用户名: 密码: 验证码:
挤压铸造Mg-Nd(-Zr)合金工艺及凝固行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压铸造不仅可以细化晶粒还可以消除铸件中的缩松等缺陷,从而达到提高合金的力学性能的目的。挤压铸造理论与应用的研究近年来受到了越来越多的重视,但是其中关于镁合金的研究较少,而且现有的研究主要集中在常规Mg-Al系合金上,对于具有显著时效强化效果的镁稀土合金则几乎没有研究。即使在对Mg-Al系合金的现有研究中,对于共晶相Mg17Al12体积分数随压力的增加而增加的机制仍未获得令人信服的解释。另一方面,我国是镁和稀土的生产大国,新型镁稀土合金的研究对我国具有重要的战略意义。因此,研究压力下镁合金中固溶度变化规律,指导选择适合挤压铸造的镁稀土合金,进而对镁稀土合金在挤压铸造条件下的凝固行为和组织结构演化进行系统深入研究,从而优化挤压铸造工艺参数和完善挤压铸造理论,具有显著的研究意义和紧迫性。
     本文首先以Mg-9Al合金、Mg-5Zn合金和纯镁为研究对象,采用扫描电子显微镜(SEM)、光学显微镜(OM)、X射线衍射仪(XRD)和正电子湮没实验(PAT)等分析手段探讨了压力对共晶相体积分数以及镁晶格常数的影响,进而分析其对合金固溶度的影响,为挤压铸造用镁稀土合金成分的选择提供理论依据。通过对压力下凝固时偏摩尔体积变化的讨论发现,压力下合金元素原子半径的改变可能是压力下合金固溶度变化的主要原因,并在此基础上得到了固溶度随压力变化趋势的经验公式,并预测和验证了Mg-Nd合金中Nd的固溶度具有随着压力的增加而增大的趋势。
     在此基础上,本文选择Mg-2.5wt%Nd二元合金为重点研究对象,通过金相、SEM、TEM、EELS、拉伸试验等方法,系统研究了挤压铸造工艺参数和形核剂(Zr)对Mg-Nd合金组织及力学性能的影响,重点分析了压力对Mg-Nd合金中形核和长大的影响,并取得如下主要研究结果:
     合金液浇注温度对挤压铸造的Mg-2.5Nd合金的宏观组织具有决定性的影响。当浇注温度高于某一临界浇注温度(例如浇注温度725°C和750°C)时,Mg-2.5Nd合金的宏观组织由粗大的柱状晶以及中心的等轴晶组成,并且随着压力的增加合金的晶粒尺寸越来越大。相反,当浇注温度低于该临界浇注温度(例如浇注温度为700°C)时,随着压力的增加合金的晶粒尺寸逐渐降低,当压力从60MPa升高到120MPa时合金的晶粒尺寸降低最为明显,继续增加压力则晶粒细化趋势明显趋缓。相对而言,模具温度对宏观组织的影响较小,只能降低晶粒尺寸,不能改变合金的晶粒结构(也就是组织由粗大的柱状晶和等轴晶转变为细小的等轴晶)。从挤压铸造中压力随时间的变化曲线可以看出,浇注温度、模具温度以及加压前等待时间共同决定加压时熔体的实际温度。通过理论分析发现加压时熔体的实际温度才是决定晶粒尺寸随压力的变化趋势的关键因素,当加压时熔体的温度高于压力下合金液相线温度时,随着压力的升高合金的晶粒尺寸逐渐增大;相反,当加压时熔体的温度低于高压下合金液相线温度时,增加压力可以降低合金的晶粒尺寸。进一步分析发现,当宏观组织由细小晶粒组成时,显微组织呈大小晶粒交错的双峰组织结构。双峰组织中的大晶粒由浇注温度、模具温度和加压前等待时间决定,浇注温度和模具温度越低,加压前等待时间越短,双峰组织中的大晶粒的晶粒尺寸越小。双峰组织中的小晶粒由压力决定,压力越大,双峰组织中的小晶粒的晶粒尺寸越小。挤压铸造Mg-2.5Nd合金的屈服强度与延伸率随着浇注温度和模具温度的降低以及凝固压力的升高而明显升高,并且合金的密度也随着压力的升高而升高。
     当Mg-2.5Nd中存在异质形核剂Zr时,挤压铸造过程中合金的凝固仍以异质形核为主。在相同工艺条件下,Zr含量越高,合金的晶粒尺寸越小;当Zr含量为0.46%时,增大压力对合金的晶粒尺寸影响不明显,此时异质形核已占主导地位。挤压铸造Mg-2.5Nd-0.4Zr合金的延伸率与密度随着凝固压力的升高而升高,但屈服强度变化不大。
     Mg-2.5Nd合金固溶处理过程中在晶界附近出现了NdH_2相,该相尺寸较大,会促进裂纹的萌生与扩展。加入Zr以后,固溶态Mg-2.5Nd合金的晶界上没有发现NdH_2相,而在晶粒中间发现可能为ZrH_2的细小析出物。
     合金的凝固过程由形核和长大组成,而形核率的大小是决定合金晶粒度的关键因素。凝固曲线显示,当浇注温度为725oC时,挤压铸造Mg-2.5Nd合金的凝固温度为645~646oC,比重力铸造试样的凝固温度约高5oC;当浇注温度为700oC时,挤压铸造Mg-2.5Nd合金的凝固温度和重力铸造试样的凝固温度相同。形核机理研究结果表明,当加压时熔体的温度高于压力下合金的液相线温度时,增加压力可以提高合金的临界形核自由能,降低临界形核密度从而使形核率降低;与之相反,当加压时熔体的温度低于压力下合金的液相线温度时,增加压力可以降低合金的临界形核自由能,提高临界形核密度从而提高形核率。晶粒长大机制研究结果表明增大压力可以增加原子向固-液界面上的附着速度,降低凝固前沿的不稳定波长,从而提高合金的凝固速度。
     本研究为选择适合挤压铸造的合金成分提供了一种思路,并且为选择挤压铸造镁稀土工艺参数提供了可靠的实验数据和理论分析。通过调整浇注温度、模具温度和压力可以改变合金的组织结构,从而获得致密度高、细小而均匀的合金组织,达到提高合金力学性能的目的。
The squeeze-cast process, combining the advantages of the casting and forging processes, has been widely used to produce quality castings. Because of the high pressure applied during solidification, porosities caused by both gas and shrinkage can be prevented or eliminated. The cooling rate of the casting can be increased by applied high pressure during solidification, since heat transfer between the casting and the die is improved by pressurization, which results in the formation of fine-grained structures. Although squeeze cast has gained more and more attention and application., limit researches have been done about squeeze-cast magnesium alloy, and these researches mainly focus on Mg-Al system and rarely on Mg-RE system (RE: rare earth elements). According to the existing research results of squeeze-cast Mg-Al series, it is still not clear why the volume fraction of Mg17Al12 increases with the increment of applied pressure, which goes against the squeeze-cast alloy design. Moreover, it has been demonstrated that rare earth is the most effective element to improve the properties of magnesium alloys especially at elevated temperatures, and the resources of magnesium and rare earth are abundant in our country. Therefore, it is necessary to discuss the change of solid solubility with applied pressure in order to provide the theory to the squeeze-cast alloy design and do systematic research on the squeeze cast Mg-RE alloy.
