用户名: 密码: 验证码:
基于能量效率的自适应多天线传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动互联网的快速发展,新兴业务和移动应用的爆炸性增长,移动用户对传输速率提出了更高的要求。多天线系统通过在收发端配置多根天线,利用复用/分集增益提高系统的频谱效率和传输可靠性,已经成为了未来移动通信系统的一项基本技术。传统多天线技术主要关注频谱效率,从信息论的角度探寻最大可达容量。与此同时,无线通信系统的高能耗成为了一个严重的问题,提高多天线系统的能量效率,对无线通信系统的绿色化有着重要的实用价值和意义。从频谱效率的角度,采用更大的发送功率、更多的发送天线和更高的带宽可以获得系统容量的提升。但从能量效率的角度,由于发送功率之外的功放线路功率、信号处理功率、馈线损耗等其它部分功率的存在,使得采用更大的发送功率、更多的发送天线和更高的带宽并不总是可以提高系统的能量效率,甚至会带来能量效率的恶化。因此,如何在保证频谱效率的同时提高多天线系统的能量效率是一个亟待解决的问题。本文关注下行多天线系统,对下行多入多出(MIMO)技术三种可能的应用方式:单用户MIMO、多用户MIMO和多小区MISO的能量效率问题进行了系统的研究,提出基于能量效率的自适应传输技术,在保证频谱效率的基础上提高能量效率。
     首先,本文针对基于脏纸编码的下行多用户MIMO广播信道能效优化问题,提出了联合发送协方差矩阵优化和激活发送天线选择的能效优化基本框架,得到MIMO广播信道的能量效率理论上界,为能效优化的多用户MIMO传输指明了方向。在固定激活发送天线集合的情况下,利用MIMO广播信道和多址接入信道的对偶性,将MIMO广播信道的能效优化问题转化为凸分数优化问题,提出一种能效优化的迭代功率注水算法,并证明其收敛于全局最优点;在此基础上,提出激活发送天线选择来选取能量效率最优的激活发送天线集合,通过关闭非激活天线集合对应的功率放大器节省线路功率。
     接下来,本文针对采用实用低复杂度的线性预编码技术、具有非完善发送端信道状态信息(CSIT)等实际约束的多用户MIMO系统的能效优化问题,提出多模传输技术来优化系统能量效率。由于非完善CSIT的存在将导致多用户干扰,多个用户复用以后,存在复用增益与多用户干扰之间的折中,因此考虑了两种传输策略——基于奇异值分解的单用户MIMO和基于块对角化的多用户MIMO。通过综合考虑发送功率、系统带宽、发送天线、接收天线/用户、传输策略等参数对能量效率的影响,针对以下两种场景,提出联合发送功率/带宽优化和模式选择的策略,提高多用户MIMO系统能量效率,具有很好的实用价值。
     1)针对发送天线数目大于等于所有用户接收天线数目的场景,将模式定义为以下参数——传输策略、发送天线数目、接收天线数目和用户数目,进而提出基于各态历经容量的模式切换策略来提高能效。在固定的模式下,针对单用户MIMO和多用户MIMO,分别给出基于能效的发送功率/带宽联合优化方案,并提出一种对抗不完善CSIT的信道容量预测方法来帮助上述优化;在此基础上,进一步基于各态历经容量给出能效优化模式选择算法,为不同场景下最优能量效率对应的模式提供了指导意义。
     2)针对发送天线数目小于所有用户接收天线数目的场景,将模式定义为以下参数——传输策略、激活发送天线集合、激活接收天线集合和激活用户集合,进而提出基于联合收发天线选择的模式切换策略来提高能效。在固定的模式下,把上述场景一的发送功率/带宽联合优化方案扩展到了基站总发送功率受限的情况;在此基础上,提出一种低复杂度的能效优化联合收发天线选择算法,并通过仿真结果验证,发现该算法可以获得与最优遍历搜索近似的性能;进一步将算法应用于非实时业务场景下,通过利用延时-能耗折中关系,降低系统的能耗。
     最后,本文针对多小区MISO系统的能量效率问题,定义新的多小区能效度量准则,提出不同协作等级的传输策略和一种新的协同静默技术,在保证用户服务质量的同时提高多小区MISO系统的能量效率。通过利用网络能量效率作为多小区能效度量准则,提出了采用线性预编码方式下,三种基于不同协作等级的传输策略,并根据不同协作等级分别得到基于能效的功率分配方案,在保证频谱效率的情况下最大化网络能量效率。在此基础上,创新性的提出了协同静默技术,通过基站间协作利用基站短时睡眠,协同关闭基站的功率放大器,进一步提高网络能量效率。
As the continuous development of the mobile Internet, explosive growth of new services and mobile applications, the mobile users require higher and higher data rates. Through deploying multiple antennas at the transmitters and receivers, multi-antenna systems can highly increase the spectral efficiency (SE) and transmission reliability through employing the multiplexing/diversity gain. Therefore, multi-antenna technology has become one of the key technologies for the future mobile communication systems. The research on the conventional multi-antenna technology mainly focuss on the spectral efficiency and tries to derive the achievable capacity from the information theory point of view. However, the high energy consumption is becoming a serious problem for the mobile networks and green mobile networks have drawn increasing attentions recently. Thus, how to increase the energy efficiency (EE) of the multi-antenna systems is significant in practice. From the standpoint of SE, employing higher transmit power, more transmit antennas and higher bandwidth can increase the SE. However, it is not the case from the standpoint of EE. Due to the existence of power consumed by circuit, signal processing and feeder etc. except for the transmit power, increasing the transmit power, transmit antenna number and bandwidth cannot always increase the EE and would even decrease it. Therefore, a big challenge for the future green mobile networks is how to increase the EE with guaranteed SE. This thesis focuses on the EE of the downlink multi-antenna systems and studies the EE of single user (SU) multiple input multiple output (MIMO), multiuser (MU) MIMO and multi-cell MIMO from a system level. Through EE based adaptive transmission technologies, the EE can be improved significantly with some SE constraints.
