用户名: 密码: 验证码:
低维纳米材料制备、光学特性及其光电子器件性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有独特的尺寸、性能和潜在的应用前景备受人们关注,到目前为止,已出现大量的有关纳米材料报道,但是纳米材料是一个庞大的领域,还有很多可以探索和拓展的空间。采用简单、低成本的方法制备纳米材料,并把它们应用到相关领域的是人们追求的主要目标之一,在这方面仍需要开展大量研究和解决许多相关问题。
     本文主要采用几种简单的方法制备几种低维有机小分子纳米材料和纳米ZnO,研究了它们的光学特性。并把制备的纳米ZnO分别与几种有机半导体混合,制备了几种光电二极管和反型结构太阳能电池。论文主要内容包括以下几个方面:
     1.采用再沉淀法制备perylene、DCM和DPA三种有机小分子纳米材料,在一定制备条件下形成perylene纳米片、DPA纳米晶、DCM纳米颗粒,研究它们的光学特性。结果发现DCM纳米颗粒内分子电荷转移(CT)峰相比稀释溶液的发生蓝移,是由于纳米颗粒中分子形成了H-聚集,在DCM纳米颗粒的荧光发射光谱中,发光峰产生猝灭,其原因是纳米颗粒中分子形成了H-聚集和它的发色团的构型发生扭曲所致。还得出perylene纳米片中晶格发生变化和DPA纳米晶中分子形成J-聚集。
     2. ZnO纳米颗粒具有很大的表面积、优异的光电特性和容易合成等优点。采用化学回流方法,通过调节回流时间合成出粒径从5~40nm范围变化的ZnO纳米颗粒,研究它们的晶体结构和光学特性。并阐述不同尺寸的ZnO纳米颗粒的形成机制。
     3.良好取向的ZnO纳米线或纳米棒阵列有望在大面积、低成本和高性能光电子器件有广泛应用前景。我们采用化学浴沉积方法,在ITO玻璃衬底上制备良好取向ZnO纳米线阵列(ZNWAs)。研究前驱物的浓度、生长时间、生长温度、pH值和种子层对ZnO纳米线的尺寸(直径和长度)和纳米线的排列密度的影响。同时在ITO玻璃衬底制备良好取向ZnO纳米棒阵列(ZNRAs),研究生长时间对ZnO纳米棒的直径影响。并研究它们的结构和光学特性。获得控制它们的尺寸直径、长度、排列密度的条件和在可见光区具有高透明的纳米线或纳米棒阵列。
     4.有机/无机混合光电子器件是一个有兴趣的领域。使用制得的ZnO纳米颗粒和ZnO纳米线阵列分别和酞菁铜、并五苯、P3HT混合,制备六种光电二极管,系统地研究了它们在暗态和光照下的性能。结果显示它们在暗态下和不同光照强度下J-V特性都显示出较好的整流特性。并且得到器件ITO/ZNWAs/P3HT(旋涂)/Ag在暗态下理想因子为1.8,整流率为3211,表现出最好的二极管特性。导致如此大的整流率主要有两个原因:一是ZnO纳米线阵列具有良好的电学输运特性,包括ZnO纳米线具有很高的电子迁移率和为电子提供直接的输运路径;二是ZNWAs/P3HT之间形成很大的亲密接触界面,在该器件中存在非常少的漏电通道。低的理想因子说明器件中电荷输运机制仅为复合和扩散机制。
     5.有机太阳能电池具有成本较低,重量轻,可采用多种衬底等明显优点,引起人们很大的研究兴趣。但是它们在大气环境下的稳定性和寿命较差,成为有待于解决的难题之一。我们采用制得的ZnO纳米颗粒、ZnO纳米晶、ZnO纳米线和纳米棒阵列分别和P3HT:PCBM混合制作四种反型结构太阳能电池。它们开始的能量转换效率分别为0.28%、0.89%、0.91%和1.11%,在大气环境下放置长达4416小时后,它们的能量转换效率分别为0.42%、0.75%、1.21%和1.98%。除了ITO/nc-ZnO/P3HT:PCBM/MoO3/Ag器件能量转换效率稍有下降外,其它器件的能量转换效率都是增加的,说明这些太阳能电池在大气环境下都具有很好的稳定性。并对它们的稳定性的原因进行全面分析和研究。还比较它们之间性能,分析和研究造成它们性能差异的原因。
A lot of attention has been drawn to nanomaterials due to their unique sizes and properties as well as potential applications. Up till now, a large number of reports on nanomaterials have been available, however, nanomaterial is a tremendous research field, and there is still a big room to be explored and expanded. One of the most important targets that fabricated nanomaterials using simple and low-cost techniques will be applied in their related fields, a great number of works will still demand to be carried out, and many related problems are necessary to be solved in this area.
