用户名: 密码: 验证码:
金属氧化物(ZnO、SnO_2)半导体纳米材料的制备、表征及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,许多金属氧化物是具有特殊物理化学性能的功能材料,在催化剂、微电子器件、能量储存与转化等诸多领域有着广泛的应用。氧化锌(ZnO)和氧化锡(SnO_2)以其优异的光电性质以及高灵敏的气敏性质一直被认为是金属氧化物中最有应用前景的两种功能材料,它们都是典型的n型宽禁带直接半导体,其室温禁带宽度分别为3.37 eV和3.65 eV。最近几年,科研人员投入了相当大的精力对各种类型ZnO和SnO_2纳米材料的合成、表征以及它们在纳米器件领域中的应用进行了深入研究。鉴于它们在未来功能器件中的重要性,ZnO和SnO_2这两种金属氧化物被确定为本人博士论文期间的研究内容。
     本博士论文将主要围绕三大研究方向进行:(1)单一ZnO和SnO_2纳米材料的合成和表征;(2)ZnO和SnO_2单根纳米线器件的研制和应用;(2)核壳型ZnO/SnO_2复合材料及其相应SnO_2空心材料的合成与表征。研究工作共分为十章,研究结果可以概括如下:
     第一章:简要地对ZnO和SnO_2这两种金属氧化物的基本特性以及在纳米材料领域的相关研究进行综述,阐明我们的选题依据以及研究内容。
     第二章:以锡烷(SnH_4)为气态前驱体,运用化学气相沉积法在喷金的硅片基底上沉积得到了高产率的SnO_2纳米线。电镜测试结果表明这些SnO_2纳米线的生长符合气-固-液(VLS)机理,其阴极荧光测试结果表明纳米线的发光性质与晶体内部中的氧缺陷浓度密切相关。此外,通过一种自催化的VLS机制,进一步合成得到了由SnO_2纳米棒构成的花状聚集体。
     第三章:运用不同的合成方法获得了三种典型ZnO纳米结构(四角叉、纳米棒和纳米线)。基于各种电镜分析结果并结合ZnO晶体结构的自身特点,我们对这些ZnO纳米结构的生长机理进行了深入的探讨,并利用光致发光和阴极荧光两种表征手段对它们的光学性质进行了细致的研究。
     第四章:以单根ZnO纳米线和SnO_2纳米线为结构基元,利用光刻、聚焦离子束沉积等微加工技术在硅片基底上构筑了简单的纳米线器件。基本电学测试结果表明金属氧化物半导体纳米线与金属电极的接触情况可以通过用聚焦离子束沉积金属Pt的方式显著改善,而与它们的功函数大小无关。热敏测试结果表明,SnO_2纳米线属于负温度系数热敏材料,但是其热敏常数B仅为433 K,不适合作为热敏电阻。光电导测试结果表明,对于365 nm的紫外光,ZnO纳米线的响应灵敏度远远大于SnO_2纳米线。这种响应灵敏度上的差别来源于两种纳米线的光电导效应产生机制的不同。场效应晶体管测试结果则提供了跨导、电子迁移率等SnO_2纳米线器件的基本性能参数。纳米线器件的成功构筑为我们进一步研究纳米线在纳米传感器领域的应用打下了良好的基础。
     第五章:以ZnO和SnO_2纳米线为例,探索了单根金属氧化物半导体纳米线构筑而成的纳米器件在湿度传感和气体传感两个领域的应用。湿敏传感测试结果表明,SnO_2纳米线器件对被测环境的相对湿度存在线性的响应,空气中水分子和O_2分子在半导体表面的竞争物理吸附是可能的响应机制。同时,利用两根独立的ZnO纳米线和SnO_2纳米线在同一硅片基底上成功构建了一个简单的二元气敏传感器阵列,并初步探讨了此阵列传感器在混合气体检测领域中的应用。此外,我们通过在金属氧化物纳米线表面修饰金属或氧化物颗粒大大改善了纳米线气敏传感器的灵敏度和选择性。这些研究结果将推动单根金属氧化物半导体纳米线湿敏/气敏传感器向实用化方向发展。
     第六章:以核壳型ZnO/SnO_2四角叉为例,在两种存在较大结构差异的晶体之间实现了三维外延生长,并且发现了外延界面对金属氧化物半导体发光性质的调制作用。电镜表征结果证实了合成得到的产物是以ZnO四角叉为内核,厚度为15~30 nm的SnO_2外延层为外壳的核壳型复合结构,它们之间的外延关系为:(010)SnO2‖(01(?)0)ZnO和[100]SnO2‖[0001[ZnO。光致发光和阴极荧光分析结果表明在ZnO/SnO_2外延界面的诱导下,四角叉的光学性质发生重大改变,在450~600nmn范围内出现了强烈的绿光发射。这项研究工作为今后类似的异质外延结构的合成以及光学性质的调制开辟了一条新的道路。
     第七章:以ZnO六棱柱和六棱锥为生长模板,系统考察了SnO_2在ZnO晶体的三组典型晶面({01(?)0}、{10(?)1}、{0001})上的外延生长。通过控制合适的实验条件,SnO_2在ZnO晶体表面可以形成纳米颗粒、定向生长的纳米棒/线和连续单晶薄膜三种纳米结构形态。晶体结构分析表明ZnO和SnO_2之间的晶格失配在SnO_2外延生长中起着重要作用:SnO_2总是沿着晶格失配度最小的方向(即[2(?)0]ZnO‖[001]SnO_2)优先生长,而其径向上的生长则受到失配应力的束缚。阴极荧光分析结果表明,与核壳型ZnO/SnO_2四角叉的发光性质一样,复合之后的ZnO/SnO_2六棱锥也表现出了不同于单一ZnO和SnO_2的强烈的绿光发射,为此我们提出了外延界面缺陷调制半导体发光的机制。对ZnO/SnO_2这一特殊外延体系深入而彻底的认识,有可能为其它类似的金属氧化物半导体复合纳米材料的合成和应用提供理论上的指导。
     第八章:以预先制备好的ZnO纳米棒阵列为牺牲模板,经过SnO_2包覆和盐酸刻蚀两步合成得到了一系列SnO_2空心纳米管阵列。通过选择合适尺寸的初始模板并控制合适的实验条件,我们可以得到四种类型的氧化锡纳米管阵列:纳米颗粒组成的纳米管、纳米棒组成的纳米管、纳米环组成的纳米管以及单晶薄膜组成的纳米管。SnO_2与ZnO之间的外延生长在纳米管管壁的形成过程中,扮演了非常重要的角色。我们相信这些SnO_2纳米管将会在高灵敏气敏传感器、光催化剂等领域有着良好的应用前景。
     第九章:以SnH_4为气态前驱体,运用化学气相沉积法成功地实现了SnO_2纳米颗粒在多壁碳纳米管(MWCNTs)表面的负载,SnO_2纳米颗粒的尺寸和覆盖度可以通过精确控制SnH_4前驱体的供应(气体流速、沉积时间)加以调控。因此,我们的研究为制备MWCNTs-SnO_2复合纳米材料提供了一条好的合成路径。此外,以MWCNTs为牺牲模板,在较高的沉积温度(730℃)合成得到由纳米颗粒连接而成的一维链状SnO_2纳米线。
     第十章:以四氯化碳为原料、以金属钾为还原剂,运用溶剂热的方法在相对较低的温度下(60~100℃)合成得到了厚度仅为3~8 nm的碳纳米薄膜。X射线粉末衍射和拉曼光谱表征结果表明这些膜状产物是石墨化的碳;BET测试结果表明碳纳米薄膜具有较大的比表面(97.2 m~2.g~(-1))。此外,以六氯苯为原料、以金属钠为还原剂,运用相似的方法成功地合成得到纳米球、纳米管等各种碳空心结构。这些碳空心结构将在催化剂载体、药物传输等许多领域具有潜在的应用。
As is well known,many metal oxides are functional materials with excellent physical and chemical properties,and widely applied in many fields including catalysts,microelectronic devices,energy storage and conversion.Among these metal oxides,ZnO and SnO_2 have been considered as the most promising functional materials due to highly sensitive gas sensing property and excellent photoelectrical property.Both of them are n-type wide direct band-gap semiconductors(Eg = 3.37 eV for ZnO and Eg = 3.65 eV for SnO_2,respectively).Recently,much effort has been devoted into the fabrication and their potential application in nanodevices based on various nanostructures of ZnO or SnO_2.Considering their potential importance in future functional materials,ZnO and SnO_2 are selected as research targets of my thesis.In this thesis,our research focus on three fields including:(1) fabrication and characterization of sole ZnO or SnO_2 nanostructures;(2) construction and application of single ZnO or SnO_2 nanowire-based nanodevices;(3) fabrication and characterization of core-shell ZnO/SnO_2 nanocomposites with epitaxial relation and related hollow SnO_2 nanostructures.Major results have been summarized as follows:
     Chapter 1.Briefly review the basic characteristic and recent development of ZnO and SnO_2 nanostructures and clarify my research significance and detailed plan.
     Chapter 2.By using tin alklane(SnH_4) as the gaseous precursor,high-yield SnO_2 nanowires are successfully synthesized on the Au-coated Si substrates by means of chemical vapor deposition.Electronic microscope characterization results demonstrate that the growth of these SnO_2 nanowires follows the vapor-liquid-solid (VLS) mechanism.In addition,a kind of flower-like SnO_2 nanorod assembly can be acquired via a self-catalytic VLS mechanism.Cathodoluminescence analysis indicates the luminescence properties of the SnO_2 nanowires are related with the concentration of oxygen vacancies in the nanocrystals.
     Chapter 3.Three typical morphologies of ZnO nanostructures including tetrapods, nanorods and nanowires are successfully fabricated by means of various synthetic strategies.Combining electronic microscope characterization results with intrinsic features of wurtzite-type crystal,possible growth mechanisms of these ZnO nanostructures are proposed and deep discussed.In addition,their optical properties are carefully investigated by means of photoluminescence and cathodoluminescence.
     Chapter 4.Using ZnO or SnO_2 nanowires synthesized in chapter 2 and 3 as building blocks,single metal oxide semiconducting nanowire-based devices are successfully fabricated on the silicon substrates via photolithography and focused ion beam deposition(FIB).Measurement results indicate that the contact behavior between metal oxide nanowires and metal electrodes are markedly improved by FIB deposition.And SnO_2 nanowires belong to NTC thermal-sensitive material while they don't suit thermal-sensitive resistor because its calculated thermal-sensitive constant B is only 433 K.In addition,it is found that the photoconductance of single ZnO nanowire is more sensitive to 365 nm UV light than that of single SnO2 nanowire due to the difference between their generating mechanisms.Finally,transconductance(g_m) and electron mobility(μ_e) of single SnO_2 nanowire are successfully acquired based on field-effect-transistor measurement.This research work laid a good foundation for further investigation of nanowire-based devices on the application in chemical nanosensors.
     Chapter 5.Single ZnO and SnO_2 nanowire-based devices are applied for the detection of relative humidity and toxic gas in the environment.Humidity-sensing results indicate that the resistance of a single SnO_2 nanowire has linear response to the relative humidity of atmospheres.Humidity-sensing properties of the nanowire should originate from competitive physical adsorption between water molecular and oxygen molecular on the surface of nanowires.At the same time,a simple gas sensor array constructed with a ZnO nanowire-based sensor and a SnO_2 nanowire-based sensor on the same substrate is successfully built up by double FIB process although this sensor array failed in the detection of CO and H_2S mixture gas.In addition,it is found that sensitivity and selectivity of single ZnO or SnO_2 nanowire-based gas sensor could be improved by surface functionalization.This research work will accelerate the practicability of metal oxide semiconductor nanodevices.
     Chapter 6.Using a ZnO/SnO_2 core-shell heterostructure as an example,we demonstrate the possibility of establishing a three-dimensional epitaxial interface between two materials with different crystal systems for the first time and show possible tailoring optical properties by building the heteroepitaxial crystal interface. The electron microscopy characterization results reveal that as-prepared ZnO/SnO_2 heterostructure has a tetrapod-like ZnO core and a SnO_2 shell with 15-30 nm,and their special epitaxial relation is(010)_(SnO2)|(01(?)0)_(ZnO) and[100]_(SnO2)|[0001]~(ZnO). In addition,a strong green luminescence in the 450~600 nm is induced by epitaxial interface.This research work will break a new path to fabricate epitaxial hetero -structures and tailor the luminescence properties of metal oxide semiconductors.
     Chapter 7.Using ZnO hexagonal micro-prisms and micro-pyramids as two typical templates,epitaxial growth of SnO_2 on three typical ZnO crystal planes including {01(?)0},±(0001) and {10(?)1} is systematically investigated.Various nanostructures of the epitaxial SnO_2 from nanoparticles,to self-assembled nanowire arrays,and to continuous single-crystalline thick films,are controlled prepared on ZnO template under appropriate kinetics conditions.Structural analysis reveals that lattice-mismatch between two epitaxial planes plays a crucial role in the growth of self-assembled SnO_2 nanowire arrays on the ZnO surface.SnO_2 has a preferential growth direction along the minimum lattice-mismatch direction(i.e.[2(?)0]ZnO| [001]_(SnO2)),and the width of SnO_2 nanowires is strictly confined by the accumulated strain which is induced by large lattice-mismatch.Cathodoluminescence characterization indicates that as-prepared ZnO/SnO_2 composite nanostructures exhibit different optical properties from the original ZnO templates or SnO_2 hollow shells.A clear understanding of the role of lattice-mismatch-strain in ZnO / SnO_2 system will inspire great interest in exploring other epitaxial metal oxide heterostructures and their potential applications.
