用户名: 密码: 验证码:
新型稀磁半导体Mn_xCd_(1-x)In_2Te_4晶体生长及组织结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mn_xCd_(1-x)In_2Te_4晶体是一种新型的四元稀磁半导体。有关Mn_xCd_(1-x)In_2Te_4稀磁半导体材料的研究非常有限。本文详细研究了该材料的制备工艺及物理性能。材料的结晶质量是影响其物理性能的关键因素。本文首次采用Bridgman法生长了Mn_xCd_(1-x)In_2Te_4晶体,并研究了晶体中相的形貌、结构、成分和晶体中各组元沿轴向和径向的成分分布。对Mn_xCd_(1-x)In_2Te_4晶体的红外光学、电学、磁学及磁光性能等进行了探索性研究。
     由于Mn_xCd_(1-x)In_2Te_4晶体是多元合金,而且其热导率比较低,要生长出高质量的Mn_xCd_(1-x)In_2Te_4晶体比较困难。本文根据Mn_xCd_(1-x)In_2Te_4晶体本身的特点,设计出高温度梯度的晶体生长炉。为减小界面的凹陷程度,采用了0.6mm/h和1mm/h两种较低的生长速度。另外,为获得尺寸较大、径向组分均匀的Mn_xCd_(1-x)In_2Te_4晶体,部分晶体引入ω_(max)=40rpm/min间歇三角波坩埚加速旋转技术。此外,还尝试了采用固态再结晶法生长该晶体。
     研制出适合于Mn_xCd_(1-x)In_2Te_4晶体的宏观腐蚀液HNO_3∶HF∶CH_3COOH=2∶1∶2。该腐蚀液可以有效地显示出晶锭表面的晶粒分布和宏观缺陷。采用调整成分的E_(Ag)溶液腐蚀出Mn_xCd_(1-x)In_2Te_4晶体的微观组织形貌。研究发现,采用Bridgman法定向结晶的Mn_xCd_(1-x)In_2Te_4晶锭中形成了三个相区。生长初始端为α+β相区。晶锭中间部分为β单相区。在晶锭末端形成In_2Te_3单相区,该相区晶界处有Te夹杂相。晶锭中存在两个凹形的相转变界面,其中一个是由α+β相生长向β相生长的转变界面,另一个是由β相生长向In_2Te_3相生长的转变界面。为了研究Mn_xCd_(1-x)In_2Te_4晶体生长过程中的液固界面形态,将x=0.22的晶锭在生长结束前淬火,发现Mn_xCd_(1-x)In_2Te_4晶体的生长界面也为凹形。此外,还发现Mn_xCd_(1-x)In_2Te_4晶体中存在裂纹、层错、孪晶等微观缺陷。
     测定了MCIT01B晶锭中各组元沿轴向的分布规律。发现沿轴向自初始端向末端的成分分布为Cd含量逐渐降低,In和Te含量逐渐升高。径向自表面向中心的成分分布与沿轴向时的成分分布规律相似。本文通过对实验结果的拟合估算出Mn、Cd和In的分凝因数在α相区分别为1.286、1.926和0.729,在β相区则分别为1.120、1.055和0.985。并根据介万奇等提出的ACRT-B法生长HgTe-MnTe晶体的溶质再分配模型计算得出Cd组元沿轴向的组分分布规律,
    
     摘 要
    计算结果与实验结果相吻合。
     实验测得 MCIT0lB晶体中,Q什相区和 p相区的径向组分的变化范围随
    着生长的进行而逐渐增大。表明生长界面形态随着生长的进行逐渐加深。理论
    计算出p单相区的液固界面深度在生长过程中的变化规律与实验结果相一致。
     采用X射线衍射法测得口相为(Mn厂dhInzTe。面心立方结构,p相为
    帅工。黄铜矿结构,IllZTq相为面心立方结构。根据 X射线衍射图谱,甲
    并采用外推函数得出MnxCd.xInZTe4晶体中不同相的晶格常数。发现p相的晶格
    常数a和。及。/a与组分X符合线性关系。
     采用光吸收法测得 Mn人d**n。Te。晶体属于直接带隙半导体,其能隙 Eg随
    着组分互的增加线性增大。MnxCd.xIn。Te。晶体在 l~25 n m内均有很高的红外透
    过率。
     采用Hall 系统测量了MnxCd.xIn。Te。晶体的电学性能,发现生长态的
    MnCd* 晶体均为 P型半导体。随着组分 X值的增大,载流于的浓度 Np
    减小,迁移率P。增大,电阻率P也增大。
     实验测量了MnxCd、InZTe。晶体的磁化率x与温度、组分和磁化强度的关系。
    MnxCd、xIn。Te。晶体在低温下的磁化曲线(M-B)表明,所有x组分的样品均显
    示顺磁特征。Mn》离子之间存在反铁磁相互作用,并随着组分x的增大而增强。
    研究磁化率x与温度的关系发现,在高温区Mn人d.xIn。Te4晶体的x-’丁曲线服
    从居里一外斯定律,在低温区(大约低于50K)磁化率与温度的关系偏离居里
    一外斯定律,表现出顺磁增强现象。二越大,偏离现象越明显。对于同一组分的
    MnCd、InzTe晶体,温度越低,反铁磁作用越明显。
     Mn人d.xhiZTe4晶体作为一种稀磁半导体,其最显著的特性就是巨法拉第效
    应。本文首次报道了MnxCd、xhiZTe4晶体的法拉第旋转效应随着组分和光子能量
    的变化规律。研究发现,MnxCd.xInZTe4晶体在室温下的Verdet常数就可以达到
    10勺egcm-’T-‘。说明 Mn人d.*nzTe4晶体是优异的磁光材料。
MnxCd1-xIn2Te4 is a new quaternary diluted magnetic semiconductor that possesses special photoelectric and magnetic properties as well as excellent magneto-optical effects,because of its strong sp-d coupling effects. There are only a few reports on MnxCd1-xIn2Te4 crystal. In the present dissertation,the researches on the growth technologies and the physical properties of MnxCd1-xIn2Te4 crystals have been reported. MnxCd1-xIn2Te4 ingots were grown by Bridgman method. The phase formation,phase structure,growth interface morphology and compositional redistribution in MnxCd1-xIn2Te4 ingots were analyzed. Its optical,electrical and magnetic properties and giant Faraday rotation were also examined.
