Crystal Growth,2001,223:135-139.
    [9]ZHANG D H. Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering [J]. Appl. Phys. Lett.,1995,28:1273-1275.
    [10]季振国,宋永梁,杨成兴,刘坤,王超,叶志镇.溶胶-凝胶法制备ZnO薄膜及表征[J].半导体学报,2004,25:52-55.
    [11]JOHNSON M A L, FUJITA S, ROWLAND W H, et al. MBE growth and properties of ZnO on sapphire and SiC substrates [J]. Journal of Electronic Materials,1996,25:855-862.
    [12]KUMANO H, ASHRAFI A A, UETA A, et al. Luminescence properties of ZnO films grown on GaAs substrates by molecular-beam epitaxy excited by electron-cyclotron resonance oxygen plasma [J].Journal of Crystal Growth,2000,214:280-283.
    [13]HONG SH, CHENY, KOHJ, et al. ZnO and related materials:Plasma-Assisted molecular beam epitaxial growth, characterization and appl ication [J]. Journal of Electronic Materials,2001,30:647-658.
    [14]VAYSSIERES L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions [J]. advanced material.2003,15:464-466.
    [15]王经纬.稳定可靠P型ZnO薄膜的制备与光电性能的研究[D].大连:大连理工大学物理与光电工程学院,2009.
    [16]SERVICE R E. Will UV Lasers Beat the Blues? [J]Science.1997,276:895-899.
    [17]WALKER D, MONROY E, KUNGP, etal. High-speed, low-noise metal-semi conductor-metal ultraviolet photodetectors based on GaN [J]. Applied Physics Letters.1999,74:762-764.
    [18]WANG M, WANG X. P3HT/ZnO bulk-heterojunction solar cell sensitized by a perylene derivative [J]. Solar Energy Materials and Solar Cells,2008,92,:766-771.
    [19]LADHE R D, GURAV K V, Pawar S M, et al. Sankapal. p-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature [J]. J. Alloys Compd. 2012,515:80-85.
    [20]HWANG D K, KANG S H, et al. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes [J]. Appl. Phys. Lett.,2005,86(22):222101-1-3.
    [21]VISPUTE R D, TALYANSKY V, et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices [J]. Appl. Phys. Lett.,1998, 73(3):348-350.
    [22]KAMINSKA E, PIOTROWSKA A, GOLASZEWSKA K, et al. ZnO-GaN tunnel junction for transparent ohmic contacts to p-GaN [J]. J. Alloys Compd.2004,371:129-132.
    [23]LIN B, FU Z X. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl. Phys. Lett.,2001,79(7):943-945.
    [24]ALMAMUN ABM, BINH N T, et al. Strain relaxation and its effect in exciton resonance energies of epitaxial ZnO layers grown on 6H-SiC substrates [J]. Appl. Phys. Lett.,2004,84 (15):2814—2816.
    [25]WANG C X, YANG G W. Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode [J]. Appl. Phys. Lett. 2004,84 (13):2427-2429.
    [26]LEE C Y, WANG J Y, CHOU Y, et al. White-light electroluminescence from ZnO nanorods/polyfluorene by solution-based growth [J]. Nanotechnology,2009,20:425202-1-5.
    [27]K01NENKAMP R, WORD R C, GODINEZ M. Ultraviolet Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting Diodes [J].Nano Lett. 2005,5:2005-2008.
    [28]SUN X W, HUANG J Z, WANG J X, et al. ZnO Nanorod Inorganic/Organi Heterostructure Light-Emitting Diode Emitting at 342 nm [J]. Nano Lett.,2008,8 (4):1219-1223
    [29]ZAINELABDIN A, ZAMAN S, AMIN G, et al. Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50℃ [J].Nanoscale Res Lett.,2010,5:1442-1448.
    [30]WILLANDE M, NU 0, SADAF J R, et al. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes [J]. J. Phys. D:Appl. Phys.,2010: 3:2643-2667.
    [31]WANG X Y, KIM K, et al. Matrix-Assisted Energy Conversion in Nanostructured Piezoelectric Arrays [J]. nanoletters,2010,10(1):4901-4907.
    [32]孙英岚.不同衬底上ZnO纳米棒阵列的水溶液法生长及其同步辐射XANES电子结构研究 [D].大连:大连理工大学物理与光电工程学院,2011.
    [33]LI Q W, BIAN J M, SUN J C, et al. Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method [J]. Applied Surface Science,2010,256:1698-1702.
    [34]SUN Y L, BIAN J M, LI Q W, et al. Effects of Substrate on the Structure, Morphology and Optical Properties of Vertically Aligned ZnO Nanorod Arrays Grown by Low-temperature CBD Method [J]. Journal of Inorganic Materials,2010,25(10): 1115-1120.
    [35]SUN Y L, BIAN J M, SUN J C, et al. Electronic Structure and Optical Properti es of Vertically Aligned ZnO Nanorod Arrays Grown by Low-temperature Hydrothermal Method [J]. Journal of Inorganic Materials,2011,26(3):332—336.