     Firstly, we study the EE maximization problem for the MIMO broadcasting channels under dirty paper coding (DPC). We propose a new optimization framework, in which transmit covariance optimization and active transmit antenna selection (ATAS) are designed jointly. This framework can reach the EE upper bound and point out the directions of energy efficient multiuser MIMO transmission. To optimize the EE under a fixed transmit antenna set, we propose an energy efficient iterative waterfilling scheme, through transforming the problem into a concave fractional optimization via uplink-downlink duality. It is proved that the proposed scheme converges to the global optimality. After that, ATAS is employed to determine the active transmit antenna set and to turn off the rest inactive antennas to save the circuit power.
     After that, this thesis addresses EE optimization for the downlink MIMO systems with linear precoding and imperfect channel state information at the transmitter (CSIT), and proposes multimode transmission technology to solve this problem. Due to the existence of imperfect CSIT, there exists a tradeoff between the interuser interference and the multiplexing gain, so two transmission schemes including SU-MIMO with singular value decomposition (SVD) and MU-MIMO with block diagonalization (BD) are considered here. Considering the effect of transmit power, bandwidth, transmission schemes, transmit antennas and receive antennas in a comprehensive manner, we propose joint bandwidth/power adaptation and mode switching to improve the EE for the following two scenarios, which is valuable in practice.
     1) Over the scenario when the transmit antenna number is larger than or equal to the total receive antenna number, the mode is defined as the following parameters, i.e. transmission schemes (SVD or BD), transmitter antenna number, receiver antenna number and user number. Under a fixed mode, we develop a joint transmit power and bandwidth adaptation scheme for both SU-MIMO and MU-MIMO, and employ capacity prediction schemes to combat the effect of the imperfect CSIT. After that, we propose a mode selection scheme based on the ergodic capacity, which provides guidelines on the preferred mode under different scenarios.
     2) Over the scenario when the transmit antenna number is smaller than the total receive antenna number, the mode is defined as the following parameters, i.e. transmission schemes (SVD or BD), active transmitter antenna set, active receiver antenna set and active user set. Under a fixed mode, we extend the above joint transmit power and bandwidth adaptation scheme in scenario1) to the case with maximum transmit power constraints. After that, we propose a low complexity joint active transmit and receive antenna selection scheme, which can achieve performance close to the optimal exhaust search based on the simulation results. Finally, we apply the algorithms in non-real time sessions and we can see the energy is saved significantly through employing the delay tolerance based on the energy-delay tradeoff.
     Finally, we address the EE optimization problem for the multi-cell MISO systems, and introduce a novel EE metric of network EE (NEE) for the multi-cell systems. We propose three transmission schemes with different cooperative levels and further propose a cooperative idling (CI) scheme to improve the NEE with each user's SE constraints. Based on the NEE metric, we develop energy efficient power control strategies for three schemes with linear precoders. After that, CI is proposed. Through employing the micro-sleep cooperatively among different base stations and switching off the power amplifiers (PA) cooperatively, the NEE can be further improved.