     By scanning electron microscopy (SEM), optical microscopy (OM), X-ray diffractometer (XRD) and positron annihilation technique (PAT), the effect of applied pressure on the solid solubility is investigated by changing the volume fraction of eutectic phase and lattice constant of magnesium element on base of Mg-9Al alloy, Mg-5Zn alloy and pure magnesium. According to the discussion of the change in partial molar volume on solidification of solute in dilute solutions, it is found that the change of atomic radius may be the basic reason for the variation of solid solubility under applied pressure. And the empirical formula for the change trend of solid solubility with applied pressure is obtained. And the solid solubility of Nd in Mg is predicted and verified.
     Based on the study of solid solubility, Mg-2.5wt%Nd is selected as material for investigation here. By OM, SEM, transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and tensile test, the effects of process parameters and nucleating agents on the macrostructure, microstructure and mechanical properties of Mg-Nd alloy are studied and the effects of applied pressure on the nucleation and growth of Mg-Nd alloy are especially focused on. The main results can be summarized as follows:
     Pouring temperature has a decisive effect on the macrostructure of squeeze-cast Mg-2.5Nd alloy. When the pouring temperatures are 725°C and 750°C, there are no obviously differences among the grain structure and the grain structures mainly consist of a band of thick columnar grains surrounding some large equiaxed grains in the center, but the grains tend to be coarse with the increment of applied pressure. However, when the pouring temperature is 700°C, the average grain sizes of the samples are decreased with the increment of applied pressure. When the applied pressure is 120MPa, the grains structure changes from coarse columnar and equiaxed grains into fine grains. On the other side, die temperature has small effect on the squeeze-cast Mg-Nd alloy, and can not change the grain structure, but low die temperature decreases the grain size. It is the practical melt temperature at the time of a pressure application that decides the relationship between grain size and applied pressure. When the practical melt temperature is above the melting point under applied pressure, the applied pressure leads to grain coarsening; while it is below the melting point under applied pressure, grains are refined by applied pressure. Further analysis of the fine grains, it is found that the microstructure of squeeze-cast Mg-2.5Nd alloy exhibits distinct regions of fine and coarse structure (Bi-modal structure). As a result, decreasing die temperature as well as pouring temperature and increasing applied pressure can improve the mechanical properties, especially elongation and tensile strength.
     The microstructure of solution-treated Mg-Nd alloy is composed ofα-Mg and NdH2. The NdH2 particles are located at or near the grain boundaries, which worsens the alloy’s mechanical property, especially the cracking and fracture behaviors. Also, the NdH2 particles become another defects of hydrogen in magnesium alloy except of hydrogen embrittlement and pores. However, in the case of solution-treated Mg-Nd-Zr alloy, there are no NdH2 particles at or near the grain boundaries. While, some small particles, which might be ZrH2 phase, are distributed in grains.
     In squeeze casting process, the nucleation of Mg-Nd alloy is still dominated by heterogeneous nucleation when Zr element exists. When process parameters of squeeze cast are same, the grain size decreases with the increment of Zr content; however, applied pressure has no obvious effect on the grain size when the Zr content is 0.46%.
     The freezing curves show that the solidification temperature is about 645~646 oC, 5 oC higher than that of the sample by gravity cast under the condition of pouring temperature at 725 oC and applied pressure at 120MPa, while the solidification temperature is the same as that of the sample by gravity case when the pouring temperature is 700 oC and applied pressure is 120MPa. Study on nucleation in squeeze cast shows that if the practical melt temperature at the time of pressure application is above the melting point under applied pressure, the increment of applied pressure enhances the critical nucleation free energy and reduces the nucleation rate. On the contrary, if the practical melt temperature at the time of pressure application is below the melting point under applied pressure, the increment of applied pressure can decrease the critical nucleation free energy and enhance the nucleation rate. The study on growth of a formed nucleus shows that the increment of applied pressure can increase the speed of atoms attaching to solid-liquid interface, and decrease the unstable wavelength of a growing global grain, resulting in the increment of solidification rate.
     The study of this thesis provides a new approach for the squeeze-cast alloy design, reliable data and theoretical analysis for the process parameters of squeeze-cast Mg-RE alloy. Microstructure can be controlled through adjusting applied pressure, die and pouring temperatures, which then results in the high density, fine and uniform microstructure to improve the mechanical properties.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京.机械工业出版社. 2002. 2-3.