     Chapter 8.Using prefabricated ZnO nanorod arrays as sacrificial templates, various SnO_2 nanotube arrays are successfully synthesized via two-step process including SnO_2 coating and hydrochloric acid etching.Depending on the size of original ZnO templates and experimental parameters,these SnO_2 nanotubes are constructed with four possible types:nanoparticles,nanorods,nanorings and single-crystalline film.Epitaxial growth of SnO_2 on ZnO surface plays a key role on the formation of SnO_2 walls.These hollow SnO_2 nanostructures are believed to have potential application in high-sensitive gas sensors and photocatalysts.
     Chapter 9.A simple and efficient approach for coating multiwalled carbon nanotubes(MWCNTs) with size-controllable SnO_2 nanoparticles by chemical vapor deposition has been developed using SnH_4 as the source of SnO_2 at 550℃.The size and coverage of SnO_2 nanoparticles can be adjusted by simply controlling the deposition time and the flow rate of SnH_4/N_2 mixture gas during the CVD procedure. In addition,by using the MWCNTs as a sacrificial template,a kind of one-dimensional chain-like SnO_2 nanostructure has been synthesized by increasing the deposition temperature to 730℃.This technique may provide a good way to produce tunable SnO_2-MWCNT composites.
     Chapter 10.Crumpled carbon nanosheets with 3~8 nm thickness have been successfully synthesized via a catalyst-free solvothermal route at a very low temperature range(60℃~100℃),using tetrachloromethane(CCl_4) as carbon source and potassium as the reductant.The X-ray powder diffraction pattern and Raman spectrum indicates that the products are hexagonal graphite.The result of BET experiment shows carbon nanosheets have a large surface area(97.2 m~2·g~(-1)).In addition,various hollow carbon nanostructures were prepared by means of similar method where C_6Cl_6 acted as carbon source and metal sodium acted as reductant. Such hollow carbon nanostructures should have potential application in many fields including catalysts supporter and drug delivery.
引文
[1]Wang,Z.L.Zinc oxide nanostructures:growth,properties and applications[J].J.Phys.."Condens.Matter.2004,16(25):829-858.
    [2]Reynolds D.C.;Look D.C.;Jogai B.;Litton C.W.;Cantwell G.;Harsch W.C.Valence-band ordering in ZnO[J].Phys.Rev.B 1999,60(4):2340-2344.
    [3]Look D.C.;Reynolds D.C.;Litton C.W.;Jones R.L.;Eason D.B.;Cantwell G.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J].Appl.Phys.Lett.2002,81(10):1830-1832.
    [4]Kim,K.K.;Kim,H.S.;Hwang,D.K.;Lim,J.H.;Park,S.J.Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J].Appl.Phys.Lett.2003,83(1):63-65.
    [5]Kong Y.C.;Yu D.E;Zhang B.;Fang W.;Feng S.Q.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J].Appl.Phys.Lett.2001,78(4):407-409.
    [6]Lyu S.C.;Zhang Y.;Lee C.J.;Ruh H.;Lee H.J.Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method[J].Chem.Mater.2003,15(17):3294-3299.
    [7]Yan Y.G.;Zhang Y.;Meng G.W.;Zhang L.D.Synthesis of ZnO nanocrystals with novel hierarchical structures via atmosphere pressure physical vapor deposition method[J].J.Crystal Growth 2006,294(2):184-190.
    [8]Wu J.J.;Liu S.C.Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition[J].Adv.Mater 2002,14(3):215-218.
    [9]Liu X.;Wu X.H.;Cao H.;Chang R.P.H.Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition[J].J.Appl.Phys.2004,95(6):3141-3147.
    [10]Yang J.L.;An S.J.;Park W.I.;Yi G.C.;Choi W.Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition[J].Adv.Mater 2004,16(18):1661-1663.
    [11]Lee J.H.;Yeo B.W.;Park B.O.Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis[J].Thin Solid Film 2004,457(2):333-337.
    [12]Ohtomo A.;Kawasaki M.;Sakurai Y.;Yoshida Y.;Koinuma H.;Yu P.;Tang Z.K.;Wang G.K.L.;Segawa Y.Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE[J].Mater Sci.Engin.B 1998,54(1-2):24-28.
    [13]Liu B.;Zeng H.C.Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm[J].J..Am.Chem.Soc.2003,125(15):4430-4431.
    [14]Zhang H.;Yang D.;Ji Y.J.;Ma X.Y.;Xu J.;Que D.L.Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process[J].J.Phys.Chem.B 2004,108(13):3955-3958.
    [15]Cheng B.;Samulski E.T.Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios[J].Chem.Commun.2004,8:986-987.
    [16]Joo J.;Kwon S.G.;Yu J.H.;Hyeon T.Synthesis of ZnO nanocrystals with cone,hexagonal cone,and rod shapes via non-hydrolytic ester elimination sol-gel reactions[J].Adv.Mater 2005, 17(15):1873-1877.
    [17]Ahn S.E.;Lee J.S.;Kim H.;Kim S.;Kang B.H.;Kim K.H.;Kim G.T.Photoresponse of sol-gel-synthesized ZnO nanorods[J].Appl.Phys.Lett.2004,84(24):5022-5024.
    [18]Wu G.S.;Xie T.;Yuan X.Y.;Li Y.;Yang L.;Xiao Y.H.;Zhang L.D.Controlled synthesis of ZnO nanowires or nanotubes via sol-gel template process[J].Solid State Commun.2005,134(7):485-489.
    [19]Cao J.M.;Wang J.;Fang B.Q.;Chang X.;Zheng M.B.;Wang H.Y.Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid[J].Chem.Lett.2004,33(10):1332-1333.
    [20]Wang J.M.;Gao L.Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties[J].J.Mater.Chem.2003,13(10):2551-2554.
    [21]Singhal M.;Chhabra V.;Kang P.;Shah D.Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion[J].Mater.Res.Bulletin 1997,32(2):239-247.
    [22]Liu J.S.;Cao J.M.;Li Z.Q.;Ji G.B.;Zheng M.B.A simple microwave-assisted decomposing route for synthesis of ZnO nanorods in the presence of PEG400[J].Mater.Lett.2007,61(22):4409-4411.
    [23]Jiang Z.Y.;Xu T.;Xie Z.X.;Lin Z.W.;Zhou X.;Xu X.;Huang R.B.;Zheng L.S.Molten salt route toward the growth of ZnO nanowires in unusual growth directions[J].J.Phys.Chem.B 2005,109(49):23269-23273.
    [24]Glushenkov A.M.;Zhang H.Z.;Zou J.;Lu G.Q.;Chen Y.Efficient production of ZnO nanowires by a ball milling and annealing method[J].Nanotechnology 2007,18(17):175604.
    [25]Wang Z.L.Nanostructures of zinc oxide[J].Mater.Today 2004 June 26-33.
    [26]Park W.I.;Yi G.C.;Kim M.Y.;Pennycook S.J.ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy[J].Adv.Mater.2002,14(24):1841-1843.
    [27]Li Y.B.;Bando Y.;Golberg D.ZnO nanoneedles with tip surface perturbations:Excellent field emitters[J].Appl.Phys.Lett.2004,84(18):3603-3605.
    [28]Wang X.D.;Song J.H.;Li P.;Ryou J.H.;Dupuis R.D.;Summers C.J.;Wang Z.L.Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN,AIN,and Al_(0.5)Ga_(0.5)N substrates [J].J.Am.Chem.Soc.2005,127(21):7920-7923.
    [29]Huang M.H.;Mao S.;Feick H.;Yan H.Q.;Wu Y.Y.;Kind H.;Weber E.;Russo R.;Yang P.D.Room-temperature ultraviolet nanowire nanolasers[J].Science 2001,292(5523):1897-1899.
    [30]Newton M.C.;Warburton P.A.ZnO tetrapod nanocrystals[J].Mater.Today 2007,10(5):50-54.
    [31]Iwagaga H.;Fujii M.;Takeuchi S.Inter-leg angles in tetrapod ZnO particles[J].J.Crystal Growth 1998,183(1-2):190-195.
    [32]Dai Y.;Zhang Y.;Wang Z.L.The octa-twin tetraleg ZnO nanostructures[J].Solid State Commun.2003,126(11):629-633.
    [33]Wu R.;Xie C.S.Formation of tetrapod ZnO nanowhiskers and its optical properties[J].Mater.Res.Bulletin 2004,39(4-5):637-645.
    [34]Djurisic A.B.;Choy W.C.H.;Roy V.A.L.;Leung Y.H.;Kwong C.Y.;Cheah K.W.;Rao T.K.G.;Chan W.K.;Lui H.T.Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure[J].Adv.Funct.Mater.2004,14(9):856-864.
    [35]Zhang X.H.;Xie S.Y.;Jiang Z.Y.;Xie Z.X.;Huang R.B.;Zheng L.S.;Kang J.Y.;Sekiguchi T.Microwave plasma growth and high spatial resolution cathodoluminescent spectrum of tetrapod ZnO nanostructures[J].J.Solid State Chem.2003,173(1):109-113.
    [36]Pan Z.W.;Dai Z.R.;Wang Z.L.Nanobelts of semiconducting oxides[J].Science 2001,291,1947-1949.
    [37]Kong X.Y.;Ding Y.;Yang R.;Wang Z.L.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].Science 2004,303(5662):1348-1351.
    [38]Kong X.Y.;Wang Z.L.Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts[J].Nano Lett.2003,3(12):1625-1631.
    [39]Kong X.Y.;Wang Z.L.Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals[J].Appl.Phys.Lett.2004,84(6):975-977.
    [40]Gao P.X.;Wang Z.L.High-yield synthesis of single-crystal nanosprings of ZnO[J].Small 2005,1(10):945-949.
    [41][13]Zhou X.;Xie Z.X.;Jiang Z.Y.;Kuang Q.;Zhang S.H.;Xu T.;Huang R.B.;Zheng L.S. Formation of ZnO hexagonal micro-pyramids:a successfully control of the exposed polar surface surfaces with the assistance of an ionic liquid[J].Chem.Comm.2005,5572-5574.
    [42]Lee C.J.;Lee T.J.;Lyu S.C.;Zhang Y.;Rug H.;Lee H.J.Field emission from well-aligned zinc oxide nanowires grown at low temperature[J].Appl.Phys.Lett.2002,81(19):3648-3650.
    [43]Zhang H.;Yang D.R.;Ma X.Y.;Due D.L.Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction[J].J.Phys.Chem.B 2005,109(36):17055-17059.
    [44]Wan Q.;Yu K.;Wang T.H.;Lin C.L.Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation[J].Appl.Phys.Lett.2003,83(11):2253-2255.
    [45]倪赛力,常永勤,龙毅,叶荣昌;氧化锌纳米棒场发射性能研究[J].物理学报 2006,55(10):5409-5412.
    [46]Kind H.;Yan H.Q.;Messer B.;Law M.;Yang P.D.Nanowire ultraviolet photodetectors and optical switches[J].Adv.Mater.2002,14(2):158-160.
    [47]Fan Z.Y.;Chang P.C.;Lu J.G.;Walter E.C.;Penner R.M.;Lin C.H.;Lee H.P.Photoluminescence and polarized photodetection of single ZnO nanowires[J].Appl.Phys.Lett.2004,85(25):6128-6130.
    [48]Bao J.M.;Zimmler M.A.;Capasso F.;Wang X.W.;Ren Z.F.Broadband ZnO single-nanowire light-emitting diode[J].Nano Lett.2006,6(8):1719-1722.
    [49]Soci C.;Zhang A.;Xiang B.;Dayeh S.A.;Aplin D.P.R.;Park J.;Bao X.Y.;Lo Y.H.;Wang D.ZnO nanowire UV photodetectors with high internal gain[J].Nano Lett.2007,7(4):1003-1009.
    [50]Wang Z.L.;Song J.H.Piezoelectric nanogenerator based on zinc oxide nanowire arrays[J].Science 2006,312(5771):242-246.
    [51]Wang X.D.;Song J.H.;Liu J.;Wang Z.L.Direct-current nanogenerator driven by ultrasonic waves[J].Science 2007,316(5821):102-105.
    [52]晋传贵,裴立宅,余海云编著,一维无机纳米材料[M].冶金工业出版社 2007,132-133.
    [53]Song K.C.;Kang Y.Preparation of high surface area tin oxide powders by a homogeneous precipitation method[J].Mater.Lett.2000,42(5):283-289.
    [54]Dai Z.R.;Pan Z.W.;Wang Z.L.Ultra-long single crystalline nanoribbons of tin oxide[J].Solid State Comm.,2001,118(7):351-354.
    [55]Dai Z.R.;Gole J.L.;Stout J.D.;Wang Z.L.Tin oxide nanowires,nanoribbons,and nanotubes [J].J.Phys.Chem.B,2002,106(6):1274-1279.
    [56]Sun S.H.;Meng G.W.;Zhang G.X.;Gao T.;Geng B.Y.;Zhang L.D.;Zuo J.Raman scattering study of rutile SnO_2 nanobelts synthesized by thermal evaporation of Sn powders[J]. Chem.Phys.Lett.2003,376(1-2):103-107.
    [57]Hu J.Q.;Bando Y.;Liu Q.L.;Golberg D.Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons[J].Adv.Funct.Mater.2003,13(6):493-496.
    [58]Zhang R.Q.;Lifshitz Y.;Lee S.T.Oxide-assisted growth of semiconducting nanowires[J].Adv.Mater.2003,15(7-8):635-640.
    [59]Ma X.L.;Li Y.;Zhu Y.L.Growth mode of the SnO_2 nanobelts synthesized by rapid oxidation[J].Chem.Phys.Lett.2003,376(5-6):794-798.
    [60]Chen Y.Q.;Cui X.F.;Zhang K.;Pan D.Y.;Zhang S.Y.;Wang B.;Hou J.G.Bulk-Quantity synthesis and self-catalytic VLS growth of SnO_2 nanowires by lower-temperature evaporation[J].Chem.Phys.Lett.2003,369(1-2):16-20.
