用户名: 密码: 验证码:
昆明市斜坡灾害预警信息生成机理及服务研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜坡灾害是斜坡岩土在重力作用下失稳并给人类带来生命财产损失的灾害事件。斜坡灾害发生的范围广,造成的后果严重,给世界上大多数国家带来了巨大的损失。为减少灾害发生带来的损失,人们很早以前就对斜坡灾害产生的原因进行了研究。逐步掌握了其发生及发展的规律,也弄清了斜坡灾害和其它一些自然现象如降雨、地震之间的关系。在此基础上,人们建立了一些预警机制来试图减小斜坡灾害带来的危害,但效果却不尽如人意,斜坡灾害发生的数量仍居高不下。
     我国是一个多山国家,这就为斜坡灾害的发生提供了“温床”,特别是在地广人稀的山区,斜坡灾害频频发生,对人类的生命财产威胁尤为突出。在和谐发展的背景下,研究斜坡灾害预警的体系结构,加强预警信息化建设以降低山区斜坡灾害危害无疑是具有重大价值的举措。
     在防灾减灾的需求下,我国目前建立了地质灾害评估及预警体系。预警信息系统是其中信息化程度高、发展迅速的一项工作,并且逐步形成了由全国、省、市各级政府主导,围绕易发生灾害的行政区域、流域、公路、铁路和矿山等地段的不同级别的地质灾害预警信息系统。从总体上看,这些系统构成了一个层次分明、自上而下的地质灾害预警体系。然而由于现有预警系统并未充分考虑信息共享问题,这些系统之间缺乏充分的信息沟通,普遍存在各层之间割裂严重,通信渠道不畅通,缺乏必要的信息的交互等不良现象,逐步演化为一个个“信息孤岛”。这些预警系统普遍存在预警结果精度较低、基础数据来源渠道较窄、公众参与机制缺乏等不足,难以用于指导经济不发达、地广人稀的山区防灾工作。而且,现有预警系统无法满足预警研究中所需的多学科交叉要求。
     斜坡灾害预警理论研究是涉及到自然科学与社会科学研究的交叉学科,其应用是一个信息在专家、政府部门和普通公众中进行加工和传播的复杂过程,涉及到技术、组织和社会三大领域。因此,预警信息系统的建立需要满足几个方面的需要。一是需要满足多学科综合科研的需求,二是要保障所涉及的三个领域之间的沟通渠道足够畅通,三是要能为公众提供便捷的预警服务,最后一点也是最为重要的就是能够提升预警结果的准确性和政府决策的正确性。
     为提升预警结果的准确性,首先要进一步拓宽预警输入信息的来源,提升综合处理、融合各种类型监测信息的能力。在综合预警评估过程中增加对灾害体的实时监测结果和群测群防信息的考虑,能够从更多角度探查斜坡灾害发生的可能性,提升重点区域预警结果的正确性。群测群防体系一直是山区防灾减灾的重要策略,它遵循“以人为本”的指导思想,即针对人类居住和活动的重点区域,更多地依赖人去完成对斜坡灾害的监测预警。因此群测群防信息无疑是预警系统重要的数据来源,预警系统需要建立相应的机制来处理这些极具广泛性、不确定性和不稳定性的数据。
     其次要充分利用迅速发展的网络技术,以全新的思路构建一个面向服务的开放式斜坡灾害预警体系,从而搭建一个能够用于多学科综合科研和多信息来源综合预警的新体系。该体系需要具备如下特点:一是要以“服务”为中心,为数据获取和功能调用提供统一的接口,实现信息与服务的整合,进而支持预警所需的协同处理式工作;二是具有开放的获取、处理数据的能力,支持各种空间信息获取方法和设备,并提供多种标准接口获取预警所需的信息;三是能够进行多尺度时空数据融合,支持不同尺度、异源的预警信息的融合,从而提高预警结果的准确度;四是能够综合利用现有网络技术、空间信息技术来支撑从原始信息和监测信息收集到信息的加工处理、预警结果的传输这一完整的预警过程;五是能够进行分布式信息处理,利用多个计算机协同处理预警评估所需的大量信息和大量计算工作;六是具有集成现有系统的能力,使新建系统能够集成现有地质灾害预警信息系统,从而保障系统建设的延续性、继承性和兼容性,保护用户投资;七是具有支持异构系统互操作的能力,通过开放的技术标准,实现系统互操作和信息的一致性;八是具有适应动态变化的能力,在业务需求、系统运行管理策略或使用模式变化时,能够适应这些动态变化。
     论文在上述思想指导下,取得了如下成果。
     在系统中加入对灾害体实时监测信息和群测群防信息的采集和处理,统一了信息共享的标准并设计了采集和处理此类信息的软件,使用多种模型将监测信息和群测群防信息转变为专题预警信息用于综合预警评估。这些信息可以改善山区斜坡灾害预警数据缺乏的局面,提升预警结果的准确性。
     以面向服务的方式来共享基础数据。采用OpenGIS标准发布以空间表达作为重点的环境因素等信息,用Sensor Web标准发布同时以空间和时间表达作为重点的监测等信息,并探索性地提出栅格传感器概念和标准用于发布同时以空间、时间和尺度表达作为重点的专题预警信息。这些方法具有简易、标准的特点,能够为开放式预警信息系统的基础数据共享提供保障。在具体实现方面,依据是否需要提供完整的地理信息处理功能,对市级政府管理机构、科研机构与其他机构的基础信息共享子系统分别使用专业GIS软件ArcServer与开源GIS信息发布软件GeoServer进行搭建。这种按需设计的方法和开源软件的选用能够有效降低软件成本。
     以1km×lkm栅格为评价单元,采用信息量模型计算了传统地质灾害易发性评价中认为影响最大的三类环境因素(高程、坡度和岩性)能够为昆明市斜坡灾害易发性评价提供的信息量。结果表明,在现有数据条件下,对昆明这样的山区使用传统的易发性评价方法,其可靠性偏低。而分形丛集分布则更为简单、可靠、易实现自动更新。