    [2]陈振华.镁合金.北京.化学工业出版社.. 2004.6-8.
    [3] Avedesian M.M., Baker H., Magnesium and Magnesium Alloys, ASM International, OH: Metal Park, 1999. 12-13.
    [4]马图哈К.Н.,材料科学与技术丛书-非铁合金的结构与性能.北京.科学出版社. 1999. 14-16.
    [5] R.F.Decker. The renaissance in magnesium. Advanced materials and Processing. 1998. 9,31-35.
    [6] A.A.Luo, A.K.Sachdev. Wrought magnesium research for automotive applications. In: Magnesium Technology 2006, TMS, 2006,333-339.
    [7]周惦武,庄厚龙,刘金水.镁合金材料的研究进展与发展趋势.河南科技大学学报,2004,25(3),14-18.
    [8]闫蕴琪,张延杰,邓炬等.耐热镁合金的研究现状与发展方向.稀有金属材料与工程. 2004, 33(6), 561-565.
    [9]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、开发与应用.中国稀土学报. 2004, 22(1), 40-47.
    [10] F.Emley. Principle of Magnesium Technology. Perganmon. Oxford.1996
    [11] Y.C.Lee, A.K.Dahle, D.H.Stjohn. The Role of Solute in Grain Refinement of Magnesium. Metallurgical and Materials Transactions. 2000 (31A): 2895-2906.
    [12]郭景杰,李新中,苏仕方等.中国铸造行业发展现状及未来.特种铸造及有色合金. 2008.2-5.
    [13]南海.轻合金精密铸造技术.新技术新工艺. 2009 (2): 9-12.
    [14]陈亮,罗兴宏.一种新的利用落管实验分析微重力效应方法的探讨.金属学报. 2007, 7(43): 769-774.
    [15]赵志龙,鲁德洋.超重力对铅锡共晶凝固组织的影响.材料研究学报. 1998, 4(12): 395-398.
    [16]齐丕骧.挤压铸造.北京.国防工业出版社. 1984. 3-5.
    [17]赵鹏. Mg-Al-Sr/Ca耐热镁合金组织、性能及其蠕变行为的研究[学位论文].上海交通大学2006.
    [18]李仁杰.压力铸造技术.国防工业出版社. 1986.1-7
    [19]陈磊.镁合金低压铸造实验设备的研制[学位论文].上海大学. 2008.
    [20]严青松.智能控制的薄壁铝合金铸件真空差压铸造工艺与理论[学位论文].华中科技大学. 2006.
    [21] J.Hollinggrak. Casting Metals. UK Pat.4371(1819).
    [22] D.K.Chernov. Reports of the Imperial Russian Metallurgical Society. 11. 1878
    [23] V.G.Welter, Z. Metallkde. 1931(9): 255-258.
    [24] V.M.Plyatskii. Casting Prod (in Russ). 1956(6): 7-9.
    [25] V.P.Tererdenko, T.P.Malei, Dokl. Acad.Nauk USSR. 1961(5): 263-269.
    [26] P.N.Bidulya, K.N.Smirnov, StHL Eisen. 1961(81): 1146-1148.
    [27] P.N.Bidulya. Casting Prod. (in Russ) 1964(9): 396-400.
    [28] S.Z.Uram, M.C.Flemings, H.F.Taylor. Trans. AFS. 1958(66): 129.
    [29] J.L.Resis, E.C.Kron. Modern casting. 1960(37): 89-92.
    [30] V.M.Plyatskii. Extrusion Casting. 37(1960): 89-93.
    [31] S.Chatterjee, A.A.Das. Br. Foundryman. 1972(65): 420-424.
    [32] S.Oya, Y.Matsuura, A.kamio. Foundrymen’s Soc.(In Jpn). 1968(40): 626-629.
    [33] H.Hu. Squeeze casting of magnesium alloys and their composites. Journal of materials science. 1998(33): 1579-1589.
    [34]齐丕骧.面对21世纪的挤压铸造技术,特种铸造及有色合金,1998(4): 30-36
    [35]罗继相.我国挤压铸造技术的回顾及展望.铸造,2003(1): 1-6
    [36]罗继相.挤压铸造技术的发展及应用.中国铸造装备与技术,1999(2): 3-6
    [37]唐靖林,曾大本,常安国.挤压铸造的发展和应用现状.中国铸造装备与技术,1998(3): 3-6.
    [38]齐不嚷.挤压铸造在我国的发展及存在问题.现代铸造,1981(3):1--6
    [39]周大隽.液态模锻技术的应用及新发展.锻压技术,1993(3 ):35 38
    [40]呼延青.挤压铸造的研究和应用述评.特种铸造及有色合金,1984 (2):41--44
    [41]罗守靖.压铸、挤压铸造(液态模锻)及半固态加工的适应性分析.特种铸造及有色合金. 2007,27(8): 600-602
    [42]王尔德,任学平,霍文灿.液态模锻过程的谐调方程.机械工程学报. 1987, 23(1): 35-42.
    [43]刑书明,姚书芳,孙世宝等.挤压凝固过程的谐调方程.中国铸造装备与技术. 1997(1): 46-49.
    [44]刑书明,马静,陈维视.挤压铸造的无缩孔判据.中国有色金属学报. 1998 (9): 205-209.
    [45] J.H.Lee, H.S.Kim, S.I.Hong, C.W.Won, S.S.Cho, B.S.Chun. Effect of die geometry on the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy and numerical analysis of the cooling behavior. Journal of Materials Processing Technology. 1999(96): 188-197.