    [61]Chen Y.X.;Campbell L.J.;Zhou W.L.Self-catalytic branch growth of SnO_2 nanowire junctions[J].J.Crystal Growth 2004,270(3-4):505-510.
    [62]Wang B.;Yang Y.H.;Wang C.X.;Yang G.W.Nanostructures and self-catalyzed growth of SnO_2[J].J AppL Phys.2005,98(7):073520.
    [63]Liu Z.Q.;Zhang D.H.;Han S.;Li C.;Tang T.;Jin W.;Liu X.L.;Lei B.;Zhou C.W.Laser ablation synthesis and electron transport studies of tin oxide nanowires[J].Adv.Mater.2003,15(20):1754-1757.
    [64]Nguyen P.;Ng H.T.;Kong J.;Cassell A.M.;Quinn R.;Li J.;Han J.;Mcneil M.;Meyyappan M.Epitaxial directional growth of indium-doped tin oxide nanowire arrays[J].Nano Lett.2003,3(7):925-928.
    [65]Mathur S.;Barth S.;Shen Hao.;Pyun J.C.;Werner U.Size-dependent photoconductance in SnO_2 nanowires[J].Small 2005,1(7):713-717.
    [66]He H.H.,Wu T.H.;Hsin C.L.;Li K.M.;Chen L.J.;Chueh Y.L.;Chou L.J.;Wang Z.L.Beaklike SnO_2 nanorods with strong photo luminescent and field-emission properties[J].Small 2006,2(1):116-120.
    [67]Chen Z.W.;Lai J.K.L.;Shek C.H.Nucleation mechanism and microstructural assessment of SnO_2 nanowires prepared by pulsed laser deposition[J].Phys.Lett.A 2005,345(4-6):391-397.
    [68]Ling C.;Qian W.Z.;Wei F.Gas-flow assisted bulk synthesis of V-type SnO_2 nanowires[J].J.Crystal Growth 2005,285(1-2):49-53.
    [69]Calestani D.;Zha M.;Zappettini A.;Lazzarini L.;Salviati G.;Zanotti L.;Sberveglieri G.Structural and optical study of SnO_2 nanobelts and nanowires[J].Mater Science and Engineering C 2005,25(5-8):625-630.
    [70]Vayssieres L.Highly ordered SnO_2 nanorod arrays from controlled aqueous growth[J].Angew.Chem.Int.Ed.2004,43(28):3666-3670.
    [71]Guo C.X.;Cao M.H.;Hu C.W.A novel and low-temperature hydrothermai synthesis of SnO_2 nanorods[J].Inorg.Chem.Comm.2004,7(7):929-931.
    [72]Hu C.X.;Wu Y.S.;Ma X.J.;Sui L.Y.;Shi Y.C.;Wei H.Y.;Wu L.L.PVA-assisted solvothermal fabrication of tin oxide sub-microrods[J].J.Cryst.Growth 2004,265(1-2):235-240.
    [73]Xu C.K.;Zhao X.L.;Liu S.;Wang G.H.Large-scale synthesis of rutile SnO_2 nanorods[J].Solid State Comm.2003,125(6):301-304.
    [74]Liu Y.;Liu M.L.Growth of aligned square-shaped SnO_2 tube arrays[J].Adv.Funct.Mater 2005,15(1):57-62.
    [75]Maestre D.;Cremades A.;Piqueras J.Growth and luminescence properties of micro- and nanotubes in sintered tin oxide[J].J.Appl.Phys.2005,97(4):044316.
    [76]Duan J.H.;Cao Q.Q.;Yang S.G.;Huang H.B.;Zhao X.N.;Zhang R.;Cheng G.X.Preparation and characterization of rectangular tin dioxide microtubes[J].J.Cryst.Growth 2006,289(1):164-167.
    [77]Huang J.;Matsunaga N.;Shimanoe K.;Yamazoe N.;Kunitake T.Nanotubular SnO_2templated by cellulose fibers:synthesis and gas sensing[J].Chem.Mater 2005,17(13):3513-3518.
    [78]Liu B.;Zeng H.C.Salt-assisted deposition of SnO_2 on α-MoO_3 nanorods and fabrication of polycrystalline SnO_2 nanotubes[J].J.Phys.Chem.B,2004,108(19):5867-5874.
    [79]Chen Y.H.;Zhang X.T.;Xue Z.H.;Li Y.C.;Huang Y.B.;Du Z.L.;Li T.J.Fabrication and structural characterization of large-scale uniform SnO_2 nanotube arrays by sol-gel method[J].Chinese Science Bulletin 2005,50(7):618-621.
    [80]Zhu W.;Wang W.Z.;Xu H.L.;Shi J.L.Fabrication of ordered SnO_2 nanotube arrays via a template route[J].Mater Chem.Phys.2006,99(1):127-130.
    [81]Huang J.;Lu A.X.;Zhao B.;Wan Q.Branched growth of degenerately Sb-doped SnO_2nanowires[J].Appl.Phys.Lett.2007,91:073102.
    [82]Wang J.X.;Liu D.F.;Yan X.Q.;Yuan H.J.;Ci L.J.;Zhou Z.P.;Gao Y.;Song L.;Liu L.F.;Zhou W.Y.;Wang G.;Xie S,S.Growth of SnO_2 nanowires with uniform branched structures[J].Solid State Commun.2004,130:89-94.
    [83]Chen Y.Q.;Cui X.F.;Zhang K.;Pan D.Y.;Zhang S.Y.;Wang B.;Hou J.G.Bulk-quantity synthesis and self-catalytic VLS growth of SnO_2 nanowires by lower-temperature evaporation[J].Chem.Phys.Lett.2003,369(1-2):16-20.
    [84]Wang W.Z.;Xu C.K.;Wang G.H.;Liu Y.K.;Zheng C.L.Synthesis and Raman scattering study of rutile SnO_2 nanowires[J].J.AppL Phys.2002,92(5):2740-2742.
    [85]Calestani D.;Lazzarini L.;Salviati G.;Zha M.Morphological,structural and optical study of quasi-lD SnO_2 nanowires and nanobelts Crst.Res.TechnoL 2005,40(10-11),937-941.
    [86]Zhou J.X.;Zhang M.S.;Hong J.M.;Yin Z.Raman spectroscopic and photoluminescence study of single-crystalline SnO_2 nanowires[J]Solid State Communication 2006,138,242-246.
    [87]Yang R.S.;Wang Z.L.Springs,rings,spirals of rutile-structured tin oxide nanobelts[J].J..Am.Chem.Soc.2006,128:1466-1467.
    [88]Duan J.H.;Yang S.G.;Liu H.W.;Gong J.F.;Huang H.B.;Zhao X,N.;Zhang R.;Du Y.W.Single crystal SnO_2 zigzag nanobelts[J].J.Am.Chem.Soc.2005,12 7:6180-6181.
    [89]Huang L.S.;Pu Lin.;Shi Y.;Zhang R.;Gu B.X.;Du Y.W.;Wright S.Controlled growth of well-faceted zigzag tin oxide mesostructures[J].AppL Phys.Lett.2005,87,163124.
    [90]Hu J.Q.;Ma X.L.;Shang N.G.;Xie Z.Y.;Wong N.B.;Lee C.S.;Lee S.T.Large-scale rapid oxidation synthesis of SnO_2 nanoribbons[J].J.Phys.Chem.B 2002,106(15):3823-3826.
    [91]Wang Y.;Lee J.Y.;Zeng H.C.Polycrystalline SnO_2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application[J].Chem.Mater.2005,17(15):3899-3903.
    [92]Shi L.;Hao Q.;Yu C.H.;Mingo N.;Kong X.Y.;Wang Z.L.Thermal conductivities of individual dioxide nanobelts[J].Appl.Phys.Lett.2004,84(14):2638-2640.
    [93]Chen Y.J.;Li Q.H.;Liang Y.X.;Wang T.H.;Zhao Q.;Yu D.P.Field-emission from long SnO_2 nanobelt arrays[J].Appl.Phys.Lett.2004,85(23):5682-5684.
    [94]He J.H.;Wu T.H.;Hsin C.L.;Li K.M.;Chen L.J.;Chueh Y.L.;Chou L.J.;Wang Z.L.Beaklike SnO_2 nanorods with strong photoluminescent and field-emission properties[J].Small 2006,2(1):116-120.
    [95]Zhang Y.S.;Yu K.;Li G.D.;Peng D.Y.;Zhang Q.X.;Xu F.;Bai W.;Ouyang S.X.;Zhu Z.Q. Synthesis and field emission of patterned SnO_2 nanoflowers[J].Mater.Lett.2006,60:3109-3112.
    [96]Comini E.;Faglia G.;Sberveglieri G.;Pan Z.W.;Wang Z.L.Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J].Appl.Phys.Lett.2002,81(10):1869-1871.
    [97]Law M.;Kind H.;Messer B.;Kim F.;Yang P.D.Photochemical Sensing of NO_2 with SnO_2nanoribbon nanosensors at room temperature[J].Angew.Chem.Int.Edit.2002,41(13):2405-2408.
    [98]Kolmakov A.;Zhang Y.X.;Cheng G.S.Moskovits M.Detection of CO and O_2 using tin oxide nanowire sensors[J].Adv.Mater.2003,15(12):997-I000.
    [99]Kalinin S.V.;Shin J.;Jesse S.;Geohegan D.;Baddorf P.;Lilach Y.;Moskovits M.;Kolmakov A.Electronic transport imaging in a multiwire SnO_2 chemical field-effect transistor device[J].J.Appl.Phys.2005,98:044503.
    [100]Kolmakov A.;Klenov D.O.;Lilach Y,;Stemmer S.;Moskovits M.Enhanced gas sensing by individual SnO_2 nanowires and nanobelts functionalized with Pd catalyst particles[J].Nano Lett.2005,5(4):667-673.
    [1]Dieguez A.;RomanoRodriguez A.;Morante J.R.;Weimar U.;SchweizerBerberich M.;Gopel W.Morphological analysis of nanocrystalline SnO_2 for gas sensor applications[J].Sens.Actuat.B-Chemical 1996,31(1-2):1-8.
    [2]Yu B.L.;Hang,G.L.;Tang G.Q.;Su H.T.;Chan W.J.;Optical limiting characteristics of SnO_2nanoparticles[J].Chinese Science Bulletin 1996,41(17):1431-1435.
    [3]Dieguez A.;RomanoRodriguez A.;Morante J.R.;Barsan N.;Weimar,U.;Gopei W.Nondestructive assessment of the grain size distribution of SnO_2 nanoparticles by low-frequency Raman spectroscopy[J].Appl.Phys.Lett.1997,71(14):1957-1959.
    [4]Ansari S.G.;Boroojerdian P.;Sainkar S.R.;Karekar R.N.;Aiyer R.C.;Kulkarni S.K.Grain size effects on H2 gas sensitivity of thick film resistor using SnO_2 nanoparticles[J].Thin Solid Films 1997,295(1-2):271-276.
    [5]Yu K.N.;Xiong Y.H.;Liu Y.L.;Xiong C.S.Microstructural change of nano-SnO_2 grain assemblages with the annealing,temperature[J].Phys.Rev.B 1997,55(4):2666-2671.
    [6]Abello L.;Bochu B.;Gaskov A.;Koudryavtseva S.;Lucazeau G.;Roumyantseva M.Structural characterization of nanocrystailine SnO_2 by X-ray and raman spectroscopy[J].J.Solid State Chem.1998,135(1):78-85.
    [6]Cao L.X.;Wan H.B.;Wang S.B.;Huo L.H.;Xi S.Q.The effect of surface structure on the photoluminescence of SnO_2 nanoparticles in hydrosols and organosols[J].Spectroscopy and Spectral Analysis 1999,19(5):651-654.
    [7]Nutz T.;ZumFelde U.;Haase M.Wet-chemical synthesis of doped nanoparticles:Blue-colored colloids of n-doped SnO_2:Sb[J].J.Chem.Phys.1999,110(24):12142-12150.
    [8]Nayral C.;Ould-ely T.;Maisonnat A.;Chaudret B.;Fau P.;Lescouzeres L.;Peyre-Lavigne A.A novel mechanism for the synthesis of tin/tin oxide nanoparticles of low size dispersion and of nanostructured SnO_2 for the sensitive layers of gas sensors[J].Adv.Mater 1999,11(1):61-63.
    [9]Song K.C.;Kang Y.Preparation of high surface area tin oxide powders by a homogeneous precipitation method[J].Mater Lett.2000,42(5):283-289.
    [10]Houriet R.;Vacassy R.;Hofmann H.Synthesis of powders and films using a new laser ablation technique[J].Nanostrcutured Mater 1999,11(8):1155-1163.
    [11]Leite E.R.;Weber I.T.;Longo E.;Varela J.A.A new method to control particle size and particle size distribution of SnO_2 nanoparticles for gas sensor applications[J].Adv.Mater 2000,12(13):965-968.
    [12]Nayral C.;Viala E.;Colliere V.;Fau P.;Senocq E;Maisonnat A.;Chaudret B.Synthesis and use of a novel SnO_2 nanomaterial for gas sensing[J].Appl.Surf Sci.2000,164:219-226.
    [13]Pang G.S.;Chen S.G.;Koltypin Y.;Zaban A.;Feng S.H.;Gedanken A.Controlling the particles size of calcined SnO2 nanocrystals[J].Nano Lett.2001,1(12):723-726.
    [14]Pan Z.W.;Dai Z.R.;Wang Z.L.Nanobelts of semiconducting oxides[J].Science 2001,291(5510):1947-1949.
    [15]Dai Z.R.;Pan Z.W.;Wang Z.L.Ultra-long single crystalline nanoribbons of tin oxide[J].Solid State Comm.,2001,118(7):351-354.
    [16]Dai Z.R.;Gole J.L.;Stout J.D.;Wang Z.L.Tin oxide nanowires,nanoribbons,and nanotubes [J].J.Phys.Chem.B,2002,106(6):1274-1279.