     In this dissertation, several small-molecule organic nanomaterials and ZnO nanomaterials with low-dimensional nanostructures were fabricated, their optical properties were investigated. In addition, several photodiodes and inverted solar cells were achieved by fabricated ZnO nanomaterials combined with several organic semiconductors. The main points are listed as follow:
     1. Three small-molecule organic nanomaterials include perylene, DCM, DPA were fabricated by reprecipitation, under proper fabrication conditions, perylene nanosheets, DCM nanoparticles and DPA nanocrystals can be formed, their optical properties were investigated. The results showed that the absorption spectra of DCM nanoparticles compared to that of a diluted solution, the intramolecular charge transfer (CT) peak was blue-shifted due to H-aggregation. Moreover, the fluorescence quenching of DCM nanoparticles was observed, resulting from H-aggregates and the twisted conformations of chromophores in the nanoparticles. The change of lattice-state in perylene nanosheets and the formation of J-aggregation in DPA nanocrystals were obtained.
     2. ZnO nanoparticle has some advantages such as high surface area, superior photoelectric properties and facile synthesis. Using the chemical reflux route, ZnO nanoparticles with various sizes ranging from 5 to 40 nm were synthesized by tailoring reflux time, their crystalline structures and optical properties were investigated. The mechanism of ZnO nanoparticles formation with different sizes was also illustrated.
     3. Well-aligned ZnO nanorod or nanowire arrays are highly desirable for potential applications in large-area, low-cost and high performance optoelectronic devices. Well-aligned ZnO nanowire arrays (ZNWAs) were grown on ITO-coated glass substrates by chemical bath deposition method. We investigated the effect of concentration of precursors, growth temperature and time, pH value as well as seed layer on the sizes (diameter and length) and packing density of ZnO nanowires. At the same time, well-aligned ZnO nanorod arrays (ZNRAs) were grown on ITO-coated glass substrates, the effect of growth time on the diameter of ZnO nanorods was studied. Additionally, their crystalline structure and optical properties were investigated,. Some factors that were used to regulate diameter, length and packing density of ZnO nanowires or nanorods, and ZnO nanowire or nanorod arrays with high optical transmission in visible light region were achieved.
     4. The inorganic/organic hybrid optoelectronic device is an interesting field. We fabricated six photodiodes using as-prepared ZnO nanoparticles and well-aligned ZNWAs combined with CuPc, pentacene and P3HT, respectively, their characteristics in dark and under illumination were investigated in detail. The results showed that their J-V characteristics in dark and under various illumination intensity exhibited good rectifying behaviors. Moreover, ITO/ZNWAs/spin-coated P3HT/Ag device displayed an ideality factor of 1.8 and a rectification ratio (RR) of 3211 in dark, this device had the best diode properties among them. Such a high value of RR is attributed to two main factors. One is that the well-aligned ZNWAs display good transport properties consisting of high electron mobility and providing the electrons with a direct electrical pathway. The other is the formation of large intimate ZNWAs/P3HT interface in the device, there are few leakage pathways in this device. A low value of ideality factor indicates that the charge transport mechanism in this device only consists of recombination and diffusion.
     5. Organic solar cells have stimulated intense research interests due to their noticeable advantages, e.g. low cost, light weight and flexible substrates. However, the short operational stability and lifetime in the ambient atmosphere still remain one of the key problems of organic solar cells that will need to be solved. We fabricated four solar cells with inverted structure using as-prepared ZnO nanoparticles, ZnO nanocrystals (nc-ZnO), well-aligned ZNWAs and ZNRAs combinated with P3HT:PCBM, respectively. The initial power conversion efficiencies (PCE) of these devices were 0.28%, 0.89%, 0.91% and 1.11%, respectively, after they stored in the ambient atmosphere for 4416 h, their PCE were 0.42%, 0.75%, 1.21% and 1.98%, respectively. Besides the PCE of ITO/nc-ZnO/P3HT:PCBM/MoO3/Ag device slightly decreased, the PCE of the other devices increased, suggesting that these solar cells showed long-term good operational stability in the ambient atmosphere. In additon, the reasons that resulted in these solar cells with long-term good operational stability in the ambient atmosphere were systematically analyzed and investigated. Meanwhile, the performances of all devices were compared, the reasons that resulted in the difference from their performances were systematically analyzed and investigated.