     把综合预警评估作为一个决策过程,使用多传感器数据融合方法来综合易发性评估、气象等专题预警信息等,经多次融合生成最终预警结果。为了融合这些异源信息,将所有专题预警信息统一为对五类结果(不预警、三级、四级、五级和不定)的测度,选择D-S证据方法对专题预警信息进行融合。这可以使政府管理人员获取并处理多方面的斜坡灾害预警信息,从而为预警决策提供更为全面、科学、客观的结果。
     将公众参与地理信息系统(PPGIS)融入到预警系统中,以增强普通公众和专家、政府管理人员之间的联系。并利用开源桌面应用程序WorldWind调用Web服务的方式解决现有PPGIS难以处理三维信息的问题,从而帮助普通公众更有效地理解地理环境及灾害预警信息并有效参与到斜坡灾害防治过程中。
     提出了斜坡灾害预警信息系统的概念框架,并采用面向服务软件架构方式对其进行基础设计和原型系统的实现,满足系统实际运用上的信息共享需求,能够改善现有系统信息共享困难的问题。
     总之,斜坡灾害预警研究是涉及到自然科学与社会科学研究的交叉学科,现有研究成果还难以从根本上解决灾害预警的问题,达到让人们避开所有斜坡灾害的目的。因此本研究尝试搭建起一个用于斜坡灾害信息共享和多学科协作科研的平台,在不断的研究和实际应用中探寻恰当的方式和方法,最终实现人类认识和避让灾害的最终目的。
Landslides refer to geological hazards which are triggered by failure of slopes due to the drive of gravity. Most countries in the world have to suffer great loss caused by landslides for its wide range of occurrence. Studies have been done long ago to decrease the losss from it happening. It is found that landslides occur in certain patterns and the relationships between landslides and other natural phenomena such as rains and earthquakes are made certain. Hence, different early warning systems have been built to minimize harms caused by landslides but they fail to work satisfactorily. Landslides still happen in large quantities.
     China is mountainous and this makes it prone to more landslides. Thus, it's significant, in the spirit of harmonious development, to study and strengthen the construction of early warning systems of landslides in mountainous areas to reduce harm of landslides.
     Geological hazard evaluation and early warning systems have been constructed to prevent and reduce life and property loss. Early warning system contains different levels of sub-systems to evaluate geological hazard which, under the leadership of national, provincial and municipal government, focus on districts, roads, railways and mines which are vulnerable to geological hazards. It looks that these systems form a top-down mechanism. Nevertheless, lack of good communication among them gives rise to poor information flow and impossibility of sharing necessary information. Hence, these sub-systems are changed into "information islands". Common are the problems existing in these systems—less precise early warnings, narrow source of basic information data and insufficient public participation etc. Therefore, they can't be applied to preventing geological hazards in mountainous areas.