    [17]Sun S.H.;Meng G.W.;Zhang G.X.;Gao T.;Geng B.Y.;Zhang L.D.;Zuo J.Raman scattering study of rutile SnO_2 nanobelts synthesized by thermal evaporation of Sn powders[J].Chem.Phys.Lett.2003,376(1-2):103-107.
    [18]Hu J.Q.;Bando Y.;Liu Q.L.;Golberg D.Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons[J].Adv.Funct.Mater.2003,13(6):493-496.
    [19]Liu Z.Q.;Zhang D.H.;Han S.;Li C.;Tang T.;Jin W.;Liu X.L.;Lei B.;Zhou C.W.Laser ablation synthesis and electron transport studies of tin oxide nanowires[J].Adv.Mater 2003,15(20):1754-1757.
    [20]Chen Z.W.;Lai J.K.L.;Shek C.H.Nucleation mechanism and microstructural assessment of SnO_2 nanowires prepared by pulsed laser deposition[J].Phys.Lett.A 2005,345(4-6):391-397.
    [21]Mathur S.;Barth S.;Shen Hao.;Pyun J.C.;Werner U.Size-dependent photoconductance in SnO_2 nanowires[J].Small 2005,1(7):713-717.
    [22]Huang H.;Tan O.K.;Lee Y.C.;Tran T.D.;Tse M.S.;Yao X.Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment[J].AppL Phys.Lett.2005,87(16):163123.
    [23]Guo C.X.;Cao M.H.;Hu C.W.A novel and low-temperature hydrothermal synthesis of SnO_2 nanorods[J].lnorg.Chem.Comm.2004,7(7):929-931.
    [24]Hu C.X.;Wu Y.S.;Ma X.J.;Sui L.Y.;Shi Y.C.;Wei H.Y.;Wu L.L.PVA-assisted solvothermal fabrication of tin oxide sub-microrods[J].J.Cryst.Growth 2004,265(1-2):235-240.
    [25]Vayssieres L.Highly ordered SnO_2 nanorod arrays from controlled aqueous growth[J].Angew.Chem.Int.Ed.2004,43(28):3666-3670.
    [26]Huang J.;Lu A.X.;Zhao B.;Wan Q.Branched growth of degenerately Sb-doped SnO_2nanowires[J].Appl.Phys.Lett.2007,91:073102.
    [27]Wang J.X.;Liu D.F.;Yan X.Q.;Yuan H.J.;Ci L.J.;Zhou Z.P.;Gao Y.;Song L.;Liu L.F.;Zhou W.Y.;Wang G.;Xie S.S.Growth of SnO_2 nanowires with uniform branched structures[J].Solid State Commun.2004,130:89-94.
    [28]Chen Y.Q.;Cui X.F.;Zhang K.;Pan D.Y.;Zhang S.Y.;Wang B.;Hou J.G.Bulk-quantity synthesis and self-catalytic VLS growth of SnO_2 nanowires by lower-temperature evaporation[J].Chem.Phys.Lett.2003,369(1-2):16-20.
    [29]Wang W.Z.;Xu C.K.;Wang G.H.;Liu Y.K.;Zheng C.L.Synthesis and Raman scattering study of rutile SnO_2 nanowires[J].J.Appl.Phys.2002,92(5):2740-2742.
    [30]Calestani D.;Lazzarini L.;Salviati G.;Zha M.Morphological,structural and optical study of quasi-1D SnO_2 nanowires and nanobelts Crst.Res.Technol.2005,40(10-11),937-941.
    [31]Zhou J.X.;Zhang M.S.;Hong J.M.;Yin Z.Raman spectroscopic and photoluminescence study of single-crystalline SnO_2 nanowires[J]Solid State Communication 2006,138,242-246.
    [32]Wagner R.S.;Ellis W.C.Vapor-liquid-solid mechanism of single crystal growth[J].Appl.Phys.Lett.1964,4(5):89.
    [33]Chen Y.X.;Campbell L.J.;Zhou W.L.Self-catalytic branch growth of SnO_2 nanowire junctions[J].J.Crystal Growth 2004,270(3-4):505-510.
    [34]Wang B.;Yang Y.H.;Wang C.X.;Yang G.W.Nanostructures and self-catalyzed growth of SnO_2[J].J.Appl.Phys.2005,98(7):073520.
    [35]Calestani D.;Lazzarini L.;Salviati G.;Zha M.Morphological,structural and optical study of quasi-1D SnO_2 nanowires and nanobelts[J].Crystal Res.Tech.2005,40(10-11):937-941.
    [36]Salviati G.;Lazzarini L.;Zha M.Z.;Grillo V.;Garlino E.Cathodoluminescence spectroscopy of single SnO_2 nanowires and nanobelts[J].Phys.Status Solid A 2005,202(15):2963-2970.
    [37]Zhou X.T.;Heigl F.;Murphy M.W.;Sham T.K.;Regier T.;Coulthard I.;Blyth R.I.R.Time-resolved x-ray excited optical luminescence from SnO_2 nanoribbons:Direct evidence for the origin of the blue luminescence and the role of surface states[J].AppL Phys.Lett.2006,89(21):213109.
    [38]Her Y.C.;Wu J.Y.;Lin Y.R.;Tsai S.Y.Low-temperature growth and blue luminescence of SnO2 nanblades[J].Appl.Phys.Lett.2006,89(4):043115.
    [1]Pan Z.W.;Dai Z.R.;Wang Z.L.Nanobelts of semiconducting oxides[J].Science 2001, 291(5510):1947-1949.
    [2]Zhang J.;Yu W.Y.;Zhang L.D.Fabrication of semiconducting ZnO nanobelts using a halide source and their photoluminescence properties[J].Phys.Lett.2002,299(2-3):276-281.
    [3]Li Y.B.;Bando Y.;Sato T.;Kurashima K.Appl.Phys.Lett.2002,81(1):144-146.
    [4]Ding Y.;Gao P.X.;Wang Z.L.Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts:A case of Sn/ZnO[J].J.Am.Chem.Soc.2004,126(7):2066-2072.
    [5]Wang X.D.;Ding Y.;Summers C.J.;Wang Z.L.Large-scale synthesis of six-nanometer-wide ZnO nanobelts[J].J.Phys.Chem.B 2004,108(26):8773-8777.
    [6]Li Y.;Meng G.W.;Zhang L.D.;Phillipp F.Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J].Appl.Phys.Lett.2000,76(15):2011-2013.
    [7]Vayssieres L.Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J].Adv.Mater.2003,15(5):464-466.
    [8]Yang P.D.;Yan H.Q.;Mao S.;Russo R.;Johnson J.;Saykally R.;Morris N.;He R.R.;Choi H.J.Controlled growth of ZnO nanowires and their optical properties[J].Adv.Mater 2002,12(5):323-331.
    [9]Liu C.H.;Zapien J.A.;Yao Y.;Meng X.M.;Lee C.S.;Fan S.S.;Lifshitz Y.;Lee S.T.High-density,ordered ultraviolet light-emitting ZnO nanowire arrays[J].Adv.Mater.2003,15(10):838-841.
    [10]Wu J.J.;Liu S.C.Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition[J].Adv.Mater.2002,14(3):215-218.
    [11]Wang X.D.;Summers C.J.;Wang Z.L.Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J].Nano Lett.2004,4(3):423-426.
    [12]Jie J.S.;Wang G.Z.;Chen Y.M.;Han X.H.;Wang Q.T.;Xu B.;Hou J.G.Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film[J].Appl.Phys.Lett.2005,86(3):031909.
    [13]Weintraub B.;Deng Y.L.;Wang Z.L.Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis[J].J.Phys.Chem.C 2007,111(28): 10162-10165.
    [14]Wu J.J.;Liu S.C.;Wu C.T.;Chen K.H.;Chen L.C.Heterostructures of ZnO-Zn coaxial nanocables of ZnO nanotubes[J].Appl.Phys.Lett.2002,81(7):1312-1314.
    [15]Xing X.J.;Xi X.H.;Xue Z.Q.;Zhang X.D.;Song J.H.;Wang R.M.;Xu J.;Song Y.;Zhang S.L.;Yu D.P.Optical properties of the ZnO nanotubes synthesized via vapor phase growth[J].Appl.Phys.Lett.2003,83(9):1689-1691.
    [16]Zhang X.H.;Xie S.Y.;Jiang Z.Y.;Zhang X.;Tian Z.Q.;Xie Z.X.;Huang R.B.;Zheng L.S.Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system[J].J.Phys.Chem.B 2003,107(37):10114-10118.
    [17]Zhang X.H.;Xie S.Y.;Jiang Z.Y.;Xie Z.X.;Huang R.B.;Zheng L.S.;Kang J.Y.;Sekiguchi T.Microwave plasma growth and high spatial resolution cathodoluminescent spectrum of tetrapod ZnO nanostructures[J].J.Solid State Chem.2003,173(1):109-113.
    [18]Dai Y.;Zhang Y.;Wang Z.L.The octa-twin tetraleg ZnO nanostructures[J].Solid State Communication 2003,126(11):629-633.
    [19]Q.Wan,Yu,K.;Wang T.H.;Lin S.L.Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation[J].Appl.Phys.Lett.2003,83(11):2253-2255.
    [20]Newton M.C.;Warburton P.A.ZnO tetrapod nanocrystals[J].Mater.Today 2007,10(5):50-54.
    [21]Zhang H.;Shen L.;Guo S.W.Insight into the structures and properties of morphology-controlled legs of tetrapod-like ZnO aanostructures[J].J.Phys.Chem.C 2007,111(35):12939-12943
    [22]Kong X.J.;Ding Y.;Yang R.;Wang Z.L.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].Science 2004,303(5662):1348-1351.
    [23]Kong X.Y.;Wang Z.L.Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts[J].Nano Lett.2003,3(12):1625-1631.
    [24]Gao P.X.;Ding Y.;Mai W.J.;Hughes W.L.;Lao C.S.;Wang Z.L.Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J].Science 2005,309(5741):1700-1704.
    [25]Yang R.S.;Ding Y.;Wang Z.L.Deformation-free single-crystal nanohelixes of polar nanowires[J].Nano Lett.2004,4(7):1309-1312.
    [26]Xu C.X.;Sun X.W.;Dong Z.L.;Yu M.B.Self-organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport[J].J.Cryst.Growth 2004,270(3-4):498-504.
    [27]Wu C.Y.;Hsu H.C.;Cheng H.M.;Yang S.;Hsieh W.F.Structural and optical properties of ZnO nanosaws[J].J.Cryst.Growth 2006,287(1):189-193.
    [28]Fan H.J.;Schoiz R.;Dadgar A.;Krost A.;Zacharias M.A low-temperature evaporation route for ZnO nanoneedles and nanosaws[J].Appl.Phys.A 2005,80(3):457-460.
    [29]Liao Z.M.;Zhang H.Z.;Xu J.;Yu D.P.Bulk-quantity synthesis and conductive properties of comb-like dendritic ZnO nanostructures[J].2005,Chinese Phys.Lett.2005,22(4):987-990.
    [30]Zhu Y.C.;Bando Y.;Xue D.F.;Golberg D.Nanocable-alighed ZnS tetrapod nanocrystals[J].J.Am.Chem.Soc.2003,125(52):16196-16197.
    [31]Gong J.F.;Yang S.G.;Huang H.B.;Duan J.;Liu H.W.;Zhao X.N.;Zhang R.;Du Y.W.Experimental evidence of an octahedron nucleus in ZnS tetrapods[J].Small 2006,2(6):732-735.
    [32]Hu J.Q.;Bando Y.;Golberg D.Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures[J].Small 2005,1(1):95-99.
    [33]Pang Q.;Zhao L.J.;Cai Y.;Nguyen D.P.;Regnault N.;Wang N.;Ge W.K.;Ferreira R.;et al.CdSe nano-tetrapods:controllable synthesis,structure anylysis,and electronic and optical properties[J].Chem.Mater.2005,17(21):5263-5267.
    [34]AI Salman A.;Tortschanoff A.;Mohamed M.B.;Tonti D.;Van Mourik F.;Chergui M.Temperature effects on the spectral properties of colloidal CdSe nanodots,nanorods,and tetrapods[J].Appl.Phys.Lett.2007,90(9):093104.
    [35]Asokan S.;Krueger K.M.;Colvin V.L.;Wong M.S.Shape-controlled synthesis of CdSe tetrapods using cationic surfactant ligands[J].Small 2007,3(7):1164-1169.
    [36]Chen M.;Xie Y.;Lu J.;Xiong Y.J.;Zhang S.Y.;Qian Y.T.;Liu X.M.Synthesis of rod-,twinrod-,and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique[J].J.Mater.Chem.2002,12(3):748-753.
    [37]Zhai T.Y.;Gu Z.J.;Zhong H.Z.;Dong Y.;Ma Y.;Fu H.B.;Li Y.F.;Yao J.N.Design and fabrication of rocketlike tetrapodal CdS nanorods by seed-epitaxial metal-organic chemical vapor deposition[J].Cryst.Growth Design 2007,7(3):488-491.
    [38]Yu W.W.;Wang Y.A.;Peng X.G.Formation and stability of size-,shape-,and structure -controlled CdTe nanocrystals:Ligand effects on monomers and nanocrystals[J].Chem.Mater. 2003,15(22):4300-4308.
    [39]Tari D.;De Giorgi M.;Della Sala F.;Carbone L.;Krahne R.;Manna L.;Cingolani R.;Parak W.J.Optical properties oftetrapod-shaped CdTe nanocrystals[J].Appl.Phys.Lett.2005,87(22):224101.
    [40]Li Y.C.;Zhang H.Z.;Li R.;Zhou Y.;Yang C.H.;Li Y.F.High-yield fabrication and electrochemical characterization of tetrapodal CdSe,CdTe,and CdSe_xTe_(1-x)nanocrystals[J].Adv.Funct.Mater 2006,16(13):1705-1716.