引文
[1]D. Gesbert, S. Hanly, H. Huang, et al.2010. Multi-cell MIMO cooperative networks:a new look at interference [J]. IEEE J. Sel. Areas Commun.28 (9):1380-1408
    [2]G. Y. Li, Z. Xu, C. Xiong, et al.2011. Energy-efficient wireless communications:tutorial, survey, and open issues [J]. IEEE Wireless Communications.18 (6):28-35
    [3]Z. Hasan, H. Boostanimehr and V. K. Bhargava.2011. Green Cellular Networks:A Survey, Some Research Issues and Challenges [J]. IEEE Communications Surveys & Tutorials.13 (4): 524-540
    [4]Virtual Centre of Excellence in Mobile and Personal Communications-Mobile VCE-CORE-5 Research Area:Green Radio. http://www.mobilevce.com/infosheets/GreenRadio.pdf
    [5]CoolCellular-Energy Efficient Network Architectures and Transmission Methods. http://www.vodafone-chair.com/research/projects_cool_cellular.html
    [6]EARTH:Driving the Energy Efficiency of Wireless Infrastructure to its Limits [J].
    [7]Green Touch Initiative. http://www.greentouch.org
    [8]C. Han, T. Harrold, I. Krikidis, et al.2011. Green radio:radio techniques to enable energy efficient wireless networks [J]. IEEE Communications Magazine.49 (6):46-54
    [9]L. M. Correia, D. Zeller, O. Blume, et al.2010. Challenges and enabling technologies for energy aware mobile radio networks [J]. IEEE Communications Magazine.48 (11):66-72
    [10]T. Chen, H. Kim and Y. Yang.2010 Energy efficiency metrics for green wireless communications [C]. International Conference on Wireless Communications and Signal Processing (WCSP).1-6
    [11]T. S. I. European 2009. ETSI TS 102 706, vl.1.1. Environmental Engineering (EE) Energy Efficiency of Wireless Access Network Equipment [S].
    [12]F. Richter and G. Fettweis.2010. Cellular Mobile Network Densification Utilizing Micro Base Stations [C]. Proceedings of the IEEE International Conference on Communications (ICC10).
    [13]B. Badic, T. O. Farrell, P. Loskot, et al.2009. Energy Efficient Radio Access Architectures for Green Radio:Large versus Small Cell Size Deployment [C]. IEEE Proceeding of VTC 2009.
    [14]Y. Chen, S. Zhang and S. Xu.2010. Characterizing Energy Efficiency and Deployment Efficiency Relations for Green Architecture Design [C]. IEEE proc. of ICC 2010.
    [15]H. Leem, S. Y. Baek and D. K. Sung.2010. The Effects of Cell Size on Energy Saving, System Capacity, and Per-Energy Capacity [C]. IEEE proc. of WCNC 2010.
    [16]F. Richter, A. Fehske, P. Marsch, et al.2010. Traffic Demand and Energy Efficiency in Heterogeneous Cellular Mobile Radio Networks [C]. Proceedings of the 71st IEEE Vehicular Technology Conference (VTC'10).
    [17]F. Richter, A. J. Fehske and G. P. Fettweis.2009. Energy Efficiency Aspects of Base Station Deployment Strategies for Cellular Networks [C]. IEEE Proceeding of VTC 2009.
    [18]W. Wang and G. Shen.2010. Energy Efficiency of Heterogeneous Cellular Network [C]. IEEE Proceeding of VTC 2010 Fall.
    [19]J. Xu and L. Qiu.2010. Area Power Consumption in a Single Cell Assisted by Relays [C]. 2010 International Symposium on Energy-aware Computing and Networking (EaCN-2010).
    [20]J. Xu and L. Qiu.2010. Energy Consumption in Downlink MIMO Relay Systems with Multiple Users [C].2010 International Symposium on Energy-aware Computing and Networking (EaCN-2010).
    [21]C.-L. Chen, W. E. Stark and S.-G. Chen.2011. Energy-Bandwidth Efficiency Tradeoff in MIMO Multi-Hop Wireless Networks [J]. IEEE J. Selected Commun.29 (8):1537-1546
    [22]J. Gong, S. Zhou, Z. Niu, et al.2010. Traffic-Aware Base Station Sleeping in Dense Cellular Networks [C].18th International Workshop on Quality of Service (IWQoS).1-2
    [23]Z. Niu.2011. TANGO:Traffic-aware Network Planning and Green Operation [J]. IEEE Wireless Communications.18 (5):25-29
    [24]O. Blume, H. Eckhardt, S. Klein, et al.2010. Energy Savings in Mobile Networks Based on Adaptation to Traffic Statistics [J]. Bell Labs Technical.15 (2):77-94
    [25]Z. Niu, Y. Wu, J. Gong, et al.2010. Cell zooming for cost-efficient green cellular networks [J]. IEEE Commun. Mag.48 (11):74-78
    [26]E. Oh, B. Krishnamachari, X. Liu, et al.2011. Toward Dynamic Energy-Efficient Operation of Cellular Network Infrastructure [J]. IEEE Commun. Mag.49 (6):56-61
    [27]M. Ismail and W. Zhuang.2011. Network Cooperation for Energy Saving in Green Radio Communications [J]. IEEE Wireless Communications.18 (5):76-81
    [28]K. Son, H. Kim, Y. Yi, et al.2011. Base Station Operation and User Association Mechanisms for Energy-Delay Tradeoffs in Green Cellular Networks [J]. IEEE J. Selected Commun.29 (8):1525-1536
    [29]M. A. Marsan, L. Chiaraviglio, D. Ciullo, et al.2009. Optimal energy savings in cellular access networks [C]. Proc. IEEE ICC'09 Workshop, GreenComm.