    [36]BANO N, HUSSAIN I, NU 0, et al. Study of luminescent centers in ZnO nanorods catalytically grown on 4H-P-SiC [J]. Semicond. Sci. Techno 1.,2009,24(12): 125015-1-5.
    [37]章晓中.电子显微分析[M].北京:清华大学出版社,2008.
    [38]LIMA S A M, SIGOLI FA, JR M J, et al. Davolos. Luminescent properties and lattice defects correlation on zinc oxide [J]. International Journal of Inorganic Materials,2001,3:749-754
    [39]刘秉策,刘磁辉,易波.ZnO/Si异质结中的晶界层行为研究[J].半导体学报,2010,31(3):032003-4
    [40]LIANGS, GORLACR, EMANETOGLU N, et al. Epitaxial growth of (112-0) ZnO on (011-2) A1203 by metalorganic chemical vapor deposition2) A1203 by metalorganic chemical vapor deposition [J]. Journal of Electronic Materials,1998,27:L72-L76.
    [41]倪赛力,常永勤,多永正,张寅虎,龙毅,强文江,叶荣昌.Mn掺杂ZnO纳米线的拉曼散射和光致发光特性[J].功能材料,2007,8:1380-1382.
    [42]BIAN J M, LI X M, GAO X D, et al. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett.,2004,84:541-543.
    [43]CLAUSEN B S, TOPSφE H. In Situ high pressure, high temperature XAFS studies of Cu-based catalysts during methanol synthesis [J]. Catalysis Today,1991,26:189-196.
    [44]SUN X, FU Z X, WU Z Q. Multifractal analysis and scaling range of ZnO AFM images [J]. Physica A,2002,311:327-338.
    [45]YU B L, ZHU C S, CAN F X, et al. Electron spin resonance properties of ZnO microcrystallites [J].Materials Letters,1998,33:247-250.
    [46]GUO J H, VAYSSIERES L, PERSSON C, et al. Polarization-dependent soft-X-ray absorption of highly oriented ZnO microrod arrays [J]. Journal of physics: condensed matter,2002,14 (28):6969-6974.
    [47]GEORGE V, SCHULZ G L, HOLDCROFT S. Enhanced Blue-Violet Emission from Poly(fluorene-co-thiophene) Host-Guest Systems [J]. Macromolecules,2004,37(24): 8897-8902.
    [48]CHOU C H, SHU C F. Synthesis and Characterization of Dendronized Polyfluorenes [J]. Macromolecules,2002,35(26):9673-9677.
    [49]NA J H, KITAMURA M, ARITA M, et al. Hybrid p-n junction light-emitting diodes based on sputtered ZnO and organic semiconductors [J]. Appl. Phys. Lett.,2009,95 (25): 253303-1-3.
    [50]BADRAN R I, UMAR A, AL-HENITI S, et al. Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode [J]. J.Alloys Compd.,2010,508:375-379.
    [51]SUN H, ZHANG Q, ZHANG J, et al. Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction [J]. Appl. Phys. B,2008,90(3-4):543-546.
    [52]LIU B, ZENG H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm [J]. J. AM. CHEM. SOC.,2003,125:4430-4431.
    [53]OHTA H, KAWAMURA, ORITA K M, et al. UV-emitting diode composed of transparent oxide semiconductors:P-SrCu202/n-Zn0 [J]. ELECTRONICS LETTERS,36(2000) 984-985.
    [54]ALIVOV1 Y I, KALININA E V, CHERENKOV A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J] Appl. Phys. Lett.,83(2003)4719-4721.
    [55]KISHWAR S, HASAN K U, ALVI N H, et al. A comparative study of the electrodeposition and the aqueous chemical growth techniques for the utilization of ZnO nanorods on p-GaN for white light emitting diodes [J]. Superlattices and Microstructures, 2011,49(1):32-42.
    [56 CHEN K J, HUNG F Y, CHANG S J, et al. Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films [J]. J. Alloys Compd.2009,479:674-677.
    [57]TAM K H, CHEUNG C K, LEUNG Y H, et al. Defects in ZnO Nanorods Prepared by a Hydrothermal Method [J]. J. Phys. Chem. B,2006,110(42):20865-20871.
    [58]TUOMISTO F, SAARINEN K. Introduction and recovery of point defects in electron-irradiated ZnO [J]. Physical Review B,2005,72(8):085206-1-11.
    [59]VANHEUSDEN K, SEAGER C H, WARREN W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett.,1996,68(3):403-405.
    [60]LEE J H, KO K H, PARK B 0. Electrical and optical properties of ZnO transparent conducting films by the sol-gel method [J]. J. Cryst. Growth,2003,247(1-2): 119-125.
    [61]KAUSHAL A, KAUR D. Pulsed laser deposition of transparent ZnO/MgO multilayers [J]. J. Alloys Compd.2011,509:200-205.
    [62]袁广才,徐征,张福俊,等.在不同衬底上制备的ZnO薄膜透射率的研究[J].光谱学与光谱分析,2007,27(7):1263-1266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700