用户名: 密码: 验证码:
级配碎石材料力学特性和设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
级配碎石柔性基层具有良好的应力分散能力,能够有效地减缓沥青路面裂缝的产生,还有很好的经济性,作为底基层材料在我国应用较广泛,但作为高等级公路基层应用较少,阻碍其推广应用的主要问题为:现行规范采用的级配碎石材料设计的试验方法已落后于生产实际;力学特性室内试验研究方法,难以从细观机制上揭示级配碎石材料非线性的力学性状与破坏机理;级配范围过于宽泛不利于质量控制,无具体的级配碎石材料组成设计方法;设计模量是依据静态模量试验方法测定,与路面实际受力状态不一致,缺乏客观性;材料设计指标不完善且标准偏低,以致无法真实反映级配碎石材料力学特性本质,难以有效地指导材料组成设计和施工。鉴于此,本文展开级配碎石材料力学特性与设计方法研究,具有重要的现实意义。
     首先,通过对垂直振动仪(VVTM)振动参数和振动时间进行优化,提出了能最大程度模拟现场实际碾压工况的级配碎石振动试验方法(VTM),并通过现场实际碾压效果对其可靠性进行了验证;基于VTM进行了级配碎石材料组成设计和力学特性研究,探讨了级配碎石组成结构与力学特性的本质规律,归纳了各强度指标间的关系。
     其次,以模拟力学特性试验过程为基础,通过反复调试微参数,提出了级配碎石力学特性颗粒流模拟试验方法(PSTM),解决了连续介质力学理论必须面临本构方程的困难,弥补了室内试验的不足,并基于PSTM进行力学特性细观机制和材料组成设计的模拟研究,进而对VTM设计级配进行了验证,最终提出了强嵌挤骨架密实级配。
     基于VTM和PSTM,通过级配碎石动态模量试验研究,建立了级配碎石回弹模量预测模型,并结合级配碎石结构层的实际应力水平,提出了级配碎石设计模量推荐值;以累积变形试验为基础,开展了永久变形累积规律和永久变形破坏标准研究,确定了临界破坏应力水平,结合永久变形累积破坏模拟试验研究,建立了永久变形累积破坏预测模型,进而提出了不同路面结构类型、交通等级的级配碎石抗剪强度结构系数KJ推荐值,为剪应力指标的建立和设计标准的制定提供了依据。
     以控制剪切破坏为原则,以级配碎石基层力学响应、强度指标之间的关系及抗剪强度系数为基础,提出了以CBR为设计指标、RC为检验指标的级配碎石设计标准,并结合级配优化和原材料技术指标研究结论,提出了完善的级配碎石材料设计方法,并通过实体工程应用对其性能进行了验证。工程应用表明:该方法设计的级配碎石材料增强了级配碎石基层的承载力和抗变形能力,极大地解决了级配碎石剪切破坏问题,具有明显的经济效益和环境效益,为级配碎石推广应用提供了依据。
Graded crushed stone flexible base can efficiently mitigate the asphalt pavementcracking by the good ability of stress dispersion, and it is much more economical. Althoughwidely used as the base of pavement, graded crushed stone is seldom used in base course ofhigh-grade highway, it is mainly because the testing method of graded crushed stone incurrent criterion cannot go with the present producing practice; Mechanics characteristics ofthe indoor experimental research method, it is difficult to essentially reveal the gradingmacadam material nonlinear mechanics properties and failure mechanism by mesoscopicmechanism; Gradation scope is too broad for quality control, lack of the specific designmethod of grading macadam material; Design modulus is based on the test method of staticmodulus, that is not match the pavement actual stress state; Material design indexes are moreor less incomplete and insufficient, so the essence of graded crushed stone mechanicalcharacteristic can not be truly known, and the recommended designing method can notefficiently optimize the mix designing and guide the practical construction. Based on above,this paper makes study on the mechanical characteristic and design method of graded crushedstone material, and it makes more practical sense.