    [30]S. Zhou, J. Gong, Z. Yang, et al.2009. Green mobile access network with dynamic base station energy saving [C]. Proc. of ACM MobiCom.1-3
    [31]I. Ashraf, L. Ho and H. Claussen.2010. Improving Energy Efficiency of Femtocell Base Stations via User Activity Detection [C]. Wireless Communications and Networking Conference (WCNC),2010 IEEE.
    [32]H. S. Kim and B. Daneshrad.2010. Energy-Constrained Link Adaptation for MIMO OFDM Wireless Communication Systems [J]. IEEE Trans. Wireless Commun.9 (9):2820-2832
    [33]G. W. Miao, N. Himayat, G. Y. Li, et al.2008. Energy-efficient design in wireless OFDMA [C]. Proc. IEEE 2008 International Conference on Communications.3307-3312
    [34]R. S. Prabhu and B. Daneshrad.2010. An energy-efficient water-filling algorithm for OFDM systems [C]. IEEE Proc. of ICC'10.1-5
    [35]C. Xiong, G. Y. Li, S. Zhang, et al.2011. Energy- and Spectral-Efficiency Tradeoff in Downlink OFDMA Networks [J]. IEEE Trans. Wireless Commun.10 (11):3874-3886
    [36]A. He, S. Srikanteswara, K. K. Bae, et al.2011. Power Consumption Minimization for MIMO Systems:A Cognitive Radio Approach [J]. IEEE J. Select. Areas Commun.29 (2): 469-479
    [37]S. Cui, A. J. Goldsmith and A. Bahai.2004. Energy-Efficiency of MIMO and cooperative MIMO Techniques in Sensor Networks [J]. IEEE Journal of Selected Areas Commun.22 (6): 1089-1098
    [38]J. Xu, L. Qiu and C. Yu.2011. Link Adaptation and Mode Switching for the Energy Efficient Multiuser MIMO Systems [J]. IEICE Trans. Commun. submitted.
    [39]J. Xu, L. Qiu and S. Zhang.2012. Energy Efficient Iterative Waterfilling for the MIMO Broadcasting Channels [C]. IEEE proc. of WCNC 2012.
    [40]H. Kim, C.-B. Chae, G. Veciana, et al.2009. A Cross-Layer Approach to Energy Efficiency for Adaptive MIMO Systems Exploiting Spare Capacity [J]. IEEE Trans. Wireless Commun.8 (8):4264-4275
    [41]R. S. Prabhu and B. Daneshrad.2010. Energy-efficient power loading for a MIMO-SVD system and its performance in flat fading [C]. IEEE Proc. of GLOBECOM'10.1-5
    [42]J. Xu, L. Qiu and C. Yu.2011. Improving Energy Efficiency Through Multimode Transmission in the Downlink MIMO Systems [J]. EURASIP Journal on Wireless Communications and Networking.2011 (1):200
    [43]Z. Chong and E. Jorswieck.2011. Energy Efficiency in Random Opportunistic Beamforming [C]. Proc. of IEEE 73rd Vehicular Technology Conference.1-5
    [44]C. Isheden, Z. Chong, E. Jorswieck, et al.2011. Framework for Link-Level Energy Efficiency Optimization with Informed Transmitter [J]. IEEE Trans. Wireless Commun. submitted.
    [45]Z. Chong and E. Jorswieck.2011. Analytical Foundation for Energy Efficiency Optimisation in Cellular Networks with Elastic Traffic [C]. Mobile Lightweight Wireless Systems:3rd Internationnal ICST Conference (MobiLight 2011).