引文
[1]顾宁,付德刚,张海黔,等.纳米技术与应用.北京:人民邮电出版社, 2002, 4-17
    [2] J. M. Saul, C. K. Wang, C. P. Ng, et al. Multilayer nanocomplexes of polymer and DNA exhibit enhanced gene delivery. Adv. Mater., 2008, 20(1): 19-25
    [3] S. Gubbala, V. Chakrapani, V. Kumar, et al. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater., 2008, 18(16): 2411-2418
    [4] E. Nossol, A. J. G. Zarbin. A simple and innovative route to prepare a novel carbon nanotube/prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Adv. Funct. Mater., 2009, 19(24): 3980-3986
    [5] P. Diao, Z. F. Liu. Vertically aligned single-walled carbon nanotubes by chemical assembly-methodology, properties, and applications. Adv. Mater., 2010, 22(13): 1430-1449
    [6] H. Q. Yan, R. R. He, J. Johnson, et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc., 2003, 125(16): 4728-4729
    [7] P. Ball, L. Garwin. Science at the atomic scale. Nature, l992, 355: 761-766
    [8] L. Yiping, G. C. Hadjipanayis, C. M. Sorensen, et al. Magnetic properties of fine cobalt particles prepared by metal atom reduction. J. Appl. Phys., 1990, 67(9): 4502-4504
    [9]郑厚植.半导体纳米结构中的库伦阻塞现象.物理, 1992, 21(11): 646-653
    [10] H. J. H?fler, R. S. Averback, H. Hahn, et al. Diffusion of bismuth and gold in nanocrystalline copper. J. Appl. Phys., 1993, 74(6): 3832-3839
    [11] A. Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89(8): 1861-1873
    [12] D. D. Awschalom, M. A. McCord, G. Grinstein. Observation of macroscopic spin phenomena in nanometer-scale magnets. Phys. Rev. Lett., 1990, 65(6): 783-786
    [13]柴兰兰. ZnS和ZnO纳米材料的低温液相制备和形成机理研究[博士学位论文].合肥:中国科技大学, 2008, 6-7
    [14] X. H. Huang, S. Neretina, M. A. El-Sayed. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater., 2009, 21(48):4880-4910
    [15] H. Y. Liang, Z. P. Li, W. Z. Wang, et al. Highly surface-roughened‘‘flower-like’’silvernanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv. Mater., 2009, 21(45): 4614-4618
    [16] Y. Shi, H. Li, L. Q. Chen, et al. Obtaining ultra-long copper nanowires via a hydrothermal process. Science and Technology of Advanced Materials, 2005, 6(7): 761-765
    [17] J. D. Holmes, K. P. Johnston, R. C. Doty, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471-1473
    [18] N. J. Quitoriano, T. I. Kamins. Lateral, Ge, nanowire growth on SiO2. Nanotechnology, 2011, 22(6): 065201-1-6
    [19] X. F. Duan, J. F. Wang, C. M. Lieber. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett., 2000, 76(9): 1116-1118
    [20] J. H. Yu, J. Joo, H. M. Park, et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc., 2005, 127(15): 5662-5670
    [21] Z. A. Peng, X. G. Peng. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc., 2002, 124(13): 3343-3353
    [22] P. X. Gao, Y. Ding, W. J. Mai, et al. Conversion of zinc oxide nanobelts into superlattice- structured nanohelices. Science, 2005, 309(5741): 1700-1704
    [23] J.-C. Lee, Y.-M. Sung, T. G. Kim, et al. TiO2-CdSe nanowire arrays showing visible-range light absorption. Appl. Phys. Lett., 2007, 91(11): 113104-1-3
    [24] Z. H. Yu, L. Guo, H. Du, et al. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett., 2005, 5(4): 565-570
    [25] T. Gao, Q. H. Li, T. H. Wang. Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem. Mater., 2005, 17(4): 887-892
    [26] K. Ujiiye-Ishii, E. Kwon, H. Kasai, et al. Methodological features of the emulsion and reprecipitation methods for organic nanocrystal fabrication. Cryst. Growth Des., 2008, 8(2): 369-371
    [27] X. J. Zhang, X. H. Zhang, W. S. Shi, et al. Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties. J. Phys. Chem. B, 2005, 109(40): 18777-18780
    [28] H. B. Fu, D. B. Xiao, J. N. Yao, et al. Nanofibers of 1,3-diphenyl-2-pyrazoline induced by cetyltrimethylammonium bromide micelles. Angew. Chem. Int. Ed., 2003, 42(25): 2883-2886
    [29] G. A. O’Brien, A. J. Quinn, D. A. Tanner, et al. A single polymer nanowire photodetector. Adv.Mater., 2006, 18(18): 2379-2383
    [30] S. W. Lee, H. J. Lee, J. H. Choi, et al. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. Nano Lett., 2010, 10(1): 347-351
    [31] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933-937
    [32] T. Sugino, J. Kikuchi, S. Kawai, et al. Improved tunneling controlled field emission of Boron carbon nitride nanofilm. Diamond & Related Materials, 2010, 19(5-6): 545-547
    [33]王洪成,程金树.纳米玻璃的制备技术与应用.国外建材科技, 2008, 27(4): 41-45
    [34] J. Chen, F. Saeki, B. J. Wiley, et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett., 2005, 5(3): 473-477