     First, by means of experimental studies on the inter-affection of VVTM dynamicresponse, compaction effect and site-rolling effect, VVTM vibrating parameters andtime-period are optimized, and graded crushed stone vibrating test method is proposed, and itsreliability is verified through the actual rolling effect; Research the material compositiondesign and mechanical properties of graded crushed stone by VTM, this paper discusses thenature of law on the structure and mechanical properties of graded crushed stone, and then therelationship between intensity index is summed up.
     Secondly, by operating granular flow simulation of laboratory experiment process andresult, and continuously debugging the micro-parameters, a high fidelity granular flow testingmethod (PSTM) for Mechanical properties of graded crushed stone is proposed. This methodsolved problems in constitutive study by continuous medium mechanics means, and make upfor the deficiency of the indoor test, and based on PSTM researches graded optimization andmesoscopic mechanism mechanical properties, then the VTM optimized gradation is vertified,finally the strong interlocked skeleton dense gradation is proposed.
     Based on VTM and PSTM, by the research on dynamic modulus of grading macadam,the rebound modulus prediction model is established, and combining the actual stress level ofgraded crushed stone base, the recommended value of design modulus of grading macadam is put forward; Based on the cumulative deformation test, carried out the research on permanentdeformation accumulation regularity and permanent deformation destruction standard, thenthe critical failure stress levels is determined, and combined with the simulation experimentresearch on the permanent deformation accumulative destruction, the permanent deformationaccumulative damage prediction model is established, and then graded crushed stone shearingstrength coefficient recommended value of different pavement structure type and traffic levelsis put forward, it provides the basis for establishment of shear stress index and forrmulate ofdesign standards.
     By investigating the mechanical response of graded crushed stone structure layer undertraffic load, aiming at preventing cumulative permanent deformation cumulative damageunder repeated load, on the base of the grading macadam mechanical response, relationshipbetween the strength index and shearing strength coefficient, proposed the design based onCBR index, RC as test indexes of grading macadam design standards, and combined with theresearch conclusion of optimization gradation and raw materials technical indicators, thedesign method of grading macadam material is put forward, and its performance is verifiedthrough real engineering application. Engineering application shows that grading macadammaterial designed by the method enhances the bearing capacity and deformation resistance ofgraded crushed stone base, which greatly solved the problem of the graded gravel shearfailure, and showed obvious economic and environmental benefits, it provide a basis for theapplication for the graded crushed stone.
引文
[1] Dawson, A.R. Miehael, J. M. Huhtala, M. EuroPean Research into Granular Material forPavement Bases and Subbases. Transportation Research Reeord1721, TRB.Washington, D.C: National Research Couneil.2000:91-99.
    [2] Susan R Bigl, Richard L Berg. Material Testing and Initial Pavement Design Modeling[J].Minnesota Road Research Project. CRREL Report96-14, U.S Army Cold RegionsResearch and Engineering Laboratory, New Hampshire,1996.
    [3]李福普,严二虎等.沥青稳定碎石与级配碎石结构设计与施工技术应用指南[M].人民交通出版社.2009.6.
    [4] JTG D50-2006.公路沥青路面设计规范[S].北京:人民交通出版社.2006.
    [5] JTG E40-2007.公路土工试验规程[S].北京:人民交通出版社.2007.
    [6] S.Werkmeister,A.R.Dawson, F. Wellner. Permanent Deformation Behavior of GranularMaterials[J].RoadMaterials and Pavement Design,2005(6):31-51.
    [7] Lekarp,F,Isacsson,U,and Dawson,A.State of art1:Resilient response of unboundedaggregates.Journal of Transportation Engineering,ASCE,126(1),2000:66-75.
    [8]王龙,解晓光等.级配碎石材料强度及塑性变形特性[J].哈尔滨工业大学学报.2007,39(6):944-947.
    [9]王龙,解晓光,李长江.级配碎石性能的振动与击实成型对比试验[J].中国公路学报.2007.11.