    [46]S. Zhang, Y. Chen and S. Xu.2010. Improving Energy Efficiency through Bandwidth, Power, and Adaptive Modulation [C]. Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd 1-6
    [47]B. Liu, L. Qiu and J. Xu.2011. QoS Aware Energy Efficiency Analysis in the Cellular Networks [J]. IEICE Trans. Commun. E94-B (10):2925-2928
    [48]D. Wu and R. Negi.2003. Effective capacity:a wireless link model for support of quality of service [J]. IEEE Trans. Wireless Commun.2 (4):630-643
    [49]I. Humar, X. Ge, L. Xiang, et al.2011. Rethinking energy efficiency models of cellular networks with embodied energy [J]. IEEE Network 25 (2):40-49
    [50]D. Tse and P. Viswanath.2005. Fundamentals of Wireless Communication [M]. Cambridge University Press.
    [51]J. Jose, A. Ashikhmin, T. L. Marzetta, et al.2011. Pilot Contamination and Precoding in Multi-Cell TDD Systems [J]. IEEE Trans. Wirel. Commun.10 (8):2640-2651
    [52]T. L. Marzetta.2010. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas [J]. IEEE Trans. Wirel. Commun.9 (11):3590-3600
    [53]E. Uysal-Biyikoglu, B. Prabhakar and A. E. Gamal.2002. Energy-Efficient Packet Transmission Over a Wireless Link [J]. IEEE/ACM Trans. Networking.10 (4):487-499
    [54]H. Kim and G. D. Veciana.2010. Leveraging Dynamic Spare Capacity in Wireless Systems to Conserve Mobile Terminals' Energy [J]. IEEE/ACM Trans. Networking.18 (3):802-815
    [55]Y. Chen, S. Zhang, S. Xu, et al.2011. Fundamental tradeoffs on green wireless networks [J]. IEEE Commun. Mag.49 (6):30-37
    [56]3GPP 2009. R1-094996. Extended Cell DTX for Enhanced Energy-Eficient Network Operation [S].
    [57]J. Xu, L. Qiu and C. Yu.2011. Improving network energy efficiency through cooperative idling in the multi-cell systems [J]. EURASIP Journal on Wireless Communications and Networking.2011 165
    [58]Alcatel-Lucent and S. B. Alcatel-Lucent 3GPP R1-100952. eNB Energy Saving Possibilities in Times of Reduced Cell Traffic [S].
    [59]Huawei 3GPP R1-101084. Energy saving techniques to support low load scenarios [S].
    [60]Huawei 2010.3GPP R3-101416. Potential solutions to inter-RAT energy saving [S].
    [61]ZTE 3GPP R1-100970. Analysis of network energy saving solutions [S].
    [62]O. Arnold, F. Richter, G. Fettweis, et al.2010. Power Consumption Modeling of Different Base Station Types in Heterogeneous Cellular Networks [C]. Proceedings of the ICT MobileSummit(ICT Summit'10).1-8
    [63]沈嘉、索士强和全海洋等.2008.3GPP长期演进(LTE)技术原理与系统设计[M].人民邮电出版社.
    [64]I. E. Telatar.1999. Capacity of multi-antenna Gaussian channels [J]. Europ. Trans. Telecommun.10 585-595
    [65]S. M. Alamouti.1998. A simple transmit diversity technique for wireless communications [J]. IEEE J. Sel. Areas Commun.16 (8):1451-1458
    [66]D. J. Love and R. W. Heath.2005. Multimode Precoding for MIMO Wireless Systems [J]. IEEE Trans. Signal Process.53 (10):3674-3687
    [67]R. W. Heath and A. J. Paulraj.2005. Switching between diversity and multiplexing in MIMO systems [J]. IEEE Transactions on Communications.53 (6):962-968
    [68]M. Mohseni, R. Zhang and J. M. Cioffi.2006. Optimized transmission of fading multiple-access and broadcast channels with multiple antennas [J]. IEEE Journal on Selected Areas in Communications, special issue on nonlinear optimization of communication systems. 24 (8):1627-1639
    [69]G. Caire and S. Shamai.2003. On the Achievable Throughput of a Multiantenna Gaussian Broadcast Channel [J]. IEEE Trans. Inf. Theory.49 (7):1691-1706
    [70]B. Hassibi and M. Sharif.2007. Fundamental limits in MIMO broadcast channels [J]. IEEE J. Select. Areas Commun.25 (7):1333-1344
    [71]N. Jindal, W. Rhee, S. Vishwanath, et al.2005. Sum power iterative water-filling for multi-antenna Gaussian broadcast channels [J]. IEEE Trans. Inf. Theory.51 (4):1570-1580
    [72]Z. Shen, R. Chen, J. G. Andrews, et al.2007. Sum capacity of multiuser MIMO broadcast channels with block diagonalization [J]. IEEE Trans. Wireless Commun.6 (6):2040-2045
    [73]S. Vishwanath, N. Jindal and A. Goldsmith.2003. Duality, achievable rates, and sum-rate capacity of MIMO broadcast channels [J]. IEEE Trans. Inf. Theory.49 (10):2658-2668
    [74]W. Yu, W. Rhee, S. Boyd, et al.2004. Iterative water-filling for Gaussian vector multiple-access channels [J]. IEEE Trans. Inform. Theory.50 (1):145-152
    [75]L. Zhang, R. Zhang, Y. C. Liang, et al. On the Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints [J]. to appear in IEEE Transactions on Information Theory.