     Research on early warning of landslides involves both natural science and social science and its application is a complex process of information processing and transmission among experts, governments and the public. In other words, three different categories are involved—technology, organization and society. Hence, the following needs must be satisfied, namely, need for comprehensive multidisciplinary study, need to ensure fluent information flow among the three above-mentioned categories, need to offer quick and convenient early warning service, the last but the utmost important one—need to enhance accuracy of early warnings and decision-making by governments.
     Enhancing accuracy of early warnings begins with broadening sources of early warning information and improving ability to deal with and integrating all kinds of supervising information. Real-time supervision on geological hazard bodies and mass monitoring and preventing ensures a relatively accurate probability of hazard occurrence. Mass monitoring and preventing serves as the most effective measure to prevent hazards in mountainous areas and hence information got this way should be an important source. But current early warning systems lack efficient way to cope with these data and therefore to informationize mass monitoring and prevent becomes a blind spot.
     Moreover, an open early warning system for landslides is to be constructed with the assistance of rapidly developing network technology. Thus a new complex early warning system is to be applied to multi-disciplinery research and multi-source of information can be ensured. Characteristics of this new system are as following:being service-oriented to offer uniform interface for getting information and service deployment to actualize the integration of information and service; being open to guarantee ability to get and process data and back up various kinds of methods and facilities to get spacial information; multi-scale spatio-temporal data integration to support heterogenous early warning information; combination of network and spatial information technology to collect and process original information and transmit warnings; distributed information processing to guarantee synergistic processing of mass information by multiple computers; continuity, inheritance and compatibility arising from integration of the current systems into early warning systems of geological hazards to protect users' investments; heterogeneous systems interoperability to ensure the uniform of information.
     The following achievements have been made in this paper with the guidance of the above-mentioned.
     First, the system is capable of collecting and processing information of real-time supervision on geological hazard bodies and information of mass monitoring and preventing. Standards for information sharing are unified and software to collect and process such information has been developed. Furthermore, this system translates collected information into early warning information on a certain subject. This improves the current situation in mountainous areas—lacking early warning information on landslides.
     Secondly, the system is service-oriented so that basic data can be shared. OpenGIS is employed to issue information focusing on spatial expression such as environmental factors and Sensor Web to issue supervision information focusing on space and time.
     An attempt is made to apply Grid Sensors and its standards to special information which focuses on space, time and scale at the same time. These tools are convenient and serve as standard and hence guarantee the sharing of basic data in open early warning systems.
     Thirdly, valuation unit of 1km*1km and information model are used to count the degree to which the information offered by three environmental factors which are regarded as the most influential by traditional susceptibility evaluation systems contributes to Kunming landslide susceptibility evaluation. Traditional evaluation systems are less liable because Kunming is a mountainous area. Fractal cluster distribution is characterized by its simplicity, liability and convenient automatic updates.
     Fourthly, comprehensive early warning evaluation integrates multi-sensor data to unify all special early warning information such as information on susceptibility evaluation and weather to give early warnings. All the early warnings are classified into three categories (including 5 grades), namely, no warning (grade 1 and 2), warning (grade 3,4,5) and indefinable warning. D-S evidence is used to integrate special early warnings, which enables government to collect and cope with early warning information on landslides and make comprehensive, scientific and objective decisions.
     Fifthly, PPGIS deals with feedbacks from the public on early warning information and WorldWind, an open-source desktop application, is used to deploy Web services to solve problems with current PPGIS in dealing with three-dimensional information. Thus the public can recognize geological environment and early warning information so as to participate in prevention and control of landslides.
     A conceptual framework of early warning system for landslides has been worked out and the service-oriented construction has been employed to actualize its basic design and prototypes, which will eventually eliminate "information islands".
     In all, early warning system research, an interdisciplinery research, involves both natural science and social science. Early warning of hazards is still difficult to overcome, let alone to avoid all the potential landslide hazards. Therefore, an interface has been constructed to share information on landslides and multi-disciplinery research so as to seek, in practice, appropriate means to realize the ultimate purpose—to recognize and prevent natural hazards.
引文
[1]Hovius N, Stark C P, Allen P A. Sediment flux from a mountain belt derived by landslide mapping[J]. Geology,1997,25(3):231-234.
    [2]Claessens L, Schoorl J M, Veldkamp A. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds:An application for Northern New Zealand [J]. Geomorphology,2007, 87:16-27.