    [41]Zhang J.Y.;Yu W.W.Formation of CdTe nanostructures with dot,rod,and tetrapod shapes [J].Appl.Phys.Lett.2006,89(12):123108.
    [42]Shiojiri,M.;Kaito,C.Structure and growth of ZnO smoke panicles prepared by gas evaporation technique[J].J.Crystal Growth,1981,52,173-177.
    [43]Kitano,M.;Hamabe,T.;Maeda S.Growth of large tetrapod-like ZnO crystals:I.Experimental considerations on kinetics of growth[J].J.Cryst.Growth 1990,10,965-973.
    [44]Iwanaga,H.;Fujii M.;Takeuchi,S.Growth model of tetrapod zinc oxide panicles[J].J.Cryst.Growth 1993,134,275-280.
    [45]Fujii,M.;Iwanaga,H.;Ichihara,M.Structure of tetrapod-like ZnO crystals[J].J.Cryst.Growth 1993,128,1095-1103.
    [46]Iwanaga,H.;Fujii,M.;Takeuchi,S.nter-leg angles in tetrapod ZnO panicles[J].J.Cryst.Growth 1998,183,190-195.
    [47]Ding Y.;Wang Z.L.;Sun T.J.;Qiu J.S.Zinc-blende ZnO and its role in nucleating wunzite tetrapods and twinned nanowires[J].Appl.Phys.Lett.2007,90(15):153510.
    [48]Tong X.Y.;Liu Y.C.;Shao C.L.;Liu Y.X.;Xu C.S.;Zhang J.Y.;Shen D.Z.;Fan X.W.Growth and optical properties of faceted hexagonal ZnO nanotubes[J].J.Phys.Chem.B 2006,110(30):14714-14718.
    [49]Sun Y.;Riley D.J.;Ashfold M.N.R.Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates[J].7.Phys.Chem.B 2006,110(3):15186-15192.
    [50]Xu L.F.;Liao Q.;Zhang J.P.;Ai X.C.;Xu D.S.Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods[J].J.Phys.Chem.C 2007,111(12):4549-4552.
    [1]Cui Y.;Duan X.F.;Hu J.T.;Lieber C.M.Doping and electrical transport in silicon nanowires [J].J.Phys.Chem.B 2000,104(22):5213-5216.
    [2]Cui Y.;Lieber C.M.Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J].Science 2001,291(5505):851-853.
    [3]Duan X.F.;Huang Y.;Cui Y.;Wang J.F.;Lieber C.M.Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J].Nature 2001,409(6816):66-69.
    [4]Huang Y.;Duan X.F.;Cui Y.;Lauhon L.J.;Kim K.H.;Lieber C.M.Logic gates and computation from assembled nanowire building blocks[J].Science 2001,294(5545):1313-1317.
    [5]Huang Y.;Duan X.F.;Cui Y.;Lieber C.M.Gallium nitride nanowire nanodevices[J].Nano Lett.2002,2(2):101-104.
    [6]Duan X.Y.;Huang Y.;Lieber C.M.Nonvolatile memory and programmable logic from molecule-gated nanowires[J].Nano Lett.2002,2(5):487-490.
    [7]Zhang Z.H.;Qian F.;Wang D.L.;Lieber C.M.Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices[J].Nano Lett.2003,3(3):343-346.
    [8]Greytak A.B.;Lauhon L.J.;Gudiksen M.S.;Lieber C.M.Growth and transport properties of complementary germanium nanowire field-effect transistors[J].Appl.Phys.Lett.2004,84(21):4176-4178.
    [9]Wang Z.L.Nanobelts,nanowires and nanodiskettes of semiconducting oxides-From materials to nanodevices[J].Adv.Mater.2003,15(5):432-436.
    [10]He R.R.;Gao D.;Fan R.;Hochbaum A.I.;Carraro C.;Maboudian R.;Yang P.D.Si nanowire bridges in microtrenches:Integration of growth into device fabrication[J].Adv.Mater.2005,17(17):2098-2100.
    [11]Myung S.;Lee M.;Kim G.T.;Ha J.S.;Hong S.Large-scale "surface-programmed assembly"of pristine vanadium oxide nanowire-based devices[J].Adv.Mater.2005,17(19):2361-2363.
    [12]Kim B.K.;Kim J.J.;Lee J.O.;Kong K.J.;Seo H.J.;Lee C.Top-gated field-effect transistor and rectifying diode operation of core-shell structured GaP nanowire devices[J].Phys.Rev.B 2005,71(15):153313.
    [13]Nikoobakhtt B.Toward industrial-scale fabrication of nanowire-based devices[J].Chem.Mater.2007,19(22):5279-5284.
    [14]Eriksson M.A.;Friesen M.Quantum Devices-nanowires charge towards integration[J].Nature Nanotechnology 2007,2(10):595-596.
    [15]Service R.F.Assembling nanocircuts from the bottom up[J].Science 2001,293:782.
    [16]Huang M.H.;Mao S.;Feick H.;Yan H.Q.;Wu Y.Y.;Kind H.;Weber E.;Russo R.;Yang P.D.Room-temperature ultraviolet nanowire nanolasers[J].Science 2001,292(5523):1897-1899.
    [17]Wang Z.L.;Song J.H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science 2006,312(5771):242-246.
    [18]Wang X.D.;Song J.H.;Liu J.;Wang Z.L.Direct-current nanogenerator driven by ultrasonic waves[J].Science 2007,316(5821):102-105.
    [19]Cui Y.;Wei Q.Q.;Park H.K.;Lieber C.M.Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J].Science 2001,293(5533):1289-1292.
    [20]Li C.;Zhang D.H.;Liu X.L.;Han S.;Tang T.;Han J.;Zhou C.W.In_2O_3 nanowires as chemical sensors[J].Appl.Phys.Lett.2003,82(10):1613-1615.
    [21]Zhang D.H.;Liu Z.Q.;Li C.;Tang T.;Liu X.L.;Han S.;Lei B.;Zhou C.W.Detection of NO2 down to ppb levels using individual and multiple In_2O_3 nanowire devices[J].Nano Lett.2004,4(10):1919-1924.
    [22]Smith P.A.;Nordquist C.D.;Jackson T.N.;Mayer T.S.;Martin B.R.;Mbindyo J.;Mallouk T.E.Electric-field assisted assembly and alignment of metallic nanowires[J].Appl.Phys.Lett.2000,77(9):1399-1401.
    [23]Bhatt K.H.;Velev O.D.Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires[J].Langmiur 2004,20(2):467-476.
    [24]Lao C.S.;Liu J.;Gao P.X.;Zhang L.Y.;Davidovic D.;Tummala R.;Wang Z.L.ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes [J].Nano Lett.2006,6(2):263-266.
    [25]Suehiro J.;Nakagawa N.;Hidaka S.;Ueda M.;Imasaka K.;Higashihata M.;Okada T.;Hara M.Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor [J].Nanotechnology 2006,17(10):2567-2573.
    [26]朱振峰;黄剑锋;曹丽云,SnO_2基NTC热敏陶瓷性能及结构的研究[J],武汉理工大学学报,2002,24(8):16-18.
    [27]Wang M.K.A near of linear NTC sensitive ceramics[J].J.Mater.Sci.Tech.2001,17(5): 567-568.
    [28]刘恩科;朱秉升;罗晋生等,半导体物理学[M],电子工业出版社,2003.
    [29]Heo Y.W.;Kang B.S.;Tien L.C.;Norton D.P.;Ren F.;La Roche J.R.;Pearton S.J.UV photoresponse of single ZnO nanowires[J].Appl.Phys.A 2005,80:497-499.
    [30]Suehiro J.;Nakagawa N.;Hidaka S.I.;Ueda M.;Imasaka K.;Higashihata M.;Okada T.;Hara M.Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor[J].Nanotechnology 2006,17(10):2567-2573.
    [31]Lao C.S.;Park M.C.;Kuang Q.;Deng Y.L.;Sood A.K.;Polla D.L.;Wang Z.L.Giant enhancement in UV response of ZnO nanobelts by polymer surface- functionalization[J].J..Am.Chem.Soc.2007,129(40):12096-12097.
    [32]Cheng Y.;Xiong P.;Lields L.;Zhang J.P.;Yang R.S.;Wang Z.L.Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors[J].Appl.Phys.Lett.2006,89:093114.
    [1]康昌鹤,唐省吾等;气、湿敏器件及其应用[M],科学出版社,1988年.
    [2]Ansari S.G.;Boroojerdian P.;Sainkar S.R.;Karekar R.N.;Aiyer R.C.;Kulkarni S.K.Grain size effects on H_2 gas sensitivity of thick film resistor using SnO_2 nanoparticles[J].Thin Solid Films 1997,295(1-2):271-276.
    [3]Leite E.R.;Weber I.T.;Longo E.;Varela J.A.A new method to control particle size and particle size distribution of SnO_2 nanoparticles for gas sensor applications[J].Adv.Mater.2000,12(13):965-968.
    [4]Kennedy M.K.;Kruis F.E.;Fissan H.;Mehta B.R.;Stappert S.;Dumpich G.Tailored nanoparticle films from monosized tin oxide nanocrystals:Particle synthesis,film formation,and size-dependent gas-sensing properties[J].J.Appl.Phys.2003,93(1):551-560.
    [5]Ionescu R.;Hoel A.;Granqvist C.G.;Llobet E.;Heszler P.Low-level detection of ethanol and H2S with temperature-modulated WO_3 nanoparticle gas sensors[J].Sens.Actuat.B 2005,104(1):132-139.
    [6]Garje A.D.;Aiyer R.C.Effect of firing temperature on electrical and gas-sensing properties of Nano-SnO_2-Based thick-film resistors[J].International J.Appl.Ceramic Tech.2007,4(5):446-452.
    [7]Penza M.;Martucci C.;Cassano G.NO_x gas sensing characteristics of WO_3 thin films activated by noble metals(Pd,Pt,Au) layers[J].Sens.Actuat.B 1998,50(1):52-59.
    [8]Kolmakov A.;Kienov D.O.;Lilach Y.;Stemmer S.;Moskovits M.Enhanced gas sensing by individual SnO_2 nanowires and nanobelts functionalized with Pd catalyst particles[J].Nano Lett.2005,5(4):667-673.
    [9]Comini E.;Ferroni M.;Guidi V.;Vomeiro A.;Merli P.G.;Morandi V.;Sacerdoti M.;Della Mea G.;Sberveglieri G.Effects of Ta/Nb-doping on titania-based thin films for gas-sensing[J].Sens.Actuat.B 2005,108(1-2):21-28.
    [10]Rani S.;Roy S.C.;Bhatnagar M.C.Effect of Fe doping on the gas sensing properties of nano-crystalline SnO_2 thin films[J].Sens.Actuat.B 2007,122(1):204-210.
    [11]Malyshev V.V.;Pislyakov A.V.SnO_2-based thick-film-resistive sensor for H2S detection in the concentration range of 1-10 mg m~(-3)[J].Sens.Actuat.B 1998,47(1-3):181-188.
    [12]Jiao Z.;Bian L.F.;Liu J.H.;Liu J.H.Stability of SnO_2/Fe_2O_3 multilayer thin film gas sensor [J].Materials Research Bulletin;2000,35(5):741-745.
    [13]Ansari Z.A.;Ansari S.G.;Ko T.;Oh J.H.Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H_2 gas sensing[J].Sens.Actuat.B 2002,87(1):105-114.
    [14]Montenegro A.;Ponce M.;Castro M.S.;Rodriguez-Paez J.E.SnO_2-Bi_2O_3 and SnO_2-Sb_2O_3 gas sensors obtained by soft chemical method[J].J.European Ceramic Soc.2007,27(13-15):4143-4146.
    [15]Hong H.K.;Shin H.W.;Park H.S.;Yun D.H.;Kwon C.H.;Lee K.;Kim S.T.;Moriizumi T.Gas identification using micro gas sensor array and neural-network pattern recognition[J].Sens.Actuat.B 1996,33:68-71.
    [16]Hong H.K.;Kwon C.H.;Kim S.R.;Yun D.H.;Lee K.C.;Sung Y.K.Portable electronic nose system with gas sensor array and artificial neural network[J].Sens.Actuat.B 2000,66:49-52.
    [17]Wollenstein J.;Plaza J.A.;Cane C.;Min Y.;Bottner H.;Tuller H.L.A novel single chip thin film metal oxide array[J].Sens.Actuat.B 2003,93:350-355.
    [18]Zhang D.H.;Liu Z.Q.;Li C.;Tang T.;Liu X.L.;Han S.;Lei B.;Zhou C.W.Detection of NO2 down to ppb levels using individual and multiple In_2O_3 nanowire devices[J].Nano Lett.2004,4(10):1919-1924.
    [19]Hernandez-Ramirez F.;Tarancon A.;Casals O.;Arbiol J.;Romano-Rodriguez A.;Morante J.R.High response and stability in CO and humidity measures using a single SnO_2 nanowire[J].Sens.Actuat.B 2007,121(1):3-17.
    [20]Rout C.S.;Kulkarni G.U.;Rao C.N.R.Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides[J].J.Phys.D 2007,40(9):2777-2782.
    [21]Hsueh T.J.;Chen Y.W.;Chang S.J.;Wang S.F.;Hsu C.L.;Liu Y.R.;Lin T.S.;Chen I.C.ZnO nanowire-based CO sensors prepared at various temperatures[J].J.Electrochemical Soc.2007,154(12):393-396.
    [22]Liao L.;Lu H.B.;Li J.C.;Li J.C.;Liu C.;Fu D.J.;Liu Y.L.The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation[J].Appl.Phys.Lett.2007,91(17):173110.