    [76]H. Weingarten, Y. Steinberg and S. Shamai.2006. The capacity region of the Gaussian multiple-input multiple-output broadcast channel [J]. IEEE Trans. Inform. Theory.52 (9): 3936-3964
    [77]W. Yu.2006. Uplink-downlink duality via minimax duality [J]. IEEE Trans. Inform. Theory. 52 (2):361-374
    [78]W. Yu and J. Cioffi.2004. Sum capacity of Gaussian vector broadcast channels [J]. IEEE Trans. Inform. Theory.50 (9):1875-1892
    [79]J. Jiang, R. M. Buehrer and W. H. Tranter.2006. Greedy scheduling performance for a zero-forcing dirty paper coded system [J]. IEEE Trans. Commun.54 (5):789-793
    [80]T. Zhenyu and R. S. Blum.2003. Multiuser diversity for a dirty paper approach [J]. IEEE Communications Letters.7370-372
    [81]D. Dabbagh and D. J. Love.2007. Precoding for multiple antenna Gaussian broadcast channels with successive zero-forcing [J]. IEEE Trans. Signal Process.55 (7):3837-3850
    [82]W. Yu and J. Cioffi.2001. Trellis precoding for the broadcast channels [C]. proc. of IEEE Globecom 2001.2 1344-1348
    [83]H. Harashima and H. Miyakawa.1972. Matched-transmission technique forchannels with intersymbol interference [J]. IEEE Trans. Commun.20774-780
    [84]M. Tomlinson.1971. New automatic equaliser employing modulo arithmetic [J]. Electron. Lett.7 138-139
    [85]M. Payaro, A. Perez-Neira and M. Lagunas.2004. Achievable rates for generalized spatial Tomlinson-Harashima precoding in MIMO systems [C]. Proc. IEEE Vehic. Tech. Conf. Fall.
    [86]R. D. Wesel and J. M. Cioffi.1998. Achievable rates for Tomlinson-Harashima precoding [J]. IEEE Trans. Inf. Theory.44 824-830
    [87]C. Windpassinger, R. F. H. Fischer, T. Vencel, et al.2004. Precoding in multi-antenna and multi-user communications [J]. IEEE Trans.Wireless Commun.3 1305-1316
    [88]J. Liu and W. A. Krzymien.2008. A Novel Nonlinear Joint Transmitter-Receiver Processing Algorithm for the Downlink of Multi-User MIMO Systems [J]. IEEE Trans. on Vehicular Technology.57 (4):2189-2204
    [89]Q. H. Spencer, A. L. Swindlehurst and M. Haardt.2004. Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels [J]. IEEE Tans. Signal Process.52 (2): 461-471
    [90]T. Yoo and A. Goldsmith.2006. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming [J]. IEEE J. Select. Areas Commun.24 (3):528-541
    [91]M. Sharif and B. Hassibi.2005. On the capacity of MIMO broadcast channels with partial side infonnation [J]. IEEE Trans. Inf. Theory.51 (2):506-522
    [92]P. Viswanath, D. N. C. Tse and R. Laroia.2002. Opportunistic beamforming using dumb antennas [J]. IEEE Trans. Inf. Theory.48 (6):1277-1294
    [93]C. B. Peel, B. M. Hochwald and A. L. Swindlehurst.2005. A vector-perturbation technique for near-capacity multiantenna multiuser communication-part Ⅰ:channel inversion and regularization [J]. IEEE Trans. Commun.53 (1):195-202
    [94]C. B. Peel, B. M. Hochwald and A. L. Swindlehurst.2005. A vector-perturbation technique for near-capacity multiantenna multiuser communication-part Ⅱ:perturbation [J]. IEEE Trans. Commun.53 (3):537-544
    [95]R. Chen, Z. Shen, J. G. Andrews, et al.2007. Efficient Transmit Antenna Selection for Multiuser MIMO Systems with Block Diagonalization [C]. Proc. of IEEE GLOBECOM'07. 3499-3503
    [96]S. Sanayei and A. Nostratinia.2004. Capacity maximizing algorithms for joint transmit-receive antenna selection [C]. Proc.38th Asilomar Conf on Signals, Systems and Computers.21773-1776
    [97]Z. Shen, R. Chen, J. G. Andrews, et al.2006. Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization [J]. IEEE Trans. Signal Processing.54 (9): 3658-3663