    Generally speaking,it is difficult to get high quality MnxCd1-xIn2Te4 crystals because of its low thermal conductivity and multi components. According to the thermal parameters of MnxCd1-xIn2Te4,a high temperature gradient furnace was designed in the present work. The slow growth rate of 0.6mm/h and Imm/h were used for reducing the depth of the growth interface. ACRT was introduced in some ingots to homogenize their composition distribution along their radius. Solid state recrystallization method was also tried to get low segregation crystals.
    The etchant suitable for MnxCd1-xIn2Te4 crystals was found out,with which we got well-etched surfaces. The etched surface of the section cut along the centerline of the ingots shows that,there are three phase-regions in MnxCd1-xIn2Te4 ingots,a with the precipitated B1 and B phase are observed at the tip of MnxCd1-xIn2Te4 ingots. The morphology of the P phase is in the forms of plate,flower or near-round. Among them,3 plates always lies in the grain boundaries. Following the initial region,single P phase region and In2Tes phase region are formed in order. Two concave interfaces in the MnxCd1-xIn2Te4 ingots were found. The one near the tip is the transient interface from a + P phase growth to P phase growth and the other is that from P phase growth to In2Te3 phase growth. Quenched interfaces obtained by shutting off the power during the growth also confirms that the growth interface is a concave one. The defects such as cracks,dislocations and twins in MnxCd1-xIn2Te4 ingots were also detected.
    
    
    The concentration distribution along the longitudinal axis was analyzed. It is shown that Mn and Cd contents decrease while In and Te contents increase with the distance from the beginning of the ingot. Based on the experimental data,the partition ratios of Mn,Cd and In at the growth interface are evaluated to be 1.286,1.926 and 0.729 for a phase growth process,and 1.120,1.055 and 0.985 for P phase growth process respectively. Cd content along the longitudinal axes was calculated using the model for HgTe-MnTe crystals grown by ACRT-B proposed by Jie. The calculation results agree well with the experimental results.
    The depth of growth interface seriously affects the crystal quality. The experimental results show that the variation range of Cd content in different sections cut along the axes increases with the growth process,which reflects that the interface depth also becomes larger.
    The lattice structure of P phase is chalcopyrite in the nomenclature of (Mn,Cd)In2Te4,while that of a phase is fee in the nomenclature (Mn,Cd)3hi2Te6. The lattice parameters can be extrapolated according to X-ray spectra. The lattice parameters a,c and c/a of P phase are found to change linearly with x.