    [10]王龙,解晓光,栾海.级配碎石混合料及其基层的抗剪性能[J].哈尔滨工业大学学报.2007.6.
    [11]韩志强.西部地区粒料基层沥青路面使用性能与结构研究[D].同济大学.2006.6
    [12]袁峻.级配碎石基层性能与设计方法的研究[D].东南大学.2004.
    [13]龚璐.级配碎石基层级配设计及应用研究[D].长沙理工大学,2008.7.
    [14]李林波.级配砂砾石基层力学特性及路用性能研究[D].重庆交通大学.2012.6.
    [15]李东起.级配碎石基层材料的研究[D].吉林大学,2007.
    [16] Musharraf, Zaman etc. Resilient Modulus Results for Granular Materials[J]. Journal ofTransp. Eng. Vol.120, No.6,1995.
    [17] S.F.Brown, etc. Reduced Ruttting in Unbound Granular Pavement Layers ThroughImproved Grading Design[J]. Procinstin Civ Engrs Transp.1996,117, Feb40-49.
    [18] G.Rada, M.W.Witczak. Comprehensive Evaluation of Laboratory Resilient ModulusResults for Granular Materials[C]. TRB.810.
    [19] S.Werkmeister, A.R.Dawson, etc. Permanent Deformation Behavior of GranularMaterials[J]. Road Materials and Pavement Design,2005,6:31-51.
    [20]莫石秀,马骉,王秉纲.级配碎石基于CBR的关键筛孔合理范围确定[J].广东公路交通.2006.
    [21]马骉,莫石秀,王秉纲.基于剪切性能的级配碎石关键筛孔合理范围确定[J].交通运输工程.2005.
    [22]马骉,莫石秀,王秉纲.级配碎石抗剪切性能试验研究[J].公路交通科技.2005.
    [23]杨尧,罗强等.客运专线级配碎石抗剪强度试验研究[J].路基工程,2010,151(4):75-77.
    [24]曹建新.级配碎石材料级配设计方法探讨[J].中外公路.2008.3(6):158-164.
    [25]王丰胜.影响级配碎石模量的结构因素敏感性分析[J].合肥工业大学学报(自然科学版).2009.32(9):124-128.
    [26] Brksdale R. G. ComPressive stress Pulse time in flexible Pavements for use dynamictesting. Highway Research Reeord345, Highway Researeh Board.2004:32-34.
    [27] Pezo, R. F., Kim, D., Stroke, K. H., and Hudson, W. R.. Areliable resilient modulustesting system. Transportation Research Record1307,1991:90-98.
    [28] Werkmeister S, Numrich R, Dawson A. R., etal. Deformation Behavior of GranularMaterial sunder Repeated Dynamic Load. Environmental Geomechanics-Monte Veritd.2002,2: l-9.
    [29] Brown,S.F.,and Hyde,A.F.L.(1975).“significance of cyclic confining stress inrepeated-load triaxial testing of granular material.” Transp.Res.Res537, TransportationResearch Board,Washington, D. C.,1975.49-58.
    [30] Barksdale, R. D."Laboratory Evaluation of Rutting in Base Course Materials",Proceedings3rd International Conference on the Structural Design of Asphalt Pavements,University of Michigan, pp.1972.161-174.
    [31] L. Read, G. Minassian. The Influence of Granular Base Char-acteristics on Upper BoundShakedown of Pavement structures. Road Materials and Pavement Design.2005
    [32] H. F. Chen, A. R. S. Ponter. The Linear Matching Method for shakedown and LimitAnalyses Applied to Rolling and Sliding Point Contact Problems. Road Materials andPavement Design.2005
    [33] M. Boulbibane, I. F. Collins, A. R. S. Ponter, et al. Shakedown of Unbound Pavements.Road Materials and Pavement Design.2005
    [34]魏密,杨群,郭忠印.安定理论在柔性路面设计中的应用[J].公路交通技术.2007.2(1):5-9.