    [98]J. Xu and L. Qiu.2011. Robust Multimode Selection in the Downlink Multiuser MIMO Channels with Delayed CSIT [C]. IEEE proc. of ICC 2011.1-5
    [99]M. Sharif and B. Hassibi.2007. A comparison of time-sharing, DPC and beamforming for MIMO broadcasting channels with many users [J]. IEEE Trans. Commun.55 (1):11-15
    [100]D. Love, R. Heath, V. Lau, et al.2008. An overview of limited feedback in wireless communications systems [J]. IEEE Journal on Selected Areas in Communications.26 (8): 1341-1365
    [101]J. Zhang, R. W. Heath, M. Kountouris, et al.2009. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization [J]. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization.2009, Article ID 802548 15 pages
    [102]J. Zhang, M. Kountouris, J. G. Andrews, et al.2011. Multi-mode Transmission for the MIMO Broadcast Channel with Imperfect Channel State Information [J]. IEEE Trans. Commun. 59 (3):803-814
    [103]J. Zhang, J. G. Andrews and R. W. Heath.2009. Block Diagonalization in the MIMO Broadcast Channel with Delayed CSIT [C]. proc. of Globecom 2009.1-6
    [104]邱玲、许杰和刘蓓等.2011.多用户、多小区MIMO通信技术[M].人民邮电出版社.
    [105]K.-B. Huang and R. Zhang.2011. Cooperative precoding with limited feedback for MIMO interference channels [J]. to appear in IEEE Transactions on Wireless Communications.
    [106]E. Jorswieck and E. G. Larsson.2008. The MISO interference channel from a game-theoretic perspective:a combination of selfishness and altruism achieves pareto optimality [C].Proc. ICASSP 2008.
    [107]E. A. Jorswieck and E. G. Larsson.2010. Monotonic optimization framework for the two-user MISO interference channel [J]. IEEE Trans. Commun.58 (7):2159-2168
    [108]E. A. Jorswieck, E. G. Larsson and D. Danev.2008. Complete characterization of the Pareto boundary for the MISO interference channel [J]. IEEE Trans. Signal Process.56 (10): 5292-5296
    [109]L. Liu, R. Zhang and K.-C. Chua. Achieving Global Optimality for Weighted Sum-Rate Maximization in the K-User Gaussian Interference Channel with Multiple Antennas [J]. submitted to IEEE Trans. Wireless Commun.
    [110]J. Qiu, R. Zhang, Z.-Q. Luo, et al.2011. Optimal Distributed Beamforming for MISO Interference Channels [J]. IEEE Tans. Signal Process.59 (11):5638-5643
    [111]R. Zhang and S. Cui.2010. Cooperative interference management with MISO beamforming [J]. IEEE Trans. Signal Process.58 (10):5450-5458
    [112]V. R. Cadambe and S. A. Jafar.2008. Interference Alignment and Degrees of Freedom of the K-User Interference Channel [J]. IEEE Trans. Inform. Theory.54 (8):3425-3441
    [113]S. Shamai and B. M. Zaidel.2001. Enhancing the cellular downlink capacity via co-processing at the transmitting end [C]. IEEE proc. of Vehicular Technology Conference 2001 Spring.31745-1749
    [114]J. Zhang and J. G. Andrews.2010. Adaptive spatial intercell interference cancellation in multicell wireless networks [J]. IEEE J. Sel. Areas Commun.28 (9):1455-1468
    [115]J. Zhang, R. Chen, J. G. Andrews, et al.2009. Networked MIMO with clustered linear precoding [J]. IEEE Trans. Wireless Commun.8 (4):1910-1921
    [116]E. Bjornson, M. Bengtsson and B. Ottersten.2010. Optimality properties and low-complexity solutions to coordinated multicell transmission [C]. Proceedings of IEEE Globecom.
    [117]E. Bjornson, M. Bengtsson and B. Ottersten.2011. Pareto Characterization of the Multicell MIMO Performance Region With Simple Receivers [J]. Submitted to IEEE Transactions on Signal Processing, in May.