    [35] D. Hreniak, W. Strek, J. Chmielowiec, et al. Preparation and conductivity measurement of Eu doped BaTiO3 nanoceramic. J. Alloys Compd., 2006, 408-412: 637-640
    [36] H. S. Nalwa, A. Kakuta, A. Mukoh, et al. Fabrication of organic nanocrystals for electronics and photonics. Adv. Mater., 1993, 5(10): 758-760
    [37] L. Y. Zhao, W. S. Yang, Y. Ma, et al. Perylene nanotubes fabricated by the template method. Chem. Commun., 2003, 39(19): 2442-2443
    [38] Z. X. Luo, Y. Y. Liu, L. T. Kang, et al. Controllable nanonet assembly utilizing a pressure- difference method based on anodic aluminum oxide templates. Angew. Chem. Int. Ed., 2008, 47(46): 8905-8908
    [39] Y. Tamaki, T. Asahi, H. Masuhara. Tailoring nanoparticles of aromatic and dye molecules by excimer laser irradiation. Appl. Surf. Sci., 2000, 168(1-4): 85-88
    [40] J. Mori, Y. Miyashita, D. Oliveira, et al. Stopped-flow analysis on the mechanism of perylene nanoparticle formation by the reprecipitation method. J. Cryst. Growth, 2009, 311(3): 553-555
    [41] B.-K. An, S.-K. Kwon, S.-D. Jung, et al. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc., 2002, 124(48): 14410-14415
    [42] Y. S. Zhao, C. Di, W. S. Yang, et al. Photoluminescence and electroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater., 2006, 16(15): 1985-1991
    [43] Y. S. Zhao, A. D. Peng, H. B. Fu, et al. Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv. Mater., 2008, 20(9): 1661-1665
    [44] Y. S. Zhao, H. B. Fu, F. Q. Hu, et al. Multicolor emission from ordered assemblies of organic 1D nanomaterials. Adv. Mater., 2007, 19(21): 3554-3558
    [45] Y. S. Zhao, H. B. Fu, F. Q. Hu, et al. Tunable emission from binary organic one-dimensional nanomaterials: An alternative approach to white-light emission. Adv. Mater., 2008, 20(1): 79-83
    [46] Q. X. Tang, H. X. Li, Y. B. Song, et al. In situ patterning of organic single-crystalline nanoribbons on a SiO2 surface for the fabrication of various architectures and high-quality transistors. Adv. Mater., 2006, 18(22): 3010-3014
    [47] K. Xiao, R. J. Li, J. Tao, et al. Metastable copper-phthalocyanine single-crystal nanowires and their use in fabricating high-performance field-effect transistors. Adv. Funct. Mater., 2009, 19(23): 3776-3780
    [48] Q. X. Tang, Y. H. Tong, W. P. Hu, et al. Assembly of nanoscale organic single-crystal cross-wire circuits. Adv. Mater., 2009, 21(42): 4234-4237
    [49] H. Kasai, H. Kamatani, S. Okada, et al. Size-dependent colors and luminescences of organic microcrystals. Jpn. J. Appl. Phys., 1996, 35(2B): L221-L223
    [50] H. B. Fu, X. H. Ji, J. N. Yao. The size-dependent property of 1,3,5-Triphenyl-2-pyrozoline microcrystals. Chem. Lett., 1999, 28(9): 967-968
    [51] H. B. Fu, J. N. Yao. Size effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc., 2001, 123(7): 1434-1439
    [52] H. B. Fu, B. H. Loo, D. B. Xiao, et al. Multiple emissions from 1,3-Diphenyl-5-pyrenyl-2- pyrazoline nanoparticles: Evolution from molecular to nanoscale to bulk materials. Angew. Chem. Int. Ed., 2002, 41(6): 962-965
    [53] D. B. Xiao, L. Xi, W. S. Yang, et al. Size-tunable emission from 1,3-Diphenyl-5-(2-anthryl) -2-pyrazoline. J. Am. Chem. Soc., 2003, 125(22): 6740-6745
    [54] Z. Zhang, M. Zhao, Q. Jiang. Glass transition thermodynamics of organic nanoparticles. Physica B, 2001, 293(3-4): 232-236
    [55] H. Y. Kim, T. G. Bjorklund, S.-H. Lim, et al. Spectroscopic and photocatalytic properties of organic tetracene nanoparticles in aqueous solution. Langmuir, 2003, 19(9): 3941-3946
    [56] Y. S. Zhao, J. J. Xu, A. D. Peng, et al. Optical waveguide based on crystalline organic microtubes and microrods. Angew. Chem. Int. Ed., 2008, 47(38): 7301-7305
    [57] Q. Liao, H. B. Fu, J. N. Yao. Waveguide modulator by energy remote relay from binary organic crystalline microtubes. Adv. Mater., 2009, 21(41): 4153-4157
    [58] Q. X. Tang, L. Q. Li, Y. B. Song, et al. Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater., 2007, 19(18): 2624-2628
    [59] X. J. Zhang, G. D. Yuan, Q. S. Li, et al. Single-crystal 9,10-Diphenylanthracene nanoribbonsand nanorods. Chem. Mater., 2008, 20(22): 6945-6950
    [60] Q. X. Tang, H. X. Li, M. He, et al. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater., 2006, 18(1): 65-68
    [61] L. Jiang, J. H. Gao, E. J. Wang, et al. Organic single-crystalline ribbons of a rigid‘‘H’’-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an‘‘organic ribbon mask’’technique. Adv. Mater., 2008, 20(14): 2735-2740
    [62] Q. X. Tang, Y. H. Tong, H. X. Li, et al. High-performance air-stable bipolar field-effect transistors of organic single-crystalline ribbons with an air-gap dielectric. Adv. Mater., 2008, 20(8): 1511-1515