    [35]王修山.级配碎石基层沥青路面材料与结构特性研究[D].长安大学.2010.6.
    [36]柳音.级配碎石柔性基层性能试验研究[D].重庆交通大学.2008
    [37]金刚.级配碎石三轴试验研究[D].大连理工大学.2007.
    [38]王龙,解晓光,巴恒静.长期动载下级配碎石的塑性变形与临界应力[J].同济大学学报(自然科学版).2010.9.38(9):1293-1297.
    [39]黄晓明,许涛,黄成造.级配碎石动态力学性能对隧道路面受力的影响[J].华南理工学报(自然科学版).2009.2.37(2):93-96.
    [40]许涛,黄晓明,屈言宾等.含水率对级配碎石基层动态力学性能的影响[J].建筑材料学报.2008.8.11(4):425-430.
    [41]何敏.级配碎石基层沥青路面结构受力特性研究[D].长安大学.2009.6
    [42]陈国兵.级配碎石材料永久变形预估模型仿真研究[D].长安大学.2009.6
    [43]蒋育红.级配碎石夹层路面结构的断裂力学分析[J].合肥工业大学学报(自然科学版).2009.32(4):34-39.
    [44]朱陈欣.级配碎石基层永久变形特性研究[D].沈阳建筑大学.2012.1
    [45]马骉,王秉纲.基于抗变形能力的级配碎石组成设计方法[J].长安大学学报.2007.7
    [46]周伟峰,李彦伟,张秀丽等.基于振动成型的级配碎石路用性能及设计标准[J].重庆交通大学学报(自然科学版).2009.6
    [47]王龙,解晓光.级配碎石材料标准振动成型方法的研究[J].公路交通科技.2005.7.22(7):26-30.
    [48]李会杰.级配碎石振动成型设计方法、施工技术及路用性能研究[J].长安大学硕士学位论文.2009.6.
    [49]章建龙.水泥稳定碎石振动成型试验研究[D].西安:长安大学.2008.
    [50]陈磊.水泥稳定碎石振动试验方法研究[D].西安:长安大学.2009.
    [51]蒋应军.基于振动试验法设计的抗裂型水泥稳定碎石基层应用研究[J].公路.2008(12):36-41.
    [52] Jiang Yingjun, Li Di. Study of gradation gravel physical and mechanics properties basedon the vibration method[J]. International Workshop on Architecture, Civil&Environmental Engineering,2011.
    [53] Couroyer C, Ning Z, Ghadiri M. Distinet element analysis of bulk crushing: effect ofparticle and properties and loading rate. Powder Technology,2000,109(1-3):241-254.
    [54] Subero J, Ghadiri M. Breakage patterns of agglomerates. Powder Technology,2001,120(3):232~243.
    [55] Owen D R J, Feng Y T. Parallelised Finite/Diserete Element Simulation of Multi-fractureSolid sand Diserete Systems. Engrg Comp,2001,18(3-4):557~576.
    [56] Han K, Owen D R J, Peric D. Combined finite/diserete element and explieit/implieit,simulations of peen forming processes, Engrg Comp,2002,19(1):92~118.
    [57] Cleary P W. DEM Simulation of industrial particle flows: case studies of draglineexcavators, mixing in tumblers and centrifugal mills. Powder Technology,2000.
    [58] Stewart R L,Bridgwater J,Zhou Y C,et al.Simulated and measured flow of granules in abladed mixer-a detailed comparison. Chemical Engineering Science.2001
    [59] Rhodes M J,Wang X S,Nguyen M,et al.Onset of cohesive behavior in gas fluidized beds:a numerical study using DEM simulation. Chemical Engineering Science.2001
    [60] Arastoopour H. Numerical simulation and experimental analysis of gas/solid flowsystems:1999Fluor-Daniel Plenary lecture. Powder Technology.2001
    [61] Kuo H P, Knight P C, Parker D J, et al. The influence of DEM simulation parameters onthe particle behaviour in a V-mixer. Chemical Engineering Science.2002
    [62] Yasunobu Kaneko,Takeo Shiojima,Masayuki Horio.Numerical analysis of particlemixing characteristics in a single helical ribbon agitator using DEM simulation. PowderTechnology.2000.