    [46] C.P.Hong, H.F.Shen, S.M.Lee. Prevention of Macrodefects in squeeze casting of anAl-7Wt Pct Si alloy. Metallurgical and Materials Transactions. 2000(31B): 297-305.
    [47] C.P.Hong, H.F.Shen, I.S.Cho. Prevention of Macrosegregation in squeeze casting of an Al-4.5 Wt Pct Cu alloy. Metallurgical and Materials Transactions. 1998(29A): 339-349.
    [48]肖泽辉,罗吉荣等.镁合金熔体输送装置的设计及应用.特种铸造及有色合金,2006,26(2):113~114
    [49] Y.L.Yang, L.M.Peng, P.H.Fu, B.Hu, W.J.Ding. Identification of NfH2 particles in solution-treated Mg-2.5%Nd (wt.%) alloy. Journal of Alloys and Compounds.
    [50]曹春平.挤压铸造高强韧镁合金材料的研究. [学位论文].重庆大学. 2004.
    [51] Alfred Yu, Mohsen Masoumi, Naiyi Li, Henry Hu. Characterization of local cavity pressure in squeeze casting of magnesium alloy AM50A. Magnesium Technology 2006. 97-101.
    [52]李荣德,于海朋,向青春,白彦华. ZA合金挤压铸造过程中保压时间的确定.第三届中国国际压铸会议. 138-141
    [53] Haiying Zhang, Shuming Xing, Qinghua Zhang. Evaluation of the mold-filling ability of alloy melt in squeeze casting. Journal of University of Science and technology Beijing. 2006 (13): 60-66.
    [54] T.M.Yue. Squeeze casting of high-Strength aluminium wrought alloy AA7010. Journal of Materials Processing Technology. 1997(66): 179-185.
    [55]王宁,李万福.硅藻土涂料在挤压铸造工艺中的应用.特种铸造及有色合金. 2001(2):131-133.
    [56]李晨希,王宏,李革,李淑敏.挤压铸造大高径比铸件的凝固特性和组织.特种铸造及有色合金. 2006(11): 713-715.
    [57]李荣德,候君,于茜,白彦华,李晨希.大高径比ZA27合金铸件挤压铸造应力场模拟.沈阳工业大学学报. 2005 (4): 138-142.
    [58]李荣德,于惠舒,李晨希等.比压对大高径比挤压铸造ZA27合金杯形铸件的组织与性能的影响. 2006 (3): 245-248.
    [59]伞晶超.工艺因素对大高径比挤压铸件凝固温度场的影响.电大理工. 2008 (3): 21-22.
    [60]李晨希,曹亮,伞晶超等.挤压铸造ZA27合金大高径比铸件.特种铸造及有色合金. 2005 (10): 610-612.
    [61]E.Hajjari, M.Divandari. An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy. Materials and Design. 2008 (29): 1685-1689.
    [62] M.T.Abou EI-khair. Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Materials Letters. 2005 (59): 894-900.
    [63] H.R.Hashemi, H.Ashoori, Davami. Microstructure and tensile properties of squuze cast Al-Zn-Mg-Cu alloy. Materials Science and technology. 2001, 6(17): 639-644.
    [64] A.Maleki, B. Niroumand, A.Shafyei. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Materials Science and Engineering A. 2006 (428): 135-140.
    [65]A.Boschetto, G.Costanza, F.Quadrini, M.E.Tata. Cooling rate inference in aluminum alloy squeeze casting. Materials Letters. 2007 (61): 2969-2972.
    [66] Stefanos M. Skolianos, Grigoris Kiourtsidis, Thomas Xatzifotiou. Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy. Materials Science and Engineering A. 1997 (231): 17-24.
    [67] T.M.Yue. Squeeze casting of high-Strength aluminium wrought alloy AA7010. Journal of Materials Processing Technology. 1997 (66): 179-185.
    [68] A. Luo, M.O.Pekguleryuz. Review of cast magnesium alloy for elevated temperature applications. J. Mater. Sci. 1994 (29): 5259-5271.
    [69] M.S.Yong, A.J.Clegg. Process optimization for a squeeze cast magnesium alloy. Journal of MaterialsProcessingTechnology. 2004 (145): 134-141.
    [70] Si-Young Chang, Hiroyasu Tezuka, Akihiko Kamio. Mechanical properties and structure of ignition-proof Mg-Ca-Zr alloys produced by squeeze casting. MaterialsTransactions. 1997, 38(6): 526-535.
    [71] H.R.Hashemi, H.Ashoori, Davami. Microstructure and tensile properties of squuze cast Al-Zn-Mg-Cu alloy. Materials Science and technology 2001, 6(17): 639-644.
    [72] G.S.Reddy, J.a.Skkhar. Moderate pressure solidification: undercooling at moderate cooling rates. Acta metal. 1989 (37):1509-1519.
    [73] M.T.Abou El-khair. Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Materials Letter. 2005 (59): 894-900.
    [74] T.N.Lipchin, P.A.Bykov. Alloy strengthening by solidification under pressure. Russian Castings Production. 1973, 109-111.
    [75] Z.J.Wei, Z.L.Wang, H.W. Wang, L.Cao. Evolution of microstructures and phases of Al-Mg alloy under 4 GPa high pressure. J. Mater. Sci. 2007 (42): 7123-7128.
    [76] Y.C.Kim, D.H.Kim, W.T.Kim et al. Effect of silver addition on formation of secondary phases in squeeze cast Al-Cu-Mg alloys. Mater. Sci. Tech. 2001 (17): 215-222.
    [77] J.H.Lee, H.S.Kim, C.W.Won, B.Cantor. Effect of the gap distance on the cooling behaviour and the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy. Materials Science and Engineering A. 2002 (338): 182-190.