    [23]Heiland G.;Kohl D.;Chemical Sensor Technology[M],Vol.1,edited by T.Seiyama (Kodansha,Tokyo),Ch.2,15-38.
    [24]Morrison S.R.;The Chemical Physics of Surfaces[M],2~(nd) edn Plenum Press,New York,1990.
    [25]Henrich V.A.;Cox P.A.;The Surface Science of Metal oxides[M].University Press,Cambridge,1994,312-316.
    [26]Rumyantseva M.;Labeau M.;,Delabouglise G.;Ryabova L.;Kutsenok I.;Gaskov A.Copper and nickel doping effect on interaction of SnO_2 films with H_2S[J].J.Mater Chem.1997,7(9):1785-1790.
    [27]Rumyantseva M.N.,Ryabova L.I.;Kuznetsova T.A.;Labeau M.;Delabouglise G.;Gask'ov A.M.Sensor properties of polycrystalline SnO_2 films doped with Ni[J].Inorg.Mater 1999,35(1):54-59.
    [28]Hidalgo P.;Castro R.H.R.;Coelho A.C.V.;Gouvea D.Surface segregation and consequent SO_2 sensor response in SnO_2-NiO[J].Chem.Mater 2005,17(16):4149-4153.
    [29]Mangamma G.;Jayaraman V.;Gnanasekaran T.;Periaswami G.Effects of Silica additions on H2S sensing properties of CuO-SnO2 sensors[J].Sens.Actuat.B 1998,53(3):133-139.
    [30]Zhou X.H.;Cao Q.X.;Huang H.;Yang P.;Hu Y.Study on sensing mechanism of CuO-SnO2gas sensors[J].Mater.Sci.Engin.B 2003,99(1-3):44-47.
    [31]Yu J.H.;Choi G.M.Selective CO gas detection of CuO- and ZnO-doped SnO_2 gas sensor[J].Sens.Actuat.B 2001,75:56-61.
    [32]Costello B.P.J.L.;Even R.J.;Guernion N.;Ratcliffe N.M.Highly sensitive mixed oxide sensors for the detection of ethanol[J].Sens.Actuat.B 2002,87:207-210.
    [33]Wagh M.S.;Patil L.A.;Seth T.;Amalnerkar D.P.Surface cupricated SnO_2-ZnO thick films as a H_2S gas sensor[J].Mater Chem.Phys.2005,84:228-233.
    [34]Srivastava A.;Rashmi;Jain K.Study on ZnO-doped tin oxide thick film gas sensors[J].Mater Chem.Phys.2007,105:385-390.
    [35]Kim K.W.;Cho P.S.;Kim S.J.;Lee J.H.;Kang C.Y.;Kim J.S.;Yoon S.J.The selective detection of C_2H_5OH using SnO_2-ZnO thin film gas sensors prepared by combinatorial solution deposition[J].Sens.Actuat.B 2007,1230:318-324.
    [36]Yu J.H.;Choi G.M.Electrical and CO gas sensing properties of ZnO/SnO_2 hetero-contact[J].Sens.Actuat.B 1999,61:59-67.
    [1]Wu Y.Y.;Fan R.;Yang P.D.Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires[J].Nano.Lett.2002,2(2):83-86.
    [2]Gudiksen M.S.;Lauhon L.J.;Wang J.F.;Smith D.C.;Lieber C.M.Growht of nanowire superlattice structures for nanoscale photonics and electronics[J].Nature 2002,415:617-620.
    [3]Solanki R.;Huo J.;Freeouf J.L.;Miner B.Atomic layer deposition of ZnSe/CdSe supperlattice nanowires[J].Appl.Phys.Lett.2002,81:3864-3866.
    [4]Suenaga K.;Colliex C.;Demoncy N.;Loiseau A.;Pascard H.;Willaime F.Synthesis of nanoparticles and nanotubes with well-seperated layers of Boron Nitride and carbon[J].Science 1997,278:653-655.
    [5]Zhang Y.;Suenaga K.;Colliex C.;Iijima S.Coaxial nanocable:silicon carbide and silicon oxide sheathed with boron nitride and carbon[J].Science 1998,281:973-975.
    [6]Han S.;Li C.;Liu Z.Q.;Lei B.;Zhang D.H.;Jin W.;Liu X.L.;Tang T.;Zhou C.W.Transition metal oxide core-shell nanowires:generic synthesis and transport studies[J].Nano.Lett.2004,4,1241-1246.
    [7]Lauhon L.J.;Gudiksen M.S.;Wang D.L.;Lieber C.M.Epitaxial core-shell and core-multishell nanowire heterostructures[J].Nature 2002,420,57-61.
    [8](a) Kong X.Y.;Ding Y.;Wang Z.L.Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes[J].J.Phys.Chem.B 2004,108:570-574.
    (b) Hu J.Q.;Li Q.;Meng X.M.;Lee C.S.;Lee S.T.Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes[J].Chem.Mater.2003,15:305-308.
    [9]Li Y.B.;Bando Y.;Golberg D.Mg_2Zn_(11)-MgO belt-like nanocables[J].Chem.Phys.Lett.2003,375:102-105
    [10](a) Mokari T.;Banin U.Synthesis and properties of CdSe/ZnS core/shell nanorods[J].Chem. Mater.2003,15,3955-3960.
    (b) Manna L.;Scher E.C.;Li L.S.;Alivisatos A.P.Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods[J].J.Am.Chem.Soc.2002,124,7136-7145.
    [11]Hsu Y.J.;Lu S.Y.One-step preparation of coaxial CdS-ZnS nanowires[J].Chem.Comm.2004,18,2102-2103.
    [12]Wang Z.L.;Dai Z.R.;Gao R.P.;Bai Z.G.;Gole J.L.Side-by-side carbide-silica biaxial nanowires:synthesis,structure,and mechanical properties[J].Appl.Phys.Lett.2000,77,3349-3351.
    [13]Hu J.Q.;Bando Y.;Liu Z.W.;Sekiguchi T.;Golberg D.;Zhan J.H.Epitaxial heterostructures:side-by-side Si-ZnS,Si-ZnSe biaxial nanowires and sandwichlike ZnS-Si-ZnS triaxial nanowires [J].J.Am.Chem.Soc.2003,125,11306-11313.
    [14]He R.R.;Law M.;Fan R.;Kim F.;Yang P.D.Functional bimorph composite nanotapes[J].Nano Lett.2002,2,1109-1112.
    [15]Zhan J.H.;Bando Y.;Hu J.Q.;Sekiguchi T.;Golberg D.Single-catalyst confined growth of ZnS/Si composite nanowires[J].Adv.Mater.2005,17,225-230.
    [16]Teo B.K.;Li C.P.;Sun X.H.;Wong N.B.;Lee S.T.Silicon-silica nanowires,nanotubes,and biaxial nanowires:inside,outside,and side-by-side growth of silicon versus silica on zeolite[J.Inorg.Chem.2003,42:6723-6728.
    [17]An S.J.;Park W.I.;Yi G.C.;Kim Y.J.;Kang H.B.;Kim M.Heteroepitaxiai fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures[J].Appl.Phys.Lett.2004,84:3612-3614.
    [18]Costello B.P.J.D.;Ewen R.J.;Jones P.R.H.;Ratcliffe N.M.;Wat R.K.M.A study of the catalytic and vapour-sensing properties of zince oxide and tin dioxide in relation to 1-butanol and dimethyldisulphine[J].Sens.Actuators B 1999,61:199-207.[19]Belliard F.;Connor P.A.;Irvine J.T.S.Novel tin oxide-based anodes for Li-ion batteries[J].Solid State Ionics 2000,135:163-167.
    [20]Tennakone K.;Bandara J.Photocatalytic activity of dye-sensitized tin(Ⅳ) oxide nanocrystalline particles attached to zinc oxide particles:long distance electron transfer via ballistic transport of electrons across nanocrystallites[J].Appl.Catal.A:General 2001,208: 335-341.
    [21]Bandara J.;Tennakone K.;Jayatilaka P.P.B.Composite tin and zinc oxide nanocrstalline particles for enhanced charge separation in sensitized degradation of dyes[J].Chemosphere 2002,49:439-445.
    [22]Wang C.;Zhao J.C.;Wang X.M.;Ma,B.X.;Sheng G.Y.;Peng P.A.;Fu J.M.Preparation,characterization and photocatalytic activity of nano-sized ZnO/SnO_2 coupled photocatalysts[J].Appl.Catal.B:Environmental 2002,39:269-279.
    [23]Wang X.D.;Gao P.X.;Li J.;Summers C.J.;Wang Z.L.Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes[J].Adv.Mater.2002,14:1732-1734.
    [24]Hwang J.;Min B.D.;Lee,J.S.;Keem K.;Cho K.;Sung M.Y.;Lee M.S.;Kim S.Al_2O_3nanotubes fabricated by wet etching of ZnO/Al_2O_3 core/shell nanofibers[J].Adv.Mater.2004,16:422-424.
    [25](a) Heo Y.W.;Abernathy C.;Pruessner K.;Sigmund W.;Norton D.P.;Overberg M.;Ren F.;Chisholm M.F.Structure and optical properties of cored wurtzite(Zn,Mg)O heteroepitaxial nanowires[J].J.Appl.Phys.2004,96:3424-3428.
    (b) Saitoh H.;Okada Y.;Ohshio S.Synthesis of MgO/ZnO hetero-epitaxial whiskers using chemical vapor deposition operated under atmospheric pressure[J].J.Mater.Sci.2002,37:4597-4602.
    [26]Wang X.D.;Summers C.J.;Wang Z.L.Mesoporous single-crystal ZnO nanowires epitaxial sheathed with Zn_2SiO_4[J].Adv.Mater.2004,16,1215-1218.
    [27]Bae S.Y.;Seo H.W.;Choi H.C.;Park J.;Park,J.Heterostructures of ZnO nanorods with various one-dimensional nanostructures[J].J.Phys.Chem.B 2004,108:12318-12326.
    [28]Gao T.;Wang T.H.Sonochemical synthesis of SnO_2 nanobelt/CdS nanoparticles core/shell heterostructures[J].Chem.Comm.2004,22:2558-2559.
    [29]Wang C.F.;Xie S.Y.;Lin S.C.;Cheng X.;Zhang X.H.;Huang R.B.;Zheng L.S.Glow discharge growht of SnO_2 nano-needles from SnH_4[J].Chem.Comm.2004,15:1766-1767.
    [30]Hirsch P.;Howie A.;Nicholson R.B.;Pashley D.W.;Whelan M.J.Electron microscopy of thin crystals[M];Robert E.Krieger Publishing:Malabar,Florida,1977.
    [31]Hull R.;Gray J.;Wu C.C.;Atha S.;Floro J.A.Interaction between surface morphology and misfit dislocation as strain relaxation modes in lattice-mismatched heteroepitaxy[J].J.Phys.: Condens.Matter 2002,14,12829-12841.
    [32](a) Dai Y.;Zhang Y.;Li Q.K.;Nan C.Wo Synthesis and optical properties of tetrapod-like zinc oxide nanorods[J].Chem.Phys.Lett.2002,358:83-86.
    (b) Vanheusden K.;Warren W.L.;Seager C.H.;Tallant D.R.;Viogt J.A.;Gnade B.E.Mechanisms behind green photoluminescence in ZnO phosphor powders[J].J.Appl.Phys.1996,79:7983-7990.
    [33]Gu F.;Wang S.F.;L(u|¨) M.K.;Zhou G.J.;Xu D.;Yuan D.R.Photoluminescence properties of SnO_2 nanoparicles synthesized by sol-gel method[J].J.Phys.Chem.B 2004,108,8119-8123.
    [34](a) Gu F.;Wang S.F.;L(u|¨),M.K.;Zhou G.J.;Xu,D.;Yuan,D.R.Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li~+ doping via combustion method[J].Langmuir 2004,20:3528-3531.
    (b) Geng B.Y.;Wang G.Z.;Jiang Z.;Xie T.;Sun S.H.;Meng G.W.;Zhang L.D.Synthesis and optical properties of S-doped ZnO nanowires[J].Appl.Phys.Lett.2003,82,4791-4793.
    (c) Karvinen S.M.The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide[J].Ind.Eng.Chem.Res.2003,42,1035-1043.
    [35](a) Niederberger M.;Garnweitner G.;Krumeich F.;Nesper R.;C(o|¨)lfen H.;Antonietti M.Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process[J].Chem.Mater.2004,16,1202-1208.
    (b) Guo L.;Yang S.H.;Yang C.L.;Yu P.;Wang J.N.;Ge W.K.;Wong G.K.L.Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles[J].Chem.Mater.2000,12,2268-2274.
    [36](a) Fu L.;Liu Z.M.;Liu Y.Q.;Han B.X.;Wang J.Q.;Hu P.G.;Cao L.C.;Zhu D.B.Ga_2O_3nanoribbons-Eu_2O_3 multisheaths heterostructure and energy transfer[J].J.Phys.Chem.B 2004,108,13074-13078.
    (b) Yang H.;Holloway P.H.;Cunningham G.;Schanze K.S.CdS:Mn nanocrystals passivated by ZnS:synthesis and luminescent properties[J].J.Chem.Phys.2004,121,10233-10240.
    [1]Pan Z.W.;Dai Z.R.;Wang Z.L.Nanobelts of semiconducting oxides[J].Science 2001,291(5510):1947-1949.
    [2]Xia Y.N.;Yang P.D.;Sun Y.G.;Wu Y.Y.;Mayers B.;Gates B.;Yin Y.D.;Kim F.;Yan Y.Q.One-dimensional nanostructures:Synthesis,characterization,and applications[J].Adv.Mater.2003,15:353.
    [3]Ohno Y.;S.Shimomura;Hiyamizu S.Stacking effect of self-organized In_(0.15) Ga_(0o.85)As quantum wires grown on(775)B-oriented GaAs substrates by molecular beam epitaxy[J].J.Crst.Growth 2001,227-228:970-974.