    [63] Majmudar T S, Behringer R P. Contact Force Measurements and Stress-inducedAnisotropy in Granular Materials[J]. Nature,2005,435(1079):1079-1082
    [64] Forterre Y, Pouliquen O. Flows of Dense Granular Media[J].Anna Rev Fluid Mach,2008,40:1-12.
    [65] Scheel M, Seemann R, etc. Morphological Clues to Wet Granular Pile Stability[J].Nature Material,2008,7(3):189-193.
    [66]刘君,刘福海等.考虑破碎的堆石料颗粒流数值模拟[J].岩土力学,2008,29(Supp):107-112.
    [67]李耀旭.颗粒流方法在土石混合体力学特性研究中的应用[D].长江科学院,2009.
    [68]武广涛.基于组合颗粒模型的二维离散元法基本理论及算法研究[D].吉林大学,2009.6
    [69]周健,贾敏才等著.土工细观模型试验与数值模拟[M].北京:科学出版社,2008.
    [70]邱忠财.基于颗粒离散元法的分散混合数值模拟[D].华南理工大学,2012.6
    [71]蒋应军,任皎龙,徐寅善,李頔.级配碎石力学性能的颗粒流数值模拟方法[J].同济大学学报(自然科学版).2010.4.
    [72]肖昭然,胡霞光,刘玉.沥青混合料细观结构离散元分析[J].公路,2007,4:145-148.
    [73]张泉,陆阳等.碎石化混凝土路面沥青加铺层结构的数值分析[J].公路交通科技,2009,26(8):22-27.
    [74]王端宜,赵熙.沥青混合料单轴压缩试验的离散元仿真[J].华南理工大学学报(自然科学版),2009,7(37):37-40.
    [75]郭培玺,俞缙,林绍忠等.颗粒材料力学特性的数值模拟河海大学学报(自然科学版),2008,6(36):806-809.
    [76]唐娴,戴经梁.基于颗粒流程序的沥青混合料颗粒接触模拟[J].郑州大学学报(工学版),2009,1(30):111-114
    [77]常明丰,裴建中.沥青混合料二维数字重构技术及离散元模型[J].公路,2010,2:118-123
    [78]陈俊,黄晓明.基于离散元法的沥青混合料虚拟疲劳试验方法[J].吉林大学学报(工学版),2010,40(2):435-440
    [79]周健,贾敏才等著.土工细观模型试验与数值模拟[M].北京:科学出版社,2008
    [80]张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究[D].同济大学,2007
    [81]彭述权.砂土挡墙破坏机理宏细观研究[D].同济大学,2007
    [82]王端宜,赵熙.沥青混合料单轴压缩试验的离散元仿真[J].华南理工大学学报(自然科学版),2009,7(37):37-40.
    [83]缪馥星.颗粒介质的传力特性研究[D].兰州大学硕士学位论文,2005,5
    [84]刘源,缪馥星,苗天德.二维颗粒堆积体中力的传递与分布研究明.岩土工程学报,2005.2(4):468-473.
    [85]蒋红英.颗粒介质传力特性及其在岩土工程中的若干应用问题[D].兰州大学博士论文.2006.6
    [86] H. P. Zhu and A. B. Yu, Averaging method of granular materials, Phys Rev E Stat NonlinSoft Matter Phys,2002.8,66:021302.
    [87] Park H. K, Moon H. T. Square to stripe transition and superlattice patterns in verticallyoscillated granular layers. Playsical Review E,2002,65(5):031510.
    [88] Herrmann H. J. Granular matter. PhysicaA.2002,313:188~210.