    [3]Chang K T, Chiang S H, Lei F. Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions [J]. Earth Surface Processes and Landforms,2008,33(8):1261-1271.
    [4]White I D, Mottershead D N, Harrison J J. Environmental systems,2nd edn[M]. London:Chapman & Hall,1996.
    [5]Caine N. The Rainfall Intensity:Duration Control of Shallow Landslides and Debris Flows[J]. Geografiska Annaler,1980,62:23-27.
    [6]Cannon S H, Ellen S D. Rainfall conditions for abundant debris avalanches,San Francisco Bay region,California [J]. California Geology,1985,38:267-272.
    [7]Wieczorek G F. Effect of Rainfall Intensity and During on Debris Flows in Central Santa Cruz Mountains[J]. Geological Society of America, Reviews in Engineering Geology,1987,7:93-104.
    [8]Keefer D K, Wilson R C, Mark R K, et al. Real-Time Landslide Warning During Heavy Rainfall[J]. Science,1987,238(13):921-925.
    [9]Lumb P. Slope failures in Hong Kong[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1975,8(1):31-65.
    [10]Brand E, Premchitt J, Phillipson H. Relationship between rainfall and landslides in Hong Kong[A].1984.
    [11]Montgomery D R, Dietrich W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research,1994,30:1153-1171.
    [12]Wu W, Sidle R C.A distributed slope stability model for steep forested basins[J]. Water Resources Research,1995,31:2098-2110.
    [13]Pack R T, Tarboten D G, Goodwin C N, GIS-based landslide susceptibility mapping with SINMAP. In Proceedings:34th Symposium on Engineering Geology and Geotechnical Engineering, Logan, Utah,1998; pp 219-231.
    [14]Borga M, Dalla Fontana G, Gregoretti C, et al. Assessment of shallow landsliding by using a physically based model of hillslope stability[J]. Hydrological Processes,2002,16:2833-2851.
    [15]Casadei M, Dietrich W E, Miller N L. Testing a Model for Predicting the Timing and Location of Shallow Landslide Initiation in Soil-Mantled Landscapes[J]. Earth Surface Processes and Landforms,2003,28(9): 925-950.
    [16]Montgomery D R, Sullivan K, Greenberg H M. Regional test of a model for shallow landsliding[J]. Hydrological Processes,2002,12:943-955.
    [17]Gorsevski P V, Gessler P E, Bill J, et al. Spatial and temporally distributed modeling of landslide susceptibility[J]. Geomorphology,2006,80:178-198.
    [18]Carrara A, Crosta G, Frattini P. Comparing models of debris-flow susceptibility in the alpine environment[J]. Geomorphology,2008,94:353-378.
    [19]Ohlmacher G C, Davis J C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology,2003,69:331-343.
    [20]Can T, Nefeslioglu H A, Gokceoglu C, et al. Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses[J]. Geomorphology,2005,72:250-271.
    [21]Yesilnacar E, Topal T. Landslide susceptibility mapping:a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)[J]. Engineering Geology,2005,79:251-266.
    [22]殷坤龙,张桂荣,龚日祥,等.基于Web-GIS的浙江省地质灾害实时预警预报系统设计[J].2003,30(3):19-23.
    [23]张桂荣,殷坤龙,刘礼领,等.基于WEB的浙江省降雨型滑坡预警预报系统[J].2005,30(2):250-254.
    [24]张桂荣,殷坤龙,刘礼领,等.基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统[J].2005,26(8):1312-1317.
    [25]刘传正,李铁锋,程凌鹏,等.区域地质灾害评价预警的递进分析理论与方法[J].水文地质工程地质,2004,31(4):1-8.
    [26]刘传正,李云贵,温铭生,等.四川雅安地质灾害时空预警试验区初步研究[J].水文地质工程地质,2004,31(4):20-30.
    [27]Terzaghi K. Principles of soil mechanics[M]. New York:The McGraw-Hill Companies,1925.
    [28]李长江,麻土华,朱兴盛.降雨型滑坡预报的理论、方法及应用[M].2008.
    [29]Brand E W, Premchitt J, Phillipson H B, Relationship between rainfall and landslides in Hong Kong. In; Canada:BiTech Publishers:Toronto,1984; pp 377-384.
    [30]唐灿,李铁锋,温铭生,等.国家级地质灾害气象预警预报理论与方法.见:全国第五次地质灾害防治学术大会,2006.