    [4]Chen Y.;Ohlberg D.A.A.;Williams R.S.Nanowires of four epitaxial hexagonal silicides grown on Si(001)[J].J.Appl.Phys.2002,91(5):3213.
    [5]Ragan R.;Chen Y.;Ohlberg D.A.A.;Medeiros-Ribeiro G.;Williams R.S.Ordered arrays of rare-eatth silicide nanowires on Si(001).J.Cryst.Growth 2003,251(1-4:657-661.
    [6]De Seta M.D.;Capellini G.;Evangelisti F.Ordered growth of Ge island clusters on strain-engineered Si surfaces[J].Phys.Rev.B 2005,71(11):115308.
    [7]Ru E.C.L.;Howe P.;Jones T.S.;Murray R.Strain-engineered InAs/GaAs quantum dots for long-wavelength emission[J].Phys.Rev.B 2003,67(16):165303.
    [8]Lee H.;Johnson J.A.;He M.Y.;Speck J.S.;Petroff P.M.Stain-engineered self-assembled semiconductor quantum dot lattice[J].Appl.Phys.Lett.2001,78(1):105.
    [9]Kuang Q.;Jiang Z.Y.;Xie Z.X.;Lin S.C.;Lin Z.W.;Xie S.Y.;Huang R.B.;Zheng L.S.Tailoring the optical property by a three-dimensional epitaxial heterostructure:A case of ZnO/SnO_2[J].J.Am.Chem.Soc.2005,127(33):11777-11784.
    [10]Yu W.D.;Li X.M.;Gao X.D.;Wu F.Large-scale synthesis and microstructure of SnO_2nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate[J].J.Phys.Chem.B 2005,109(36):17078-17081.
    [11]Zhao J.W.;Ye C.H.;Fang X.S.;Qin L.R.;Zhang L.D.Selective growth of crystalline SnO_2on the polar surface of ZnO nanobelts[J].Cryst.Growth Des.2006,6(12):2643-2647.
    [12]Kim H.W.;Shim S.H.Study of ZnO-coated SnO_2 nanostructures synthesized by a two-step process[J].Appl.Surf.Sci.2006,253(2):510-514.
    [13]Zhou X.;Xie Z.X.;Jiang Z.Y.;Kuang Q.;Zhang S.H.;Xu T.;Huang R.B.;Zheng L.S.Formation of ZnO hexagonal micro-pyramids:a successfully control of the exposed polar surface surfaces with the assistance of an ionic liquid[J].Chem.Comm.2005,5572-5574.
    [14]Dai Z.R.;Gole J.L.;Stout J.D.;Wang Z.L.Tin oxide nanowires,nanoribbons,and nanotubes [J].J.Phys.Chem.B,2002,106(6):1274-1279.
    [15]Huang J.;Lu A.X.;Zhao B.;Wan Q.Branched growth of degenerately Sb-doped SnO_2nanowires[J].Appl.Phys.Lett.2007,91:073102.
    [16]Wang J.X.;Liu D.F.;Yan X.Q.;Yuan H.J.;Ci L.J.;Zhou Z.P.;Gao Y.;Song L.;Liu L.F.;Zhou W.Y.;Wang G.;Xie S.S.Growth of SnO_2 nanowires with uniform branched structures[J].Solid State Commun.2004,130:89-94.
    [17]Chen Y.Q.;Cui X.F.;Zhang K.;Pan D.Y.;Zhang S.Y.;Wang B.;Hou J.G.Bulk-quantity synthesis and self-catalytic VLS growth of SnO_2 nanowires by lower-temperature evaporation[J].Chem.Phys.Lett.2003,369(1-2):16-20.
    [18]Liu Z.Q.;Zhang D.H.;Han S.;Li C.;Tang T.;Jin W.;Liu X.L.;Lei B.;Zhou C.W.Laser ablation synthesis and electron transport studies of tin oxide nanowires[J].Adr.Mater.2003,15(20):1754-1757.
    [19]Mathur S.;Barth S.;Shen Hao.;Pyun J.C.;Werner U.Size-dependent photoconductance in SnO_2 nanowires[J].Small 2005,1(7):713-717.
    [20]Chen Z.W.;Lai J.K.L.;Shek C.H.Nucleation mechanism and microstructural assessment of SnO_2 nanowires prepared by pulsed laser deposition[J].Phys.Lett.A 2005,345(4-6):391-397.
    [21]Wang W.Z.;Xu C.K.;Wang G.H.;Liu Y.K.;Zheng C.L.Synthesis and Raman scattering study ofrutile SnO_2 nanowires[J].J.Appl.Phys.2002,92(5):2740-2742.
    [22]Calestani D.;LaE7arini L.;Salviati G.;Zha M.Morphological,structural and optical study ofquasi-lD SnO_2 nanowires and nanobelts Crst.Res.Technol.2005,40(10-11),937-941.
    [23]Zhou J.X.;Zhang M.S.;Hong J.M.;Yin Z.Raman spectroscopic and photoluminescence study of single-crystalline SnO_2 nanowires[J]Solid State Communication 2006,138,242-246.
    [1]Marinakos S.M.;Novak J.P.;Brousseau L.C.;House A.B.;Edeki E.M.;Feldhaus J.C.;Feldheim D.L.Gold particles as templates for the synthesis of hollow polymer capsules.Control of capsule dimensions and guest encapsulation[J].J.Am.Chem.Soc.2007,121(37):8518-8522.
    [2]Rosier A.;Vandermeulen G.W.M.;Klok H.A.Advanced drug delivery devices via self-assembly of amphiphilic block copolymers[J].Adv.Drug Deliv.Rev.2001,53(1):95-108.
    [3]Obare S.O.;Jana N.R.;Murphy C.J.Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes[J].Nano Lett.2001,1(11):601-603.
    [4]Liang H.P.;Zhang H.M.;Hu J.S.;Guo Y.G.;Wan L.J.;Bai C.L.Pt hollow nanospheres:Facile synthesis and enhanced electrocatalysts[J].Angew.Chem.2004,43(12):1540-1543.
    [5]Yang H.G.;Zeng H.C.Preparation of hollow anatase TiO_2 nanpspheres via Ostwald rpening [J].J.Phys.Chem.B 2004,108(11):3492-3495.
    [6]Ma Y.R.;Qi L.M.;Ma J.M.;Cheng H.M.Facile synthesis of hollow ZnS nanospheres in block copolymer solutions[J].Langmuir 2003,19(9):4040-4042.
    [7]Zhang H.;Zhang S.Y.;Pan S.;Li G.P.;Hou J.G.A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties[J].Nanotechnology 2004,15(8):945-948.
    [8]Fang Y.P.;Wen X.G.;Yang S.H.Hollow and tin-filled nanotubes of single-crystalline In(OH)_3grown by a solution-liquid-solid-solid route[J].Angew.Chem.2006,45(28):4655-4658.
    [9]Yin L.W.;Bando Y.;Li M.S.;Golberg D.Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction [J].Small 2005,1(11):1094-1099.
    [10]Ras R.H.A.;Ruotsalainen T.;Laurikainen K.;Linder M.B.;Ikkala O.Hollow nanoparticle nanotubes with a nanoscale brick wall structure of clay mineral platelets[J].Chem.Comm.2007, 13,1366-1367.
    [11]Varghese O.K.;Gong D.W.;Paulose M.;Ong K.G.;Grimes C.A.Hydrogen sensing using titania nanotubes[J].Sens.Actuat.B-Chem.2003,93(13):338-344.
    [12]Chen J.;Xu L.N.;Li W.Y.;Gou X.L.Alpha-Fe_2O_3 nanotubes in gas sensor and lithium-ion battery applications[J].Adv.Mater.2005,17(5):582-586.
    [13]Zhao Q.R.;Gao Y.;Bai X.;Wu C.Z.;Xie Y.Facile synthesis of SnO_2 hollow nanospheres and applications in gas sensors and electrocatalysts[J].Europ.Inorg.Chem.2006,8:1643-1648.
    [14]Albu S.P.;Ghicov A.;Macak J.M.;Hahn R.;Schmuki P.Self-organized,free-standing TiO_2nanotube membrane for flow-through photocatalytic[J].Nano Lett.2007,7(5):1286-1289.
    [15]Huang L.H.;Sun C.;Liu Y.L.Pt/N-codoped TiO_2 nanotubes and its photocatalytic activity under visible light[J].Appl.Surf Sci.2007,253(17):7029-7035.
    [16]Ding J.F.;Liu G.J.Water-soluble hollow nanospheres as potential drug carriers[J].J.Phys.Chem.B 1998,102(31):6107-6113.
    [17]Son S.J.;Reichei J.;He B.;Schuchman M.;Lee S.B.Magnetic nanotubes for magnetic-field-assisted bioseparation,biointeraction,and drug delivery[J].J.Am.Chem.Soc.2005,127(20):7316-7317.
    [18]Cai Y.R.;Pan H.H.;Xu X.R.;Hu Q.H.;Li L.;Tang R.K.Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres:A smart and biocompatible drug release system[J].Chem.Mater.2007,19(13):3081-3083.
    [19]Hu Y.;Ding Y.;Ding D.;Sun M.J.;Zhang L.Y.;Jiang X.Q.;Yang C.Z.Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers[J].Biomacromolecules 2007,8(4):1069-1076.
    [20]Feazell R.P.;Nakayama-Ratchford N.;Dai H.;Lippard S.J.Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(Ⅳ) anticancer drug design[J].J.Am.Chem.Soc.2007,129(27):8438-8439.
    [21]Lin Z.W.;Kuang Q.;Lian W.;Jiang Z.Y.;Xie Z.X.;Huang R.B.;Zheng L.S.Preparation and optical properties of ThO_2 and Eu-doped ThO_2 nanotubes by the sol-gel method combined with porous anodic aluminum oxide template[J].J.Phys.Chem.B 2006,110(46):23007-23011.
    [22]Kuang Q.;Lin Z.W.;Lian W.;Jiang Z.Y.;Xie Z.X.;Huang R.B.;Zheng L.S.Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates[J].J.Solid State Chem.2007,180(4):1236-1242.
    [23]Leite E.R.;Weber I.T.;Longo E.;Varela J.A.A new method to control particle size and particle size distribution of SnO_2 nanoparticles for gas sensor applications[J].Adv.Mater.2000,12(13):965-967.
    [24]Gu F.;Wang S.F.;Song C.F.;Lu M.K.;Qi Y.X.;Zhou G.J.;Xu D.;Yuan D.R.Synthesis and luminescence properties of SnO_2 nanoparticles[J].Chem.Phys.Lett.2003,372(3-4):451-454.
    [25]Ahn H.J.;Choi H.C.;Park K.W.;Kim S.B.;Sung Y.E.Investigation of the structural and electrochemical properties of size-controlled SnO_2 nanoparticles[J].J.Phys.Chem.B 2004,108(28):9815-9820.
    [26]Chen Y.Q.;Cui X.F.;Zhang K.;Pan K.Y.;Zhang S.Y.;Wang B.;Hou J.G.Bulk-quantity synthesis and self-catalytic VLS growth of SnO_2 nanowires by lower-temperature evaporation[J].Chem.Phys.Lett.2003,369(1-2):16-20.
    [27]Wang J.X.;Liu D.F.;Yah X.Q.;Yuan H.J.;Ci L.J.;Zhou Z.P.;Gao Y.;Song L.;et al.Growth of SnO_2 nanowires with uniform branched structures[J].Solid State Comm.2004,130(1-2):89-94.
    [28]Wang C.F.;Xie S.Y.;Lin S.C.;Cheng X.;Zhang X.H.;Huang R.B.;Zheng L.S.Glow discharge growth of SnO_2 nano-needles from SnH_4[J].Chem.Comm.2004,15:1766-1767.
    [29]Zhang D.F.;Sun L.D.;Yin J.L.;Yan C.H.Low-temperature fabrication of highly crystalline SnO_2 nanorods[J].Adv.Mater 2003,15(12):1022-1024.
    [30]Chen Y.J.;Xue X.Y.;Wang Y.G.;Wang T.H.Synthesis and ethanol sensing characteristics of single crystalline SnO_2 nanorods[J].Appl.Phys.Lett.2005,87(23):233503.
    [31]Pan Z.W.;Dai Z.R.;Wang Z.L.Nanobelts of semiconducting oxides[J].Science 2001,291(5510):1947-1949.
    [32]Kong X.Y.;Wang Z.L.Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts[J].Nano Lett.2003,3(12):1625-1631.
    [33]Wang Z.L.Nanobelts,nanowires,and nanodiskettes of semiconducting oxides - From materials to nanodevices[J].Adv.Mater 2003,15(5):432-436.
    [34]Liu B.;Zeng H.C.Salt-assisted deposition of SnO_2 on alpha-MoO_3 nanorods and fabrication of polycrystalline SnO_2 nanotubes[J].J.Phys.Chem.B 2004,108(19):5867-5874.
    [35]Wang Y.;Lee J.Y.;Zeng H.C.Polycrystalline SnO_2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application[J].Chem.Mater.2005,17(15):3899-3903.
    [1]Dillon A.C.;Jones K.M.;Bekkedahl T.A.;Kiang C.H.;Bethune D.S.;Heben M.J.Storage of hydrogen in single-walled carbon nanotubes[J].Nature 1997,386(6623):377-379.
    [2]Tan S.J.;Devoret M.H.;Dai H.J.;Thess A.;Smalley R.E.;Geerligs L.J.;Dekker C.Individual single-wall carbon nanotubes as quantum wires[J].Nature 1997,386(6624):474-477.
    [3]Fan S.S.;Chapline M.G.;Franklin N.R.;Tombler T.W.;Cassel A.W.;Dai H.J.Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science 1999,283(5401):512-514.
    [4]Baughman R.H.;Zakhidov A.A.;De Heer W.A.Carbon nanotubes-the route toward applications[J].Science 2002,297(5582):787-792.