    [63] T. Aernouts, T. Aleksandrov, C. Girotto, et al. Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett., 2008, 92(3): 033306-1-3
    [64] C. N. Hoth, S. A. Choulis, P. Schilinsky, et al. High photovoltaic performance of inkjet printed polymer:Fullerene blends. Adv. Mater., 2007, 19(22): 3973-3978
    [65] S. Magdassi, M. B. Moshe. Patterning of organic nanoparticles by by ink-jet printing of microemulsions. Langmuir, 2003, 19(3): 939-942
    [66] Y. Y. Zhou, G. R. Bian, L. Y. Wang, et al. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes. Spectrochimica Acta Part A, 2005, 61(8): 1841-1845
    [67] L. Y. Wang, L. Wang, L. Dong, et al. Direct fluorimetric determination ofγ-globulin in human serum with organic nanoparticle biosensor. Spectrochimica Acta Part A, 2005, 61(1-2):129-133
    [68] D. C. Reynolds, D. C. Look, B. Jogai. Optically pumped ultraviolet lasing from ZnO. Solid State Communications, 1996, 99(12): 873-875
    [69] P. Zu, Z. K. Tang, G. K. L. Wong, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Communications, 1997, 103(8): 459-463
    [70] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett., 1997, 70(17): 2230-2232
    [71] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899
    [72] Q. Wan, K. Yu, T. H. Wang, et al. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl. Phys. Lett., 2003, 83(11): 2253-2255
    [73] L. W. Shi, Y. G. Li, Q. Wang, et al. Synthesis of one-dimensional ZnO nanorods by oxidating zinc films deposited with magnetron sputtering. Chinese Journal of Semiconductors, 2004, 25(10): 1211-1214
    [74] A. Ohtomo, M. Kawasaki, Y. Sakurai, et al. Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE. Mater. Sci. Eng. B, 1998, 54(1-2): 24-28
    [75] C. K. Xu, G. D. Xu, Y. K. Liu, et al. A simple and novel route for the preparation of ZnO nanorods. Solid State Communications, 2002, 122(3-4): 175-179
    [76] Z. F. Wu, X. M. Wu, L. J. Zhuge, et al. Synthesis and magnetic properties of Cu doped ZnO nanorods via radio frequency plasma deposition. Appl. Phys. Lett., 2008, 93(2): 023103-1-3
    [77] S. J. Chen, K. Suzuki, J. S. Garitaonandia. Room temperature ferromagnetism in nanostructured ZnO-Al system. Appl. Phys. Lett., 2009, 95(17): 172507-1-3
    [78] P. Singh, A. Kumar, D. Kaur, et al. Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis. J. Cryst. Growth, 2007, 306(2): 303-310
    [79] K. Suzuki, H. Kondo, M. Inoguchi, et al. Optical properties of well-crystallized and size-tuned ZnO quantum dots. Appl. Phys. Lett., 2009, 94(22): 223103-1-3
    [80] Y. J. Zeng, S. S. Lin, A. Volodin, et al. Zero-dimensional field emitter based on ZnO quantum dots. Appl. Phys. Lett., 2010, 97(14): 143102-1-3
    [81] F. C. Tsao, J. Y. Chen, C. H. Kuo, et al. Residual strain in ZnO nanowires grown by catalyst-free chemical vapor deposition on GaN/sapphire (0001). Appl. Phys. Lett., 2008, 92(20): 203110-1-3
    [82] K.-F. Lin, H.-M. Cheng, H.-C. Hsu, et al. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem. Phys. Lett., 2005, 409(4-6): 208-211
    [83]徐甲强,王焕新,张建荣,等.微波水解法制备纳米ZnO及其气敏特性研究.无机材料学报. 2004, 19(6): 1441-1445
    [84] C. Pacholski, A. Kornowski, H. Weller. Self-assembly of ZnO:From nanodots to nanorods. Angew. Chem. Int. Ed., 2002, 41(7): 1188-1191
    [85] L. Vayssieres, K. Keis, S.-E. Lindquist, et al. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B, 2001, 105(17): 3350-3352
    [86] L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater., 2003, 15(5): 464-466
    [87] L. E. Greene, M. Law, J. Goldberger, et al. Low-temperature wafer-scale production of ZnOnanowire arrays. Angew. Chem. Int. Ed., 2003, 42(26): 3031-3034
    [88] L. E. Greene, M. Law, D. H. Tan, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett., 2005, 5(7): 1231-1236
    [89] L. E. Greene, B. D. Yuhas, M. Law, et al. Solution-grown zinc oxide nanowires. Inorg. Chem., 2006, 45(19): 7535-7543
    [90] Y. Inubushi, R. Takami, M. Iwasaki, et al. Mechanism of formation of nanocrystalline ZnO particles through the reaction of [Zn(acac)2 ] with NaOH in EtOH. J. Colloid Interf. Sci., 1998, 200(2): 220-227
    [91] X. H. Ju, W. Feng, K. Varutt, et al. Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices. Nanotechnology, 2008, 19(43): 435706-1-6
    [92] J. Chen, H. Ye, L. Aé, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications. Sol. Energy Mater. Sol. Cells, 2011, 95(6): 1437-1440
    [93] W. E. Carlos, E. R. Glaser, D. C. Look. Magnetic resonance studies of ZnO. Physica B, 2001, 308-310:976-979