    Optical absorption measurements show that MnxCd1-xIn2Te4 is a direct energy gap semiconductor and the band gap shifts towards the high energy side with the increase of x. The optical transmittance is high in the wave length range from 1 to 25 u m for MnxCd1-xIn2Te4.
    The electronic properties have been investigated by Hall measurements. It was found that,the as grown crystal of MnxCd1-xIn2Te4 is P type semiconductor,both the charge density and the resistivity increase with x value,while the carrier mobility decreases with x.
    Magnetization measurements show that MnxCd1-xIn2Te4 is paramagnet and the magnet
引文
[1] B. T. Jonker, H. Y. Wei, et al., 1995, 182-184:435-442
    [2] W. A. Gobba, J. D. Patterson, et al., Infrared Physics, 1993, 34:311-321
    [3] Yu. G. Semenov and V. A. Stephanovich, Materials Science Forum, 1995,182-184:557-560
    [4] J. Nakahara, T. Nouchi, H. Arai, et al., J. Watanabe, J. Crystal Growth, 1992, 117:830-834
    [5] A. V. Scherbakov, A. Akimov, V. Yakovlev, et al., Solid State Communications, 2001,120(1):17-20
    [6] D. P. Halliday, M. D. G. Potter, J.T. Mullins, et al., J. Crystal Growth, 2000, 220:30-38
    [7] G. Bather, H. Schenig, M. K. Welsch, et al., Appl. Phys. Lett., 2001, 79:524-526
    [8] H. J. M. Swagten, A. Twardowski, W. J. M. de Jonge, et al., Solid State Commun., 1988,66:791-796
    [9] 陈辰嘉,瞿明,史守旭等,红外与毫米波学报,1991,10:227-232
    [10] T. Story, R. R. Galazka, et al., Materials Science Forum, 1995, 182-184:477-482
    [11] V. Sagredo, H. Romero, et al., Materials Science Forum, 1995, 182-184:467-470
    [12] R. R Galazka, Materials Science Forum, 1995, 182-184:371-380
    [13] F. Palacio, J. Campo, V. Segredo, et al., Materials Science Forum, 1995, 182-184:459-462
    [14] Yoshino, Kenji; Yokoyama, Hirosumi; J. of Crystal Growth 2000, 211(1):476-479
    [15] J. T. Alvarez, L. Betancourt and V. Sagredo et al., New trands in magmetism, magnetic materials and their applications, 1994, 291-297
    [16] A. L. Gentile, N. R. Kyle and F. W. Hill, Hughes, A.C. US Patent, No. 86/00940
    [17] A. L. Gentile, Prog. Crystal Growth Characterization, 1985, 10:241
    [18] A. Petrou, D. L. Peterson, S. Venugopalan, et al., Phys Rev B, 1983, 27:3471
    [19] 陈辰嘉,翟明,物理,1990,19:6-10
    [20] R. R. Galazka, S. Nagata and P. H. Keesom, Phys Rev B, 1980, 32:3344
    [21] S. B. Oseroff, et al., Solid State Commun., 1980, 35:539
    [22] S. Foner, Y, Shapira, D. Heiman, et al., A. Wold, Phys. Rev. B, 1989, 39:11793
    [23] 王学忠,陈辰嘉,王荣明等,半导体学报,1994,15(5):333-338
    [24] 王学忠,王荣明,刘继周等,红外与毫米波学报,1995,14(3):211-215
    [25] 刘继周,王传敏,王学忠等,红外与毫米波学报,1993,12:105-109
    [26] A. Petrou, D. L. Peterson, S. Venugopalan, et al., Phys Rev Lett., 1982, 48:1036
    [27] S. Venugopalan, A. Petron, R. R. Gakazka, et al., Phys Rev B, 1982, 25:2681
    
    
    [28] J. A. Gej, R. R. Gakazka and M. Nawrocki, Solid State Commun., 1978, 25:193
    [29] N, Mikami, C. Nagao, T. Sawada, et al., J Appl. Phys, 1991,69:433
    [30] H. Ohno, SCIENCE, 1998, 281:951-956
    [31] J. C. Launay, F. Lambert, B. Daffier and P. Gravereau. J. Mater. Chem., 1995, 5(1):165-169