    [5]O'Connell M.J.;Bachilo S.M.;Huffman C.B.;Moore V.C.;Strano M.S.;Haroz E.H.;Rialon K.L.;Boul P.J.;et al.Band gap fluorescence from individual single-walled carbon nanotubes[J].Science 2002,297(5581):593-596.
    [6]Zhang Y.J.;Zhang Q.;Li Y.B.;Wang N.L.;Zhu J.Coating of carbon nanotubes with tungsten by physical vapor deposition[J].Solid State Communication 2000,115:51-55.
    [7]Han L.;Wu W.;Kirk F.L.;Luo J.;Maye M.M.;Kariuki N.N.;et al.A Direct Route toward assembly of Nanoparticles-carbon nanotubes composite materials[J].Langmuir 2004,20:6019-6025.
    [8]Chen WX,Lee JY,Liu ZL.Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process.Materials Letters 2004,58:3166-3169.
    [9]Liu Z.L.;Gan L.M.;Hong L.;Chen W.X.;Lee J.Y.Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells[J].Journal of Powder Source 2005,139:73-78.
    [10]Chen W.X.;Lee J.Y.;Liu Z.L.The nanocomposites of carbon nanotubes with Sb and SnSb_(0.5) as Li-ion battery anodes[J].Carbon 2003,41:959-966.
    [11]Liu S.W.;Wehmschulte R.I.A novel hybrid of carbon nanotubes/iron nanoparticles:iron-filled nodule-containing carbon nanotubes[J].Carbon 2005,43:1550-1555.
    [12]Zhang Y,Franklin NW,Chen R J,Dai HJ.Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction[J].Chemical Physics Letters 2000,331:35-41.
    [13]Sun J.;Gao L.development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation[J].Carbon 2003,41:1063-1068.
    [14]Jitianu A.;Cacciaguerra T.;Berger M.H.;Benoit R.;Béguin F.;Bonnamy S.New carbon multiwall nanotubes-TiO_2 nanocomposites obtained by the sol-gel method[J].Journal of Non-Crystalline Solids 2004,345/346:596-600.
    [15]Sun J.;Iwasa M.;Gao Lian.;Zhang QH.Single-walled carbon nanotubes coated with titania nanoparticles[J].Carbon 2004,42:885-901.
    [16]Jiang L.Q.;Gao L.Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity[J].Materials Chemistry and Physics 2005,91:313-6.
    [17]Huang L.;Lau S.P.;Yang H.Y.;Leong E.S.P.;Yu S.F.Stable superhydrophobic surface via carbon coated with a ZnO thin film[J].J Phys Chem B 2005,109:7746-7748.[18]Seeger T.;Redlich P.;Grobert N.;Terrones M.;Walton D.R.M.;Kroto H.W.et al.SiO_x-coating of carbon nanotubes at room temperature[J].Chem Phys Lett 2001;339,41-46.
    [19]Fu Q.;Lu C.G.;Liu J.Selective coating of single wall carbon nanotubes with thin SiO_2 layer [J].Nano Lett.2002,2:329-332.
    [20]Seeger T.;K(o|¨)hler T.;Frauenheim T.;Grobert N.;R(u|¨)hle M.;Terrones M,et al.Nanotube composites:novel SiO_2 coated carbon nanotubes[J].Chem Comm 2002,1:34-35.
    [21]Kovtyukhova N.;Mallouk T.E.;Mayer T.S.Templated surface sol-gel synthesis of SiO_2nanotubes and SiO_2-insulated metal nanowires[J].Adv Mater 2003,15:780-785.
    [22]Modi A.;Koratkar N.;Lass E.;Wei B.Q.;Ajayan P.M.Miniaturized gas ionization sensors using carbon nanotubes[J].Nature 2003,424(6945):171-174.
    [23]Varghese O.K.;Kichambre P.D.;Gong D.;Ong K.G.;Dickey E.C.;Grimes C.A.Gas sensing characteristic of multi-wall carbon nanotubes[J].Sens.Actuat.B 2001,81(1):32-41.
    [24]Wong Y.M.;Kang W.P.;Davidson J.L.;Wisitsora-at A.;Sob K.L.A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection[J].Sens.Actuat.B 2003,93(1-3):327-332.
    [25]Liang Y.X.;Chen Y.J.;Wang T.H.Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer[J].Appl.Phys.Lett.2004,85(4):666-668.
    [26]Wei B.Y.;Hsu M.C.;Su EG.;Lin H.M.;Wu R.J.;Lai H.J.A novel SnO_2 gas sensor doped with carbon nanotubes operating at room temperature[J].Sens.Actuat.B 2004,101(1-2):81-89.
    [27]Han W.Q.;Zettl A.Coating single-walled carbon nanotubes with tin oxide[J].Nano Letters 2003,3:681-683.
    [28]Zhao L.P.;Gao L.Coating of multi-walled carbon nanotubes with thick layers of tin(Ⅳ)oxide[J].Carbon 2004,42:1858-1861.
    [29]Zhao L.P.;Gao L.Filling of multi-walled carbon nanotubes with tin(Ⅳ) oxide[J].Carbon 2004,42:3269-3272.
    [30]Liu Z.J.;Xu Z.D.;Yuan Z,Y.;Chen W.X.;Zhou W.Z.;Peng L.M.A simple method for coating carbon nanotubes with Co-B amorphous alloy[J].Mater Lett 2003,57:1339-44.
    [31]Sun J.;Gao L.;Zhang Q.H.TiO_2 tubes synthesized by using ammonium sulfate and carbon nanotubes as templates[J].J.Mater Sci Lett.2003,22:339-341.
    [32]Satishkumar B.C.;Govindaraj A.;Nath Manashi,Rao C.N.R.Synthesis of metal oxide nanorods using carbon nanotubes as templates[J].J.Mater Chem.2000,10:2115-9.
    [33]Zhang Y.J.;Zhu J.;Zhang Q.;Yan Y.J.;Wang N.L.;Zhang X.Z.Synthesis of GeO_2 nanorods by carbon nanotubes template[J].Chem.Phys.Lett.2000,317:504-509.
    [1]Kroto H.W.;Heath J.R.;O'Brien S.C.;Smalley R.F.Nature1985,318:162
    [2]Iijima S.Nature 1991,354:56.
    [3]Sano N.;Wang H.;Alexandrou I.;Chhowalla M.;Teo K.B.K.;Amaratunga G.A.J.;Iimura K.Properties of carbon onions produced by an arc discharge in water[J].J.Appl.Phys.2002,92(5):2783-2788.
    [4]Zhang Z.Y.;Chen H.Y.;Tang S.B.;Ding J.;Lin J.Y.;Tan K.L.Catalytic growth of carbon nanoballs with and without cobalt encapsulation[J].Chem.Phys.Lett.2000,330(1-2):41-47.
    [5]Liu X.Y.;Huang B.C.;Coville N.J.The Fe(CO)_5 catalyzed pyrolysis of pentane:carbon nanotube and carbon nanoball formation[J].Carbon 2002,40(15):2791-2799.
    [6]Niwase K.;Homae T.;Nakamura K.G.;Kondo K.Ceneration of giant carbon hollow spheres from C60 fullerene by shock-compression[J].Chem.Phys.Lett.2002,362(1-2):47-50.
    [7]Wang X.J.;Lu J.;Xie Y.;Du G.;Guo Q.X.;Zhang S.Y.A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature[J].J.Phys.Chem.B 2002,106(5):933-937.
    [8]Li YD,Qian YT,Liao HW,Ding Y,Yang L,Xu CY,et al.A reduction-pyrolysis- catalysis synthesis of diamond[J].Science 1998,281:246-247.
    [9]Jiang Y.;Wu Y.;Zhang S.Y.;Xu C.Y.;Yu W.C.;Xie Y.;et al.A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature[J].J.Am.Chem. Soc.2000,122:12383-12384.
    [10]Liu J.W.;Shao M.W.;Chen X.Y.;Yu W.C.;Liu X.M.;Qian Y..T.Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process[J].J.Am.Chem.Soc.2003,125:8088-8089.
    [11]Liu J.W.;Shao M.W.;Tang Q.;Zhang S.Y.;Qian Y.T.Synthesis of carbon nanotubes and nanobelts through a medial-reduction method[J].J.Phys.Chem.B 2003,107:6329-6332.
    [12]Xiong Y.;,Xie Y.;Li Z.Q.;Wu C.Z.;Zhang R.A novel approach to carbon hollow spheres and vessels from CCl_4 at low temperatures[J].Chem.Comm.2003,7:904-905.
    [13]Hu G.;Ma D.;Cheng M.J.;Liu L.;Bao X.H.Direct synthesis of uniform hollow carbon spheres by a self-asembly template approach.Chem.Comm.2002,17:1948-1949.
    [14]Yang B.J.;Wu Y.H.;Zong B.Y.;Shen Z.X.Electrochemical synthesis and characterization of magnetic nanoparticles on carbon nanowall templates[J].Nano Lett.2002,2:751-754.
    [15]Kariya N.;Fukuoka A.;Utagawa T.;Sakuramoto M.;Goto Y.;Ichikawa M.Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts[J].Appl.Catal.A-Gen.2003,247:247-259.
    [16]Santos-Pena J.;Brousse T.;Schleich D.M.Search for suitable matrix for the use of tin-based anodes in lithium ion batteries[J].Solid State Ionics 2000,135:87-93.
    [17]Pan Y.X.;Yu Z.Z.;Ou Y.C.;Hu G.H.A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization[J].J Polym.Sci.Pol.Phys.2000,38:1626-1633.
    [18]Chen G.H.;Wu D.J.;Weng W.G.;Yan W.L.Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites[J].Polym.Eng.Sci.2001,41:2148-54.
    [19]Chen G.H.;Wu D.J.;Weng W.G.;Wu C.L.Exfoliation of graphite flake and its nanocomposites[J].Carbon 2003,41:619-621.
    [20]Viculis L.M.;Mack J.J.;Kaner R.B.A chemical route to carbon nanoscrolls[J].Science 2003,299:1361.
    [21]Iijima S.;Yudasaka M.;Yamada R.;Bandow S.;Suenaga K.;Kokai F.;et al.Nano-aggregates of single-walled graphitic carbon nano-horns[J].Chem.Phys.Lett.1999;309: 165-170.
    [22]Wu Y.H.;Qiao P.W.;Chong T.C.;Shen Z.X.Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition.Adv.Mater.2002,14:64-67.
    [23]Ebbesen T.W.;Ajayan EM.Large-scale synthesis of carbon nanotubes[J].Nature 1992,358:220-222.
    [24]Ando Y.;Iijima S.Preparation of carbon nanotubes by arc-discharge evaporation[J].Jpn.J.Appl.Phys.1993,32:107-109.
    [25]Iijima S.;Wakabayashi T.;Tomita M.;Hayashi T.Structures of carbon soot prepared by laser ablation[J].J.Phys.Chem.1996;100:5839-43.
    [26]Ando Y,Zhao X,Ohkohchi M.Production of petal-like graphite sheets by hydrogen arc discharge[J].Carbon 1997,35:153-158.
    [27]Wu Y.H.;Yang B.J.Effects of localized electric field on the growth of carbon nanowalls[J].Nano.Lett.2002,2:355-359.
    [28]Kurt R.;Bonard J.M.;Karimi A.Morphology and field emission properties of nano-structured nitrogenated carbon films produced by plasma enhanced hot filament CVD[J].Carbon 2001,39:1723-1730.
    [29]Wu Y.H.;Yang B.J.;Han G.C.;Zong B.Y.;Ni H.Q.;Luo P.;et al.Fabrication of a class of nanostructured materials using carbon nanowalls as the templates[J].Adv.Funct.Mater.2002,12:489-494.
    [30]Shang N.G.;Au F.C.K.;Meng X.M.;Lee C.S.;Bello I.;Lee S.T.Uniform carbon nanoflake films and their field emissions[J].Chem.Phys.Lett.2002,358:187-191.
    [31]Nakajima T.;Matsuo Y.Formation process and structure of graphite oxide[J].Carbon 1994,32:469-475.
    [32]HeRold A.;Petitjean D.;Furdin G.;Klatt M.Exfoliation of graphite intercalation compounds:classification and discussion of the processes from new experimental data relative to graphite-acid compounds[j].Mater.Sci.Forum 1994,152-153:281-289.
    [33]Celzard A.;Krzesinska M.;Begin D.;Mareche J.F.;Puricelli S.;Furdin G.Preparation,electrical and elastic properties of new anisotropic expanded graphite-based composites[J].Carbon 2002,40:557-566.
    [34] Liu G.Q.; Yan M. The preparation of expanded graphite using fine flaky graphite [J]. New Carbon Mate.r 2002,17(2): 13-18.
    
    [35] Chai G.S.; Yoon S.B.; Kim J.H.; Yu J.S. Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell [J]. Chem. Commun. 2004,23: 2766-2767.
    
    [36] Ng Y.H.; Ikeda S.; Harada T.; Higashida S.; Sakata T.; Mori H.; Matsumura M. Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction [J].Adv. Mater. 2007,19(4): 597.
    
    [37] Yu J.C.; Hu X.L.; Li Q.; Zheng Z.; Xu Y.M. Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules [J]. Chemistry-A European Journal 2006, 12(2): 548-552.
    
    [38] Sato Y.; Hagiwara R.; Ito Y. Refluorination of pyrocarbon prepared from fluorine-GIC [J]. Solid State Sci. 2003, 5: 1285-1290.
    
    [39] Celzard A.; Mareche J.F.; Furdin G. Surface area of compressed expanded graphite [J]. Carbon 2002, 40: 2713-2718.
    
    [40] Peigney A.; Laurent C.; Flahaut E.; Bacsa R.R.; Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes [J]. Carbon 2001, 39: 507-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700