    [118]E. Bjornson, N. Jalden, M. Bengtsson, et al.2011. Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission [J]. IEEE Transactions on Signal Processing.59 (12):6086-6101
    [119]E. Bjornson, R. Zakhour, D. Gesbert, et al.2010. Cooperative multicell precoding:rate region characterization and distributed strategies with instantaneous and statistical CSI [J]. IEEE Trans. Signal Process.58 (8):4298-4310
    [120]E. Bjornson, G. Zheng, M. Bengtsson, et al.2011. Robust Monotonic Optimization Framework for Multicell MISO Systems [J]. submitted to IEEE Transactions on Signal Processing.
    [121]R. Zhang.2010. Cooperative multi-cell block diagonalization with per-base-station power constraints [J]. IEEE Journal on Selected Areas in Communications, special issue on cooperative communications for cellular networks.28 (9):1435-1445
    [122]R. Zakhour and D. Gesbert.2010. Distributed multicell-MISO precoding using the layered virtual SINR framework [J]. IEEE Trans. Wirel. Commun.9 (8):2444-2448
    [123]R. Zakhour and D. Gesbert.2011. Optimized data sharing in multicell MIMO with finite backhaul capacity [J]. IEEE Transactions on Signal Processing.59 (12):6102-6111
    [124]Z. Chong and E. Jorswieck.2011. Energy-efficient Power Control for MIMO Time-varying Channels [C]. Proc. of IEEE Online Green Communications Conference (GreenCom).
    [125]F. Heliot, O. Onireti and M. Imran.2011. An Accurate Closed-Form Approximation of the Energy Efficiency-Spectral Eficiency Trade-off over the MIMO Rayleigh Fading Channel [C]. proc. of IEEE ICC 2011 Workshop on Green Communications.
    [126]S. Boyd and L. Vandenberghe.2004. Convex optimization [M]. Cambridge University Press.
    [127]R. Zakhour and D. Gesbert.2009. Coordination on the MISO Interference Channel using the Virtual SINR Framework [C]. International ITG/IEEE Workshop on Smart Antennas (WSA' 09).
    [128]R. Zhang and Y. C. Liang.2008. Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks [J]. IEEE Journal of Selected Topics in Signal Processing, special issue on signal processing and networking for dynamic spectrum access.2 (1):88-102
    [129]S. Schaible.1983. Fractional programming [J]. Zeitschrift fur Operations Research.27 (1): 39-54
    [130]E. V. Belmega and S. Lasaulce.2011. Energy-Efficient Precoding for Multiple-Antenna Terminals [J]. IEEE Trans. Signal Process.59 (1):329-340
    [131]G. Miao, N. Himayat and G. Y. Li.2010. Energy-Efficient Link Adaptation in Frequency-Selective Channels [J]. IEEE Transactions on Communications.58 (2):545-554
    [132]G. W. Miao, N. Himayat, G. Y. Li, et al.2009. Cross-layer optimization for energy-efficient wireless communications:a survey [J]. (invited) Wiley Journal Wireless Commun. and Mobile Computing.9 (4):529-542
    [133]C. Isheden and G. Fettweis.2011. Energy-efficient link adaptation with transmitter CSI [C]. IEEE Proceeding of WCNC 2011.1381-1386
    [134]C. Isheden and G. P. Fettweis.2010. Energy-Efficient Multi-Carrier Link Adaptation with Sum Rate-Dependent Circuit Power [C]. IEEE Proceeding of Globecom 2010.
    [135]S. Sanayei and A. Nostratinia.2004. Antenna selection in MIMO systems, [J]. IEEE Commun. Mag.42 (10):68-73
    [136]D. Bertsekas.1999. Nonlinear Programming [M]. AthenaScientific.
    [137]C. Fung, W. Yu and T. Lim.2004. Multi-antenna downlink precoding with individual rate constraints:power minimization and user ordering [C]. The Ninth International Conference on Communications Systems (ICCS 2004).45-49
    [138]R. Chen, Z. Shen, J. G. Andrews, et al.2008. Multimode Transmission for Multiuser MIMO Systems With Block Diagonalization [J]. IEEE Trans. Signal Processing.56 (7): 3294-3302
    [139]T. Yoo and A. J. Goldsmith.2006. Capacity and power Allocation for fading MIMO channels with channel estimation error [J]. IEEE Trans. Inf. Theory.52 (5):2203-2214
    [140]P. Rapajic and D. Popescu.2000. Information capacity of a random signature multiple-input multiple-output channel [J]. IEEE Trans. Commun.48 1245-1248
    [141]G. Miao, N. Himayat, Y. Li, et al.2009. Interference-aware energy-efficient power optimization [C]. Proceedings of IEEE ICC.
    [142]F. MeshkatiH, V. Poor, S. C. Schwartz, et al.2009. Energy-efficient resource allocation in wireless networks with quality of service constraints [J]. IEEE Trans. Commun.57 (11): 3406-3414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700