    [32] V. Riede, et al., Solid State Commun., 1991, 78:211-213
    [33] V. Sagredo, H. Romero, Betancourt, et al., Materials Science Forum, 1995, 182-184:467-470
    [34] Chen-jla Chen, Yong Ma, Yu Li et al., J. Appl. Phys., 1993, 73(10):5736-5738
    [35] Zhang XQ, Mei XZ, Duan N, et al., ACTA Phys Sin-Ched, 2001, 50(6):1167-1171
    [36] S. B. Oseroff, Phys. Rev. B., 1982, 24:6584
    [37] J. K. Furdyna, J. Appl. Phys, 1989, 64:R29
    [38] M. Quintero, P. Grima, R. Tovar, et al., Phys. Status Solidi (a), 1988, 107:205
    [39] A. Rivero, M. Quintero, M. Morocoima, et al., Alloys and Compounds, 1995, 224:93-96
    [40] J. C. Woolley, R. Brun del Re J. Alloys and Compounds, 1997, 261:150-161
    [41] E. Guerrero, M. Quintero, M. Deigado, et al., Phys. Stat. Sol.(a), 1992, 129:K83-88
    [42] J. Campo, F. Palacio, V. Sagredo et al., Proceedings of Ⅲ Latin American Workshop. Magnetism, Magnetic Materials and Their Applications. World Scientific. 1996, Singapore, 255-259
    [43] G. Delgado, C. Chacon, et al., Phys. Stat. Sol.(a), 1992, 134:61-66
    [44] G. Doll, A. Anghel, J. R. Baumam, et al., J. Phys. Stat. Sol.(a), 1991, 126:237-224
    [45] K. J. Range and H. J. Hubner, Z. Naturf., 1976, 31b:886
    [46] K. J. Range and H. J. Hubner, Z. Naturf. SectionB, 1975, 30:145
    [47] K. J. Range and H. J. Hubner, Z. Naturforsch, 1981, 30:145
    [48] Jean-Claude Launay, J. Crystal Growth, 1992, 121:202-208
    [49] H. Hahn, G. Frank, W. Klingler, et al., Z. Anorg. Allg. Chem., 1955, 279:241
    [50] H. Schwer, Ph.D. Thesis, Freiburg., 1990
    [51] V. Riede, H. Weumann, V. Kramer, et al., Solid State Commun., 1991, 78:211
    [52] Jean-Claude Launay, Jean-Francois Lambert, et al., J. Mater. Chem., 1995, 5:165-169
    [53] J.I.潘科夫主编,李维楠等翻译,《电致发光》,科学出版社,北京,1987
    [54] Z. A. Shuki and C. H. Champness, J. Crystal Growth, 1998, 191:97-107
    [55] B. Jean and G. Couturier, J. Appl. Phys, 1994, 75:1
    [56] F. Meloni, F. Aymench and G. Mula. Solid State Comnun., 1977, 21:113
    [57] G. A. Saunders and T. Seddon, J. Phys. Solids, 1969, 37:873
    
    
    [58] L.S. Koval, E. K. Arushahov and S.I. Radantsan, Phys. Stat. Solid.(a), 1972, 9:K73
    [59] S. I. Radautsan, A. N. Georgobianit and I. M. Tiginyanu, Int. Conf. On Ternary and Multinary Compounds, 1983
    [60] T. W. Kimjung, et al., Solid State Communications, 1992, 84:141-1143
    [61] L. Detancourt, M. Chourio, et al., J. Magnetism and Magnetic Materials, 1991, 101:162-164
    [62] S. A. Lopez-Rivera, L. Martinez and J. M. Briceno, Progr. Crystal Growth characterizarion,1985, 19:297
    [63] G. Couturier and B. Jean, et al., J. Appl. Phys., 1993, 73:1813
    [64] G. couturier and B. Jean, Materials Science and Engineering, 1993, B21:333-337
    [65] Jean-Francois L., Pham V. Huong, et al., J. Molecular Structure, 1993, 294:159-162
    [66] J. C. Brice, P. Capper, et al., Prog. Crystal Growth and Charact., 1986, 13:197-229
    [67] P. Capper, J. Gosney, et al., J. of Electronic Mat., 1986, 15:371-376
    [68] W. G. Coates, P. Capper, C.L. Jones, et al., J. Crystal Growth, 1989, 94:959-966

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700