    [94] T. Yamamoto. Codoping for the fabrication of p-type ZnO. Thin Solid Films, 2002, 420-421: 100-106
    [95] T. Yamamoto, H. Katayama-Yoshida. Physics and control of valence states in ZnO by codoping method. Physica B, 2001, 302-303: 155-162
    [96] T. Yamamoto, H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. J. Cryst. Growth, 2000, 214-215: 552-555
    [97] G. D. Yuan, W. J. Zhang, J. S. Jie, et al. p-type ZnO nanowire arrays. Nano Lett., 2008, 8(8): 2591-2597
    [98] B. Xiang, P. W. Wang, X. Z. Zhang, et al. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett., 2007, 7(2): 323-328
    [99] K. Mohanta, S. K. Batabyal, A. J. Pal. Organization of organic molecules with inorganic nanoparticles: Hybrid nanodiodes. Adv. Funct. Mater., 2008, 18(5): 687-693
    [100] C. J. Lee, T. J. Lee, S. C. Lyu, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett., 2002, 81(19): 3648-3650
    [101] H. Zhang, D. R. Yang, X. Y. Ma, et al. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. J. Phys. Chem. B, 2005, 109(36): 17055-17059
    [102]倪赛力,常永勤,龙毅,等.氧化锌纳米棒场发射性能研究.物理学报, 2006, 55(10): 5409-5412
    [103] Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246
    [104] X. D. Wang, J. H. Song, J. Liu, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102-105
    [105] J. Goldberger, D. J. Sirbuly, M. Law, et al. ZnO nanowire transistors. J. Phys. Chem. B, 2005, 109(1): 9-14
    [106] B. Q. Sun, H. Sirringhaus. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett., 2005, 5(12): 2408-2413
    [107] L. Luo, Y. Zhang, S. S. Mao, et al. Fabrication and characterization of ZnO nanowires based UV photodiodes. Sensors and Actuators A, 2006, 127(2): 201-206
    [108] J. Y. Lee, Y. S. Choi, W. H. Choi, et al. Characterization of films and interfaces in n-ZnO/p-Si photodiodes. Thin Solid Films, 2002, 420-421: 112-116
    [109] J. Y. Lee, Y. S. Choi, J. H. Kim, et al. Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films, 2002, 403-404: 553-557
    [110] H. Zhou, G. J. Fang, L. Y. Yuan, et al. Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature. Appl. Phys. Lett., 2009, 94(1): 013503-1-3
    [111] M. L. Lee, P.-F. Chi, J. K. Sheu. Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio. Appl. Phys. Lett., 2009, 94(1): 013512-1-3
    [112] W. I. Park, G.-C. Yi. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater., 2004, 16(1): 87-90
    [113] E. Lai, W. Kim, P. D. Yang. Vertical nanowire array-based light emitting diodes. Nano Res., 2008, 1(2): 123-128
    [114] D.-W. Wang, S.-L. Zhao, Z. Xu, et al. The improvement of near-ultraviolet electroluminescence of ZnO nanorods/MEH-PPV heterostructure by using a ZnS buffer layer. Org. Electron., 2011, 12(1): 92-97
    [115] S.-L. Zhao, P.-Z. Kan, Z. Xu, et al. Electroluminescence of ZnO nanorods/MEH-PPV heterostructure devices. Org. Electron., 2010, 11(5): 789-793
    [116] A. N. Aleshin, E. L. Alexandrova, I. P. Shcherbakov. Hybrid active layers from a conjugatedpolymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field. J. Phys. D: Appl. Phys., 2009, 42(10): 105108-1-7
    [117] S. Karan, B. Mallik. Nanostructured organic-inorganic photodiodes with high rectification ratio. Nanotechnology, 2008, 19(49): 495202-1-10
    [118] L. Wang, D. Zhao, Z. Su, et al. High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods. Org. Electron., 2010, 11(7): 1318-1322
    [119] K. Mohanta, S. K. Batabyal, A. J. Pal. Organization of organic molecules with inorganic nanoparticles: Hybrid nanodiodes. Adv. Funct. Mater., 2008, 18(5): 687-693
    [120] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater., 2006, 16(8): 1112-1116
    [121] L. J. A. Koster, W. J. van Strien, W. J. E. Beek, et al. Device operation of conjugated polymer/zinc oxide bulk heterojunction solar cells. Adv. Funct. Mater., 2007, 17(8): 1297-1302
    [122] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater., 2004, 16(12): 1009-1013
    [123] W. J. E. Beek, M. M. Wienk, M. Kemerink, et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B, 2005, 2005, 109(19): 9505-9516
    [124] G. D. Sharma, P. Suresh, P. Balaraju, et al. Charge transport and photocurrent generation in PPAT:ZnO bulk heterojunction photovoltaic devices. Synth. Met., 2008, 158(10): 400-410
    [125] F. C. Krebs, Y. Thomann, R. Thomann, et al. A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air. Nanotechnology, 2008, 19(42): 424013-1-12
    [126] F. C. Krebs. Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol. Energy Mater. Sol. Cells, 2008, 92(7): 715-726