    [78] S.W.Kim, G.Durrant, J.H.Lee, B.Cantor. The microstructure of direct squeeze cast and gravity die cast 7050 (Al-6.2Zn-2.3Cu-2.3Mg) wrought Al alloy. Journal of Materials Synthesis and Processing. 1998, 6(2): 75-87.
    [79] P. Vijian, V.P.Arunachalam. Optimization of squeeze cast parameters of LM6 aluminium alloy for surface roughness using Taguchi method. Journal of Materials Processing Technology. 2006 (180): 161-166.
    [80] Stul?kov?, B.Smola, F.von Buch, B.L.Mordike. Mechanical properties and creep of Mg - rare earth– Sc - Mn squeeze cast alloys. Materialwissenschaft und werkstofftechnik. 2003 (1): 102-108.
    [81] R.Ashiri, B.Niroumand, F.Karimzadeh, M.Hamani, M.Pouranvari. Effect of casting process on microstructure and tribological behavior of LM13 alloy. Journal of Alloys andcompounds. 2009, 475(1-2): 321-327.
    [82]齐乐华.挤压铸造对ZA27合金摩擦磨损特性的影响研究.特种铸造及有色合金. 2002. 204-205.
    [83] S.W.Kim, D.Y.Kim, W.G.Kim, K.D.Woo. The study on characteristics of heat treatment of the direct squeeze cast 7050 wrought Al alloy. Materials Science and Engineering A. 2001 (304): 721-726.
    [84] Alfred Yu, Shuping Wang, Naiyi Li, Herry Hu. Pressurized solidification of magnesium alloy AM50A. Journal of Materials Processing Technology. 2007 (191): 247-250.
    [85] M. Zhou.An experimental study of die and squeeze cast magnesium alloy AM50, [Dissertation] University of Windsor(Canada).2004.
    [86] Henry HU, Alfred Yu. Numerical simulation of squeeze cast magnesium alloy AZ91D. Modelling siumul. Mater.Sci.Eng. 2002 (10): 1-11.
    [87] S.Kleiner,O.Beffort, A.Wahlen. Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys. Journal of Light Metals. 2002 (2): 277-280.
    [88] Sunghak Lee, Seung Hyuk Lee .Effect of Y, Sr,and Nd additions on the Microstructure and Microfracture Mechanism of squeeze cast AZ91-X magnesium Alloys .Metallurgical and materials Transactions A. 1998, 29(4): 1221~1235.
    [89]于海朋,朱海青,于宝义,李荣德.挤压铸造AZ91D和AM50A的组织与力学性能.特种铸造及有色合金. 2003. 198-199.
    [90]张妍,王宁,李峰,红霞.工艺参数和热处理对挤压铸造AZ91D力学性能的影响.轻合金加工技术. 2006, 34(12): 23-25.
    [91] AZ91D镁合金挤压铸造组织与性能的研究.铸造技术. 2006, 27(3): 273-275.
    [92]王荣,王进华,刑志媛,赵国田,徐永东,朱秀荣.挤压铸造镁合金性能研究. 2005年中国压铸、挤压铸造、半固态加工学术年会专刊. 2005. 193-194.
    [93]于海朋,王峰,于宝义,马永涛.工艺参数和热处理对压铸AZ91D力学性能的影响.特种铸造及有色合金. 2002 (2): 27-28.
    [94]于海朋,王峰,于宝义等.工艺参数对压铸AM50组织及力学性能的影响. 2004, 53(8): 645-648.
    [95] B.Smola, I.Stul?kov?, J.pelcov?, F.von buch, B.L.mordike. Microstructure and phase changes due to heat treatment of squeeze cast Mg-Sc-(Ce)-Mn alloys. Phy.Stat. Sol.(a) 2002 (191): 305-316.
    [96] K.Prakasan, S.Seshan. Electrical conductivity of squeeze cast copper. Journal of Materials Science Letters. 1997 (16): 1588-1589.
    [97]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.化学工业出版社. 2007. 17-18.
    [98]梁国宪,王尔德,霍文灿.金属凝固过冷度与热物性参数的关系.材料科学进展. 1991, 5(4) 277-283.
    [99]邓建新,邵明,游东东.挤压铸造设备现状及发展分析.铸造. 2008, 57(7): 643-646.
    [100]罗继相.我国挤压铸造技术的回顾及展望.铸造. 2003 (52): 1-6.
    [101]赵海东,张克武,李元元等.一种挤压铸造铝硅铜合金材料.中国.发明专利. 200810199018.3. 2008.
    [102]张卫文,李元元,朱权力等.一种高强韧挤压铸造铝合金材料.中国.发明专利. 200510037105.5. 2005.
    [103]李元元,张明,张卫文等.一种直接挤压铸造高强度铝合金.中国.发明专利. 200510037104.0. 2005.
    [104]龙思远,曹韩学.一种挤压铸造浇注方法.中国.发明专利. 200310111172.8. 2003.
    [105]龙思远,王建宏.一种间接挤压铸造方法.中国.发明专利. 200310110903.7 2003.
    [106]龙思远,王建宏,谭钦平.热室挤压铸造方法.中国.发明专利. 02133793.4 2003.
    [107]王新,廖炽奇,司徒宝昌.铝合金挤压铸造的方法.中国.发明专利. 01109078.2. 2001.
    [108]蒋凯雁.一种间接液态挤压铸造工艺及其模具.中国.发明专利. 98110716.8 1998.
    [109]俞利民,陈国东,张水勇等.轻合金车轮挤压铸造设备.中国.实用新型专利. ZL 200520013790.3. 2005.
    [110]张国华,孙晓,高晓波等.以液态挤压铸造工艺铸造的带有内冷通道的活塞毛坯.中国. ZL 200520087671.2
    [111]郑主安,赵玉格.热挤压铸造型材.中国.实用新型专利. ZL 200420109790. 2005.