    [31]Aleotti P. A warning system for rainfall-induced shallow failures [J]. Engineering Geology,2004, (73): 247-265.
    [32]麻土华.突发性地质灾害概率预报(警)系统(LAPS)原理简介[J].2004,(10):50-51.
    [33]Alexander D E. A brief survey of GIS in mass-movement studies, with reflections on theory and methods[J]. Geomorphology GIS technology and models for assessing landslide hazard and risk,2008,94(3-4): 261-267.
    [34]刘传正,温铭生,唐灿.中国地质灾害气象预警初步研究[J].地质通报,2004,23(4):303-309.
    [35]张红兵.云南省地质灾害预报预警系统[J].云南地质,2006,25(3):297-302.
    [36]殷坤龙,张桂荣,龚日祥,等.浙江省突发性地质灾害预警预报[M].2005.
    [37]Pickles J, Representations in an Electronic Age:Geography, GIS, and Democracy. In Ground Truth:The Social Implications of Geographic Information Systems, Pickles J,'Ed.'; Guilford Press:New York,1995; pp 1-30
    [38]Al-Kodmany K, E-community participation:communicating spatial planning and design using web-based maps. In Socio-economic Applications of Geographic Information Science, David B. Kidner G H S W,'Ed.'; Taylor & Francis:New York,2002; pp 69-92
    [39]Kingston R, Web-based PPGIS in the United Kingdom. In Community Participation and Geographic Information Systems, Craig W, Harris T, Weiner D, "Eds.'; Taylor & Francis:New York,2002; pp 101-112
    [40]Obermeyer N. PPGIS:The Evolution of Public Participation GIS[J]. Cartography and Geographic Information Systems,1998,25(2):65-66.
    [41]Sheppard E. GIS and Society:Towards a Research Agenda[J]. Cartography and Geographic Information Science,1995,22:5-16.
    [42]Berners-Lee T, Hall W, Hendler J, et al. Creating a science of the web[J]. Science,2006,313:769-771.
    [43]Shneiderman B. Web science:a provocative invitation to computer science[J]. Communication of ACM, 2007,50(6):25-27.
    [44]Hey T, Trefethen A E. Cyberinfrastructure for e-Science[J]. Science,2005,308:817-821.
    [45]Denzer R. Generic integration of environment decision support systems-state-of-the-art[J]. Environmental Modelling & Software,2005,20(10):1217-1223.
    [46]Goodall J L, Horsburgh J S, Whiteaker T L, et al. A first approach to web services for the national water information system[J]. Environmental Modelling & Software,2008,23(3):304-401.
    [47]云南省地质局第二区域地质测量大队.区域地质调查报告(昆明幅)(地质部分)[R].1971.
    [48]刘益.昆明市地质灾害危险性区划研究[硕士学位论文].昆明理工大学,2006.
    [49]易发成王哲.我国地质灾害区划及其研究现状[J].2006,15(10):47-50.
    [50]周勇.崩、滑、流灾害的国内外现状[J].西部探矿工程,2007,19(2):170-174.
    [51]Varnes D J. Slope movement types and processes[A]. SCHUSTER R L, Krizek R J. Transportation Research Board,1978.11-33.
    [52]金德山.建设用地地质灾害危险性评估中几个问题的思考[J].中国地质灾害与防治学报,2004,15(4):101-103.
    [53]Blochl A, Braun B. Economic assessment of landslide risks in the Swabian Alb, Germany; research framework and first results of homeowners'and experts'surveys[J]. Nat. Hazards Earth Syst. Sci.,2005,5(3): 389-396.
    [54]SONG R H, HIROMU D, KAZUTOKI A, et al. Modeling the potential distribution of shallow-seated landslides using the weights of evidence method and a logistic regression model:a case study of the Sabae Area, Japan[J]. International Journal of Sediment Research,2008,23(2):106-118.
    [55]李媛,孟晖,董颖,等.中国地质灾害类型及其特征--基于全国县市地质灾害调查成果分析[J].中国地质灾害与防治学报,2004,15(2):29-34.
    [56]张信宝,中国斜坡灾害.见:全国地貌与第四纪学术会议暨丹霞地貌研讨会、海峡两岸地貌与环境学术研讨会,广东韶关,2004;pp 224-230.
    [57]张红兵,金德山.影响云南省滑坡泥石流活动的几个自然因素[J].水文地质工程地质,2004,31(5):38-41.