    [127] D. C. Olson, J. Piris, R. T. Collins, et al. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films, 2006, 496(1): 26-29
    [128] A. M. Peiró, P. Ravirajan, K. Govender, et al. Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J. Mater. Chem., 2006, 16(21): 2088-2096
    [129] K. Takanezawa, K. Hirota, Q.-S. Wei, et al. Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J. Phys. Chem. C, 2007, 111(19): 7218-7223
    [130] D. C. Olson, Y.-J. Lee, M. S. White, et al. Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J. Phys. Chem. C, 2007, 111(44):16640-16645
    [131] D. C. Olson, S. E. Shaheen, R. T. Collins, et al. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices. J. Phys. Chem. C, 2007, 111(44): 16670-16678
    [132] D. C. Olson, Y.-J. Lee, M. S. White, et al. Effect of ZnO processing on the photovoltage of ZnO/poly(3-hexylthiophene) solar cells. J. Phys. Chem. C, 2008, 112(26): 9544-9547
    [133] M. S. White, D. C. Olson, S. E. Shaheen, et al. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett., 2006, 89(14): 143517-1-3
    [134] S. K. Hau, H.-L. Yip, N. S. Baek, et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett., 2008, 92(25): 253301-1-3
    [135] T. Shirakawa, T. Umeda, Y. Hashimoto, et al. Effect of ZnO layer on characteristics of conducting polymer/C60 photovoltaic cell. J. Phys. D: Appl. Phys., 2004, 37(6): 847-850
    [136] X. H. Ju, Wei Feng, K. Varutt, et al. Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices. Nanotechnology, 2008, 19(43): 435706-1-6
    [137] J. C. Bernède, Y. Berredjem, L. Cattin, et al. Improvement of organic solar cell performance using a zinc oxide anode coated by an ultrathin metallic layer. Appl. Phys. Lett., 2008, 92(8): 083304-1-3
    [138] J. Gilot, M. M. Wienk, R. A. J. Janssen. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett., 2007, 90(14): 143512-1-3
    [139] J. Wang, Y. D. Jiang, J. S. Yu, et al. Low operating voltage bright organic light-emitting diode using iridium complex doped in 4,4′-bis[N-1-napthyl-N-phenyl-amino]biphenyl. Appl. Phys. Lett., 2007, 91(13): 131105-1-3
    [140] J. S. Yu, N. N. Wang, Y. Zang, et al. Organic photovoltaic cells based on TPBi as a cathode buffer layer. Sol. Energy Mater. Sol. Cells, 2011, 95(2):664-668
    [141] Z. N. Bao, V. Kuck, J. A. Rogers, et al. Silsesquioxane resins as high-performance solution processible dielectric materials for organic transistor applications. Adv. Funct. Mater., 2002, 12(8): 526-531
    [142]纪学海,付红兵,曹亚安,等.苝纳米微晶的制备及其性质研究.高等学校化学学报, 2001, 22(8): 1394-1396
    [143] L. T. Kang, Z. C. Wang, Z. W. Cao, et al. Colloid chemical reaction route to the preparation ofnearly monodispersed perylene nanoparticles: size-tunable synthesis and three-dimensional self-organization. J. Am. Chem. Soc., 2007, 129(23): 7305-7312
    [144]谢锐敏,肖德宝,姚建年.苝纳晶的制备及其光谱的尺寸依赖性.物理化学学报, 2002, 18(1): 34-38
    [145] M. Meyer, J.-C. Mialocq, B. Perly. Photoinduced intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye. picosecond and nanosecond laser spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance studies. J. Phys. Chem., 1990, 94(1): 98-104
    [146] H. Auweter, H. Haberkorn, W. Heckmann, et al. Supramolecular structure of precipitated nanosizeβ-carotene particles. Angew. Chem. Int. Ed., 1999, 38(15): 2188-2191
    [147] C. W. Tang, S. A. VanSlyke, C. H. Chen. Electroluminescence of doped organic thin films. J. Appl. Phys., 1989, 85(9): 3610-3616
    [148] S. Li, L. He, F. Xiong, et al. Enhanced fluorescent emission of organic nanoparticles of an intramolecular proton transfer compound and spontaneous formation of one-dimensional nanostructures. J. Phys. Chem. B, 2004, 108(30): 10887-10892
    [149] H. Guo, X. Zhang, M. Aydin, et al. Spectroscopy and dynamics of DCM encapsulated in MCM-41 and Y zeolite mesoporous materials. J. Mol. Struct., 2004, 689(1-2): 153-158
    [150] E. W. Knapp. Lineshapes of molecular aggregates, exchange narrowing and intersite correlation. Chem. Phys., 1984, 85(1): 73-82
    [151] T. Tachikawa, H.-R. Chung, A. Masuhara, et al. In situ and ex situ observations of the growth dynamics of single perylene nanocrystals in water. J. Am. Chem. Soc., 2006, 128(50): 15944-15945
    [152] X. J. Zhang, X. H. Zhang, B. Wang, et al. One- or semi-two-dimensional organic nanocrystals induced by directional supramolecular interactions. J. Phys. Chem. C, 2008, 112(42): 16264-16268
    [153] B. Kannan, K. Castelino, A. Majumdar. Design of nanostructured heterojunction polymer photovoltaic devices. Nano Lett., 2003, 3(12): 1729-1733