    [112]刘六法,丁怀新,彭立明等.铝合金汽车发动机支架的挤压铸造制备方法.中国.发明专利. 200610118386.1. 2006.
    [113]霍守铭牛建平.纯铜导电颚板挤压铸造工艺.中国.发明专利. 00132288.5. 2000.
    [114]霍守铭,牛建平.纯铜风、渣口套挤压铸造工艺.中国.发明专利. 00130380.5. 2000.
    [115]齐丕骧,戴钢,吴岳壹等.铝合金车轮的挤压铸造方法及设备.中国.发明专利. 92109088.9. 1992.
    [116]彭立明,曾小勤,杨艳玲等.镁合金汽车发动支架的挤压铸造制备方法.中国.发明专利. 200610029407.2. 2006.
    [117] Massaki Hisa, john C. barry, Gordon L. Dunlop. New type of precipitate in Mg-rare-earth alloys. Philosophical Magazine. 82(2002)497-510.
    [118]付彭怀. Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究[学位论文].上海交通大学. 2008.
    [119]常建卫. Mg-Nd-Zn-Zr稀土镁合金腐蚀行为研究[学位论文].上海交通大学. 2007.
    [1] Alfred Yu, Shuping Wang, Naiyi Li, Herry Hu. Pressurized solidification of magnesium alloy AM50A. Journal of Materials Processing Technology. 2007 (191): 247-250.
    [2] M. Zhou.An experimental study of die and squeeze cast magnesium alloy AM50, [Dissertation] University of Windsor(Canada).2004.
    [3] Henry Hu , Alfred Yu . Numerical simulation of squeeze cast magnesium alloy AZ91D. Modelling siumul. Mater.Sci.Eng. 2002 (10): 1-11.
    [4] S.Kleiner,O.Beffort, A.Wahlen. Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys. Journal of Light Metals. 2002(2): 277-280.
    [5] Sunghak Lee, Seung Hyuk Lee .Effect of Y, Sr,and Nd additions on the Microstructure and Microfracture Mechanism of squeeze cast AZ91-X magnesium Alloys .Metallurgical and materials Transactions A. 1998, 29(4): 1221~1235.
    [6]于海朋,朱海青,于宝义,李荣德.挤压铸造AZ91D和AM50A的组织与力学性能.特种铸造及有色合金. 2003: 198-199.
    [7]张妍,王宁,李峰,红霞.工艺参数和热处理对挤压铸造AZ91D力学性能的影响.轻合金加工技术. 2006, 34(12): 23-25.
    [8] AZ91D镁合金挤压铸造组织与性能的研究.铸造技术. 2006, 27(3): 273-275.
    [9]王荣,王进华,刑志媛,赵国田,徐永东,朱秀荣.挤压铸造镁合金性能研究. 2005年中国压铸、挤压铸造、半固态加工学术年会专刊. 2005: 193-194.
    [10]于海朋,王峰,于宝义,马永涛.工艺参数和热处理对压铸AZ91D力学性能的影响.特种铸造及有色合金. 2002(2): 27-28.
    [11]于海朋,王峰,于宝义,松鸿武,段华伟.工艺参数对压铸AM50组织及力学性能的影响. 2004, 53(8): 645-648.
    [12] M.T.Abou El-khair. Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Materials Letters 2005 (59): 894-900.
    [13]章桢彦. Mg(-Gd)-Sm-Zr合金的微观组织、力学性能和析出相变研究.[学位论文].上海交通大学. 2008.
    [1] M.M.Avedesian, H.Baker, Magnesium and Magnesium Alloys, ASM International, OH: Metal Park,1999
    [2] Akhtar A., Teghtsoonian E., Solid Solution Strengthening of Magnesium SingleCrystals, Acta Metall., 1969, 17(11): 1339-1349
    [3] Akhtar A., Teghtsoonian E., Substitutional Solution Hardening of Magnesium Single Crystals, Phil. Mag., 1972, 25: 897-916
    [4] Nie J.F., Muddle B.C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scripta Mater., 1999, 40(10): 1089-1094
    [5] Kocks U.F., Kinetics of solution hardening, Metallurgical transactions A, 1985,16A, 2109-2129.
    [6] A.J.Ardell, Precipitation hardening, Metall. Trans. A, 1985,16A,2131-2165.
    [7] B.L.Mordike, T.Ebert. Magnesium: properties-applications-potential, Materials Science and Engineering A, 2001,302,37-45.
    [8]齐丕骧.挤压铸造.国防工业出版社.北京. 1984(5): 142-143.
    [9] T.N.Lipchin, P.A.Bykov. Alloy Strengthening by Solidification Under Pressure. Russian Casting Production. 109-111.
    [10]M.T.Abou El-khair. Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Materials Letters 2005 (59): 894-900.
    [11]李东南,范新风,翁瑞珠. AZ91D镁合金挤压铸造组织与性能的研究.铸造技术. 2006, 27(3): 273-275.
    [12]祁景玉. X射线结构分析.同济大学出版社. 2003. 99-106.
    [13] http:// www. Webelements.com
    [14]肖纪美.材料能量学:能量的关系、计算和应用.上海科学技术出版社. 1999: 291-292.
    [15]黄昆,韩汝琦.固体物理学.高等教育出版社. 1988: 67-68.
    [16]晁月盛,张艳辉.正电子湮没技术原理及应用.材料与冶金学报. 2007(6): 234-239.
    [17]腾敏康.正电子湮没谱学及其应用.北京:原子能出版社. 2000: 2-3.
    [18]邓文,熊良钺,王淑荷,郭建亭,龙期望. Fe-Al系金属间化合物中的微观缺陷和电子密度.金属学报. 2002(38): 453-457.
    [19] Brand. W, Reinheimer. J. Theory of semiconductor response to charged particles.Physical Review. 1970 (2): 3104-3112.