    [58]李强.突发性地质灾害系统浅析[J].1992,:5.
    [59]Chen H, Lee C. Numerical Simulation of Debris Flows[J]. Canadian Geotechnical Journal,2000, (37): 146-160.
    [60]http://www.gsdkj.net/pro/view.php?id=11855[EB/OL].
    [61]陆业海.新滩滑坡征兆及其成功的监测预报[A].武汉:武汉工业大学出版社,1995.1-9.
    [62]任幼蓉,张军,陈鹏.重庆市金佛山甄子岩危岩的动态监测与预警预报[A].北京:中国大地出版社,2005.213-218.
    [63]Varnes D J. Landslide hazard zonation:a review of principles and practice[M]. Paris:UNESCO Press, 1984.
    [64]Carrara A, Cardinali M, Detti R, et al. GIS Techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landform,1991,16:427-445.
    [65]Hutchinson J N, Chandler M P. A preliminary landslide hazard zonation of the Undercliff of the Isle of Wight[M]. London:Thomas Telford,1991.
    [66]Hutchinson J N. landslide hazard assessment[M]. Rotterdam:Landslides. Balkema,1995.
    [67]Turner A K, Schuster R L. Landslides, investigation and mitigation[M]. WA:National Academy Press, 1995.
    [68]Rib H T, Liang T. Recognition and identification[M]. WA:National Academy of Sciences,1978.
    [69]Hansen A. Landslide hazard analysis[M]. New York:Wiley,1984.
    [70]Hutchinson J N, General report:morphological and geotechnical parameters of landslides in relation to geology and hydrology. In 5th International Symposium on Landslides, Lausanne,1988; pp 3-35.
    [71]Dikau R, Brunsden D, Schrott L, et al. Landslide recognition[M]. England:Chichester,1996.
    [72]Dietrich E W, Reiss R, Hsu M L, et al. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data[J]. Hydrological Process,1995,9:383-400.
    [73]Meijerink A M J. Data acquisition and data capture through terrain mapping unit[J]. ITC Journal,1988,1: 23-44.
    [74]Carrara A, Guzzetti F. Geographical Information Systems in Assessing Natural Hazards[M]. The Netherlands:Kluwer Academic Publisher,1995.
    [75]Guzzetti F, Carrara A, Cardinali M, et al. Landslide Hazard Evaluation A Review Of Current Techniques And Their Application In A Multi-scale Study, Central Italy[J]. Geomorphology,1999,31:181-216.
    [76]Carrara A. A multivariate model for landslide hazard evaluation[J]. Mathematical Geology,1983,15: 403-426.
    [77]Bernknopf R L, Campbell R H, Brookshire D S, et al. A probabilitic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluation[J]. Bulletin American Association of Engineering Geologists,1988,25(1):39-56.
    [78]Pike R J. The geometric signature:quantifying landslideterrain types from digital elevation models[J]. Mathematical Geology,1988,20(5):491-511.
    [79]Van W C J. Application of Geographical Information System to landslide hazard zonation[M]. The Netherlands:ITC Publication,1993.
    [80]Van W C J. GIS in landslide hazard zonation:a review with examples from the Colombian Andes[M]. London:M.F., Heywood, D.I.,1994.
    [81]Mark R K, Ellen S D. Statistical and simulation models for mapping debris-flows hazard[M]. The Netherlands:Kluwer Academic Publisher,1995.
    [82]Cooke R U, Doornkamp J C. Geomorphology in environmental management[M]. Oxford:Clarendon Press,1974.
    [83]Speight J. Landform pattern description from aerial photographs[J]. Photogrammetry,1977,32:161-182.
    [84]Burnett A D, Brand E W, Styles K A, Terrain classification mapping for a landslide inventory in Hong Kong. In 4th International Conference and Field Workshop on Landslides, Tokyo,1985; pp 63-68.
    [85]Meijerink A M J. Data acquisition and data capture through terrain mapping unit[J]. ITC Journal,1988,1: 23-44.
    [86]Hansen A, Franks C A M, Kirk P A, et al. Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong[M]. Dordrecht,The Netherlands:Kluwer Academic Publisher,1995.
    [87]Bonham-Carter G F. Geographic Information Systems for Geoscientists:Modelling with GIS[M]. Pergamon, Ottawa:1994.