    [154] Z. L. S. Seow, A. S. W. Wong, V. Thavasi, et al. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology, 2009, 20(4): 045604-1-6
    [155] E. A. Meulenkamp. Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B, 1998, 102(29): 5566-5572
    [156] M. Law, L. E. Greene, J. C. Johnson, et al. Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4(6): 455-459
    [157] Z. Wang, X.-F. Qian, J. Yin, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir, 2004, 20(8): 3441-3448
    [158] Q. Li, V. Kumar, Y. Li, et al. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater., 2005, 17(5): 1001-1006
    [159] D. B. Wang, C. X. Song. Controllable synthesis of ZnO nanorod and prism arrays in a large area. J. Phys. Chem. B, 2005, 109(26): 12697-12700
    [160] M. Willander, L. L. Yang, A. Wadeasa, et al. Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices. J. Mater. Chem., 2009, 19(7): 1006-1018
    [161] S. S. Tan, C. Y. Liu, Y.-L. Jiang, et al. Spectral response design of hydrogenated amorphous silicon p-i-n diodes for ambient light sensing. Appl. Phys. Lett., 2009, 94(17): 171103-1-3
    [162] Z. T. Chen, Y. Sakai, J. C. Zhang, et al. Effect of strain on quantum efficiency of InAlN-based solar-blind photodiodes. Appl. Phys. Lett., 2009, 95(8): 083504-1-3
    [163] J. Zhang, R. Thew, C. Barreiro, et al. Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes. Appl. Phys. Lett., 95(9): 091103-1-3
    [164]刘恩科,朱秉升,罗晋生,等.半导体物理学(第6版).北京:电子工业出版社, 2003, 341
    [165] S. M. Sze. Physics of Semiconductor Devices (Second Edition). New York: Wiley, 1981, 56-64
    [166] C. J. Novotny, E. T. Yu, P. K. L. Yu. InP nanowire/polymer hybrid photodiode. Nano Lett., 2008, 8(3): 775-779
    [167]陶春兰.并五苯性质的研究及其场效应晶体管的研制[博士学位论文].兰州:兰州大学, 2009, 43
    [168] T. Minakata, l. Nagoya, M. Ozaki. Highly ordered and conducting thin film of pentacene doped with iodine vapor. J. Appl. Phys., 1991, 69(10): 7354-7356
    [169] M. Dutta, D. Basak. p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism. Appl. Phys. Lett., 2008, 92(21): 212112-1-3
    [170] B. Pradhan, A. K. Sharma, A. K. Ray. A simple hybrid inorganic-polymer photodiode. J. Phys. D: Appl. Phys., 2009, 42(16): 165308-1-4
    [171] S. F. Tedde, J. Kern, T. Sterzl, et al. Fully spray coated organic photodiodes. Nano Lett., 2009, 9(3): 980-983
    [172] M. A. Green, K. Emery, Y. Hishikawa, et al. Solar cell efficiency tables (Version 37). Prog. Photovolt: Res. Appl., 2011; 19(1): 84-92
    [173] J. E. Kroeze, N. Hirata, L. Schmidt-Mende, et al. Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors. Adv. Funct. Mater., 2006, 16(14): 1832-1838
    [174] J. Xue, B. P. Rand, S. Uchida, et al. Hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv. Mater., 2005, 17(1): 66-71
    [175] M. C. Scharber, D. Mühlbacher, M. Koppe, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mater., 2006, 18(6): 789-794
    [176] W. J. Potscavage, S. Yoo, B. Domercq, et al. Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition. Appl. Phys. Lett., 2007, 90(25): 253511-1-3
    [177] C. Lungenschmied, G. Dennler, H. Neugebauer,et al. Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells, 2007, 91(5): 379-384
    [178] G. Dennler, C. Lungenschmied, H. Neugebauer, et al. A new encapsulation solution for flexible organic solar cells. Thin Solid Films, 2006, 511-512: 349-353
    [179] H. Hoppe, N. S. Sariciftci. Organic solar cells: An overview. J. Mater. Res., 2004, 19(7): 1924-1945
    [180] D. W. Sievers, V. Shrotriya, Y. Yang. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys., 2006, 100(11): 114509-1-7
    [181] L. M. Andersson, F. Zhang, O. Ingan?s. Stoichiometry, mobility, and performance in bulk heterojunction solar cells. Appl. Phys. Lett., 2007, 91(7): 071108-1-3
    [182] C.-J. Ko, Y.-K. Lin, F.-C. Chen, et al. Modified buffer layers for polymer photovoltaic devices. Appl. Phys. Lett., 2007, 90(6): 063509-1-3
    [183] G. Yu, J. Gao, J. C. Hummelen, et al. Polymer photovoltaic cells: enhanced efficiencies via network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791
    [184] V. Shrotriya, G. Li, Y. Yao, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett., 2006, 88(7): 073508-1-3
    [185] Y. Yao, J. Hou, Z. Xu, et al. Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater., 2008, 18(12): 1783-1789
    [186] N. Sekine, C.-H. Chou, W. L. Kwan, et al. ZnO nano-ridge structure and its application ininverted polymer solar cell. Org. Electron., 2009, 10(8): 1473-1477
    [187] B. A. Gregg. Excitonic solar cells. J. Phys. Chem. B, 2003, 107(20): 4688-4698

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700