    [20] M.C.弗莱明斯.凝固过程.北京工业出版社. 1981. 282-286
    [21]边秀房.金属熔体结构.上海交通大学出版社. 2003. 5-8.
    [22] Massaki Hisa, john C. barry, Gordon L. Dunlop. New type of precipitate in Mg-rare-earth alloys. Philosophical Magazine. 82(2002)497-510.
    [23]付彭怀. Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究[学位论文].上海交通大学. 2008.
    [24]常建卫. Mg-Nd-Zn-Zr稀土镁合金腐蚀行为研究[学位论文].上海交通大学. 2007.
    [1] M. Zhou.An experimental study of die and squeeze cast magnesium alloy AM50, [Dissertation] University of Windsor(Canada).2004.
    [2] H.Hu. Squeeze casting of magnesium alloys and their composites. Journal of materials Science 1998 (33): 1579-1589.
    [3] M.T.Abou EI-khair. Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Materials Letters 2005 (59): 894-900.
    [4] A.Boschetto, G.Costanza, F.Quadrini, M.E.Tata. Cooling rate inference in aluminum alloy squeeze casting. Materials Letters. 2007 (61): 2969-2972.
    [5] H.R.Hashemi, H.Ashoori, Davami. Microstructure and tensile properties of squuze cast Al-Zn-Mg-Cu alloy. Materials Science and technology 2001, 6(17): 639-644.
    [6] A.Maleki, B. Niroumand, A.Shafyei. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Materials Science and Engineering A. 2006 (428): 135-140.
    [7] Stefanos M. Skolianos, Grigoris Kiourtsidis, Thomas Xatzifotiou. Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy. Materials Science and Engineering A. 1997 (231): 17-24.
    [8] T.M.Yue. Squeeze casting of high-Strength aluminium wrought alloy AA7010. Journal of Materials Processing Technology. 1997 (66): 179-185.
    [9] Prasad Krishna. A Study of Interfacial Heat Transfer and Procss Parameters inSqueeze Casting and Low Pressure Permanent Mold Casting. Doctoral Dissertation. University of Michigan. 2001. 66-69.
    [10] Y.L.Yang, L.M.Peng, P.H.Fu, B.Hu, W.J.Ding. Study on the microstructure of squeeze-cast AZ91D alloy. Materials Science and Technology. Accept
    [11]周尧和.凝固技术.机械工业出版社. 1998. 21-22.
    [12] M. Zhou.An experimental study of die and squeeze cast magnesium alloy AM50, [Dissertation] University of Windsor(Canada).2004: 80-82.
    [13] J.P.Holman. Heat Transfer, (McGraw-Hill education (Asia) Co. and China Machine Press, 2005: 8-9.
    [14]郑子樵.材料科学基础.中南大学出版社.2005(5): 100-101.
    [15]弗莱明斯.凝固过程.冶金工业出版社.1981. 3-4.
    [16] H.Y. Zhang, S.M. Xing and Q.H. Zhang: Journal of University of Science and technology Beijing. 2006 (13): 60-66.
    [17]刘喜俊.铸造工艺学.机械工业出版社. 1999.131-132.
    [18] A.Luo, H.Hu, S.H.J. Lo. Microstructure and mechanical properties of squeeze cast AZ91D magnesium alloy. Light Metals Symposium. CIM, Montreal, 1996.
    [19] G.S.Reddy, J.a.Skkhar. Moderate pressure solidification: undercooling at moderate cooling rates. Acta metal. 1989 (37): 1509-1519.
    [20] E.Hajjari, M.Divandari. An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy. Materials and Design. 2008 (29): 1685-1689.
    [21]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究[学位论文].上海交通大学. 2006.
    [22] L.L.Rokhlin. Magnesium alloy containing rare earth metals- structure and properties. Baikov Institute of Metallurgy and Materials Science, Moscow, Russia. 159-160.
    [23] Jingli Yan, Yangshan Sun, feng Xue, Shan xue, Weijian Tao. Microstructure and mechanical properties in cast magnesium-neodymiun binary alloys. Materials Scienceand Engineering A. 2008 (476): 366-371.
    [24] J.W.Chang, P.H.Fu, X.W.Guo, L.M.Peng, W.J.Ding. Effect of hert treatment on corrosion and electrochemical behaviors of Mg-3Nd-0.2Zn(wt.%) magnesium alloy. Materials Science Forum. 2007 (546): 559-562.
    [25]黄兰友,刘绪平.电子显微镜与电子光学.北京出版社. 1991: 406-408.
    [26] R.P.Burgner, M.M.Disko, P.R.Swann. A reference guide of electron energy loss spectra covering all stable elements. A joint project of the ASU HREM facility and GATAN. 1983
    [27] L.Qian, H.Toda, S.Nishido, T.Kobayashi. Experimental and numerical investigations of the effects of the spatial distribution of ?phase on fracture behavior in hypoeutectic Al-Si alloys. Acta Materialia. 2006 (54): 4881-4893.
    [28]许音,马仙,杨晶.机械制造基础.机械工业出版社. 34-35.
    [29]齐丕骧.挤压铸造.国防工业出版社. 1984: 47-54.
    [30]许四祥,吴树森,万里,罗吉荣.镁合金中的氢及其除气方法.中国铸造装备与技术. 2005 (5) 9-12.
    [31]叶大伦,胡建华.实用无机物热力学手册.北京工业出版社. 2002: 938-939
    [32] S.Delfino, A.Saccone, R.Ferro. Phase relationships in the neodymium-magnesium alloy system. Metallurgical Transactions A. 1990 (21A): 2109-2114.
    [1] W.P.Sanunders, E.P.Strieter. Alloying Zirconium to Magnesium. Transactions of the American Foundrymen’s Society. 1952 (60): 581-594.