    [89] Bouchaud J. E, Claudia P. et a1. The stress response function in granular materials. C. R.Physique,2002,3:141-151.
    [90] Reydellet G and Cldment E. Green's Function Probe of a Static Granular Piling. PhysicalReview Leters,2001,86(15):308~311.
    [91] Mueggenburg N. W, Jaeger H. M, and Nagel S. R. Stresst ransmissiont hroughthree-dimensional ordered granular arrays, Physical Review E,2002,66(3):031304.
    [92] Geng J, Longhi E., and Behringer R. P. et a1. Memory in two. Dimensional heapexperiments. Physical Review E,2001,64(6):6~31.
    [93]任磊,肖昭然,胡霞光等.级配碎石直剪试验的细观分析[J].公路
    [94]毕玉峰.沥青混合料抗剪试验方法及抗剪参数研究[D].同济大学.2004.
    [95]李浩.级配碎石基层沥青路面力学特性研究[D].长安大学硕士学位论文.2008.6
    [96] AASHTO. Designation: T274-82.Standard Method of Test for Resilient Modulus ofSubgrade Soils, American Association of State Highway and Transportation Officials.1986.
    [97] AASHTO. Guide for Design of pavement Structures, American Association of stateHighway and Transportation Officials.1986.
    [98] AASHTO. Designation: T292-91: Standard Method of Test for Resilient Modulus ofSubgrade Soils, American Association of State Highway and Transportation Officials.1992.
    [99] H.F.Chen,A.R.S.Ponter. The Linear Matching Method for shakedown and Limit AnalysesApplied to Rolling and Sliding Point Contact Problems [J]. Road Materials andPavement Design.2005.4(6):9-30.
    [100] S. Werkmeister,A. R. Dawson, F. Wellner.Permanent Deformation Behavior ofGranular Materials[J]. RoadMaterials and Pavement Design,2005(6):31-51.
    [101] Gaskin P.N, Raymond G.p, Addo-Abedi F.Y. Repeated Compressive Loading of aSand[J].Canadian Geotechnical Journal:1979,16:798-802.
    [102] V. C. Janoo, J. J. Bayer. The Effect of Aggregate Angularity on Base CoursePerformance[J]. US Army Corps of Engineers Cold Regions Research&EngineeringLaboratory, September,2000.
    [103]廖化荣.红黏土路基循环动荷载下塑性力学行为及预测模型研究[D],中山大学地球科学系博士学位论文.2004.
    [104]王龙,解晓光,巴恒静.长期动荷载下级配碎石的塑性变形与临界应力[J].同济大学学报(自然科学版),2010,38(9):1293-05.
    [105]苏谦,蔡英.高速铁路级配碎石基床表层不同厚度动态大模型试验研究[J].铁道标准设计.2001.21(8):2-4.
    [106]田波,牛开民,刘英.多孔贫混凝土排水基层材料疲劳试验研究[J].公路交通科技.2007(4):75-78.
    [107]王艳,倪富健,李再新.水泥稳定碎石混合料疲劳性能[J].交通运输工程学报.2009.9(4):10-14.
    [108]沙爱民,贾侃,李小刚.半刚性基层材料的疲劳特性[J].交通运输工程学报.2009.9(3):29-33.
    [109]贾侃.半刚性基层材料的疲劳特性研究[D].西安:长安大学,2008.
    [110] AASHTO. Designation: T294-92: Standard Method of Test for Resilient Modulus ofUnbound Granular Base/Subbase Materials and Subgrade Soils-SHRP Protocol P46,American Association of State Highway and Transportation Officials.1994.
    [111] AASHTO. Designation: T307-99: Standard Method of Test for Determining ResilientModulus of Soils and Aggregate Materials Twentieth Edition., American Association ofState Highway and Transportation Officials.1999.
    [112] Musharraf, Zaman etc. Resilient Modulus Results for Granular Materials[J]. Journal ofTransp. Eng. Vol.120, No.6,1995.