    [88]Chung C F, Fabbri A G. Multivariate regression analysis for landslide hazard zonation[M]. Dordrecht, The Netherlands:Kluwer Academic Publisher,1995.
    [89]Carrara A. Drainage and divide networks derived from high-fidelity digital terrain models[M]. Reidel, Dordrecht:1988.
    [90]刘传正,张明霞,孟晖.论地质灾害群测群防体系[J].防灾减灾工程学报,2006,26(2):175-179.
    [91]Sorensen J H. Hazard warning systems:review of 20 years of progress[J]. Natural Hazards Review,2000, 1:119-125.
    [92]Inyang H, Galvao T C B, Young D T. Integrating hazards control into sustainable development plans[J]. Natural Hazards Review,2003,4:57-58.
    [93]Trim P R J. An integrative approach to disaster management and planning[J]. Disaster Prevention and Management,2004,13:218-225.
    [94]Granell C, Diaz L, Gould M, Managing earth observation data with distributed geoprocessing services. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2007),; IEEE CS:2007; pp 4777-4780.
    [95]OGC 06-042. OpenGIS Web Map Server Implementation Specification[S].
    [96]OGC 04-094. Web Feature Service Implementation Specification[S].
    [97]OGC 07-067r5. Web Coverage Service (WCS) Implementation Standard[S].
    [98]OGC 05-007r7. OpenGIS Web Processing Service[S].
    [99]Delin K A, Jackson S P. The sensor web:A new instrument concept[J]. the International Society for Optical Engineering,2001,4284:1-9.
    [100]Sohrabi K, Messile W, Elson J, et al, Scaleable self-assembly for ad hoc wireless sensor networks. In 2002 IEEE Circuits and Systems Society Workshop on Wireless Communications and Networking, Pasadena, 2002; p 8.
    [101]Koch C, Laurent G. Complexity and the nervous system[J]. Science,1999,284:96-98.
    [102]Liang S H L, Croitoru A, Tao C V. A distributed geospatial infrastructure for Sensor Web[J]. Computers and Geosciences,2005,31(2):221-231.
    [103]OGC 07-165. OGC Sensor Web Enablement:Overview And High Level Architecture[S].
    [104]Rittel H W J, Webber M M. Dilemmas in a general theory of planning[J]. Policy Sciences,1973,4(2): 155-169.
    [105]Tang M Y T. Design of a GIS-Enabled Online Discussion Forum for Participatory Planning[R].2006.
    [106]Renate S, Alenka K, Thomas B. Can Online Map-Based Applications Improve Citizen Participation?[J]. E-Government:Towards Electronic Democracy,2005,:25-35.
    [107]云南省地质环境监测总站.云南省昆明市地质灾害调查评价报告[R].2000.
    [108]孔志岗.潜在斜坡地质灾害研究-以昆明市为例[硕士学位论文].昆明理工大学,2007.
    [109]殷坤龙.滑坡灾害预测预报[M].中国地质大学出版社,2004.
    [110]Kohonen T. The self-organizing map[J]. Proceedings of the IEEE,1990,78(9):1464-1480.
    [111]Mandelbrot B B. The fractal geometry of nature[M]. New York:W. H Freeman and Company,1983.
    [112]Turcotte D L. Fractals and Chaos in Geology and Geophysics[M]. New York:Cambridge Univ. Press, 1992.
    [113]李长江,麻土华,朱兴盛.矿产勘查中的分形,混沌与ANN[M].北京:地质出版社,1999.
    [114]陈颐,陈凌.分形几何学[M].北京:地震出版社,1998.
    [115]Bak P, Tang C, Wiesenfeld K. Self-organized criticality[J]. Phys. Rev. A,1988,38:364-374.
    [116]Mandelbrot B B. Self-Affine Fractals and Fractal Dimension[J]. Phys. Scr,1985,32:257-260.
    [117]杨露菁,余华.多源信息融合理论与应用[M].北京:北京邮电大学出版社,2006.
    [118]王雷.基于DEM的东川泥石流地质环境遥感研究[硕士学位论文].昆明理工大学,2008.
    [119]West G B, Brown J H, Enquist B J. The Fourth Dimension of Life:Fractal Geometry and Allometric Scaling of Organisms [J]. Science,1999,284:1677-1679.
    [120]Papazoglou M, Heuvel V D. Service oriented architectures:approaches, technologies and research issues[J]. The VLDB Journal,2007,16(3):389-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700