    [2] F.Emley. Principle of Magnesium Technology. Perganmon. Oxford.1996
    [3] Y.C.Lee, A.K.Dahle, D.H.Stjohn. The Role of Solute in Grain Refinement of Magnesium. Metallurgical and Materials Transactions. 2000 (31A) 2895-2906.
    [4]胡赓祥,蔡珣.材料科学基础.上海交通大学出版社. 2000. 240-242
    [5] A.Luo, H.Hu, S.H.J. Lo. Microstructure and mechanical properties of squeeze cast AZ91D magnesium alloy. Light Metals Symposium. CIM, Montreal, 1996.
    [6] C.P.Hong, H.F.Shen, S.M.Lee. Prevention of Macrostructure in Squeeze Casting of anAl-7Wt Pct Si alloy. Metallurgical and Materials Transactions B. 2000, 31(4): 297-305.
    [7] E.Hajjari, M.Divandari. An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy. Materials and Design. 2008 (29): 1685-1689.
    [8] Z.K.Peng, X.M.Zhang, J.M.Chen, Y.Xiao, H.Jiang. Grain refining mechanism in Mg-9Gd-4Y alloys by Zirconium. Materials Science and Technology. 2005, 21(6): 722-726.
    [9] Nayebb-hashemei, A.A.and Clark,J.B. The Mg-Zr System. Bulletin of Alloy Phase Diagram 6, 1985:246-250.
    [10] Y.Tamura,N.Kono,T.Motegi an E.Sato. Grain Refining of Pure Magnesium by Adding Mg-Zr Alloy. Journal of Japan Institute of Light Metals.1997(47): 679-684.
    [11] M. Zhou.An experimental study of die and squeeze cast magnesium alloy AM50, [Dissertation] University of Windsor(Canada).2004: 80-82.
    [12] http://www.webelements.com
    [13] Choong Do Lee. Variability in the tensile properties of squeeze-cast Al-Si-Cu-Mg alloy. Materials science and Engineering A 488(2008) 296-302.
    [14]付彭怀,Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究[学位论文],上海,上海交通大学,2009.
    [15] P.H.Fu, L.M.Peng, H.Y.Jiang, C.Q.Zhai, X.Gao, J.F.Nie. Zr-containing Precipitates in Mg-3wt%Nd-0.2wt%Zn-0.4wt%Zr alloy during solution treatment at 540°C. Materials Science Forum. 2007 (546): 97-100.
    [16]编写组.实用热处理.湖南人民出版社1974(11): 337-339.
    [1] Dong Jie, Cui Jianzhong, Ding wenjiang. Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al–Zn–Mg–Cu–Zr ingots J. Cryst. Growth. 2006 (295): 179-187.
    [2]孙玉峰,刘晓芳,任晨星等. 52m长落管Ag-Ge合金的微重力凝固行为.郑州大学学报. 2005 (26): 57-61.
    [3]赵志龙,鲁德洋,裴崇斌.超重力对铅锡共晶凝固组织的影响.材料研究学报. 1998 (12): 395-398.
    [4]仲红刚,高玉来,翟启杰.脉冲电流细化金属凝固组织研究综述.现代铸铁. 2008 (6): 27-31.
    [5]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.化学工业出版社.北京. 2007. 18-19.
    [6] M.T.Abou EI-khair. Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Materials Letters 2005 (59): 894-900.
    [7] A.Boschetto, G.Costanza, F.Quadrini, M.E.Tata. Cooling rate inference in aluminum alloy squeeze casting. Materials Letters. 2007 (61): 2969-2972.
    [8] H.R.Hashemi, H.Ashoori, Davami. Microstructure and tensile properties of squuze cast Al-Zn-Mg-Cu alloy. Materials Science and technology. 2001, 6(17): 639-644.
    [9] A.Maleki, B. Niroumand, A.Shafyei. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Materials Science and Engineering A. 2006 (428):135-140.
    [10] Stefanos M. Skolianos, Grigoris Kiourtsidis, Thomas Xatzifotiou. Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy. Materials Science and Engineering A. 1997 (231): 17-24.
    [11] T.M.Yue. Squeeze casting of high-Strength aluminium wrought alloy AA7010. Journal of Materials Processing Technology. 1997 (66): 179-185.
    [12] L.L.Rokhlin. Magnesium Alloy Containing Rare Earth Metals-Structure and Properties. Taylor & Francis Inc. 2003. 32-36.
    [13]西泽泰二.微观组织热力学.化学工业出版社. 2006. 234-246.
    [14]梁国宪,王尔德,霍文灿.金属凝固过冷度与热物性参数的关系.材料科学进展. 1991, 5(4) 277-283.
    [15]常国威,王建中.金属凝固过程中的晶体生长与控制.冶金工业出版社. 2002.39-40.
    [16] http:// www. Webelements.com
    [17] Nastac L, Stefanescu D M. Macrotransport-Solidification kinetics modeling of equiaxed dendritic grown [J], Metallurgical and Materials Transactions A, 1996, 27A: 4061-4074
    [18]董杰.超高强铝合金低频电磁半连续铸造工艺及理论研究[学位论文].东北大学. 2003.
    [19] N.B.Singh, S.S.Das, Preeti Gupta, M.K.Dwivedi, Phase equillibria and solidification behaviour in the vanillin–p-anisidine system J. Cryst. Growth. 2008 (311): 118-122.
    [20] W库尔兹, D J费希尔著,毛协民译.凝固过程[M],西安:西北工业大学出版社, 1987: 47
    [21]李超.金属学原理[M],哈尔滨:哈尔滨工业大学出版社, 1996: 78-80
    [22] Prasad Krishna. A Study of Interfacial Heat Transfer and Procss Parameters in Squeeze Casting and Low Pressure Permanent Mold Casting. Doctoral Dissertation. University of Michigan. 2001. 66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700