    [113] Moghaddas-Nejad and Small. Plastic Deformation of Potentials of Subgrades Soilsfrom Repeated Load Triaxial Test. Ph. D. Dissertation, University of Texas, Arlington,Texas USA.2003.
    [114] Lekarp, F., Isacsson, U. and Dawson, A. State of art1: Resilient response of unboundedaggregates. Journal of Transportation Engineering, ASCE,126(1),2000:76-83.
    [115] Elliott, R. P. and Thompson, M. R.. ILLI~PAVE Mechanistic Analysis of AASHTORoad Test Flexible Pavements, TRR1043, TRB, Washington D. C.1985:39-49.
    [116]王龙,孟书涛,徐全亮.级配碎石基层的设计参数研究[J].公路交通科技.2006.8.
    [117]李长江,栾海,张宏伟.级配碎石柔性基层设计参数的研究[J].公路.2007.4.
    [118] HUANG Wen-xiong, TAN Li-ying, Cheng-xiang. Mechanical Performance Analysis ofPerpetual Asphalt Pavement with3-D Finite Element Method[J]. Journal of YangtzeUniversity(Natural Science Edition) Sci&Eng V.2008.3.
    [119] Hu Jun-feng, Zhang Rong-hui, Luo Shao-ming. The Numerical Analysis of CompositePavement under Moving Load[J]. Journal of Guangdong University of Technology.2008.1.
    [120] ABAQUS Example Problems Manual. ABAQUS. INC.2005
    [121]庄转仪.基于加速加载响应的柔性基层沥青路面设计指标与参数研究[D].长安大学博士论文.2012.6.
    [122]陈忠达.沥青路面交通参数的研究[D].长安大学博士论文.2006.6.
    [123]李勇政,杨晖,邓奇春.沥青路面典型结构力学计算参数敏感性分析[J].湖南交通科技.2004.30(3):11-17.
    [124]叶勇.基于ABAQUS软件的沥青路面结构非线性分析[J].南华大学.2007.5.
    [125]朱志铎,郝建新,赵黎明.交通荷载作用下粉土路基变形特性分析[J].地下空间与工程学报.2009.5(5):1014-1019.
    [126]胡珊,任瑞波,王树森等.具有碎石基层的半刚性沥青混凝土路面的非线性有限元分析[J].公路.2003.10(10):50-54.
    [127]易日.ANSYS有限元进行静力学分析[M].北京:北京大学出版社,2002.
    [128]向坤山.动载作用下半刚性路面动力响应三维有限元模拟[J].湖南交通科技.2006.32(3):1-4.
    [129]单景松,黄晓明.路面动载响应模型[J].振动与冲击.2007.26(9):90-93.
    [130]邓琼,张淳.动载作用下半刚性路面垂直动力响应三维有限元模拟[J].公路工程.2008.33(3):68-71.
    [131] Li Di. Research on Graded Broken Stone Design Standard and Design Method basedon Vibrating Compaction[D]. Xi’an:Chang’an University Highway School,2010.
    [132] Hjelmar. Ole, Holm. Jesper, Crillesen. Kim. Utilisation of MSWI bottom ash assub-base in road construction: First results from a large-scale test site[J]. Journal ofHazardous Materials.2007.1(31):471-480.
    [133]沈金安.国外沥青路面设计方法汇总[M].北京:人民交通出版社.2004.4.
    [134]胡立群.半刚性基层材料结构类型与组成设计研究[D].西安:长安大学.2004.
    [135]周卫峰、赵可等.水泥稳定碎石混合料配合比的优化[J].长安大学学报(自然科学版),2006(1):24-28.
    [136]胡立群、沙爱民等,骨架空隙结构水泥稳定碎石配合比设计及路用性能[J].公路交通科技.2006(6):22-26.
    [137]尹小涛,李春光,王水林等.琴岩土材料细观、宏观强度参数的关系研究[J].固体力学学报.2011.32(10):343-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700