用户名: 密码: 验证码:
辣椒对疫病的抗性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒是一种世界性的蔬菜,也是我国重要的经济作物。辣椒疫病在我国许多省市普遍发生,成为我国辣椒生产的严重障碍。我们通过建立辣椒抗病性鉴定技术体系,分析抗疫病的生理生化基础,利用cDNA-AFLP技术研究不同生理小种的疫霉菌侵染辣椒后表达谱的差异,结合RACE技术获得阳性片段的全长,利用生物信息学分析这些基因的序列信息及它们所推测蛋白的二级结构、跨膜结构、信号肽和系统进化信息,利用半定量RT-PCR和实时定量技术研究这些基因的表达和调控,以期揭示辣椒抗疫病的抗性机理,为寻找培育广谱、高效、稳定的抗病品种奠定基础。本论文取得的主要研究成果如下:
     1.建立了辣椒抗疫病离体侧枝接种鉴定技术体系。以高抗品种CM334,中抗品种N3和感病品种EC为材料,研究了辣椒抗疫病的离体侧枝接种鉴定技术。以辣椒第二次分枝后,由第一次分支处剪下的侧枝作为接种对象,在疫霉菌游动孢子悬浮液浓度为1×10~4个/mL,温度为28℃,4000lx,12h/d光照条件下接种,抗、感品种差异最为明显。用该方法对34份材料进行鉴定,并与已报导的离体叶片接种法,切茎接种法和灌根接种法进行了比较,统计分析表明,该方法与其他3种方法均呈显著正相关,相关系数分别为:r=0.9150** r=0.8730**和r=0.8384**,说明该方法能真实反映辣椒对疫病的抗性。
     2.分析了保护酶活性与辣椒抗疫病的关系。对不同抗性品系A5、A3、EC受到疫霉菌ph3侵染后和专化抗性品系A3受到不同生理小种ph1和ph3侵染后,植株过氧化物酶、苯丙氨酸解氨酶、多酚氧化酶、β-1,3-葡聚糖酶和几丁质酶活性进行测定和比较。经SAS分析表明,在供试的品种中,不同抗性品系的辣椒接种疫霉菌后,抗病与感病类型的保护酶具有明显差异,且这种差异具有明显的规律性。辣椒抗疫病的性状与植株体内的过氧化物酶、多酚氧化酶、苯丙氨酸解氨酶、β-1,3-葡聚糖酶和几丁质酶活性呈正相关,这几种酶可以作为抗病性鉴定的间接指标。
     3.利用cDNA-APLP技术研究专化抗性品系A3分别接种不同生理小种的辣椒疫霉菌ph1和ph3后的表达差异,获得了差异表达片段80个。登录了其中22个,登录号为:GO496263,GO496264,GO496265,GO496266,GO496267,GO496268,GO496269,GO496270,GO496271,GO496272,GO496273,GO496274,GO496275,GO496276,GO496277,GO496278,GO496279,GO496280,GO496281,GO496282,GO496283,GO496284。
     4.获得六个抗疫病相关的新基因。利用RT-PCR选择阳性片段结合BLAST的信息选择感兴趣的片段,通过RACE技术获得六个新基因的全长,它们分别是CanTF基因(登录号FJ617518),CanPOD基因(登录号FJ596178),CanBPM4基因(登录号FJ617520),CanNADPH基因(登录号FJ617519 ),CanZf基因(登录号FJ596179),CanOBP基因(登录号FJ617521)。生物信息学分析表明,这六个基因都具有完整的开放阅读框架。其中CanPOD蛋白同时具有信号肽和跨膜结构,CanOBP蛋白仅具有跨膜结构而没有信号肽;其他几个基因所推测的蛋白不含信号肽,也不是跨膜蛋白。进化分析表明,CanNADPH与大戟科蓖麻属蓖麻NADPH:quinone oxidoreductase(EEF49550.1)的亲缘关系最近,辣椒CanZf与禾本科植物水稻锌指蛋白(Os03g0788800)亲缘关系最近。CanOBP被单独聚为一类,其次与低等的真核生物OBP蛋白合并,推测CanOBP可能是编码与辣椒疫霉菌互做相关蛋白的基因。
     5.利用半定量RT-PCR技术对CanPOD基因的表达进行了研究。不同抗性品系A5、A3、EC受到疫霉菌ph3侵染后,在高抗品种A5中表达最早,反应最为迅速,2h即达到顶峰;而在感病品种中,24h以内表达量变化不大,但表达的持续时间较长。专化抗性品系A3接种不同生理小种的疫霉菌ph3和ph1后,非亲和组合中,CanPOD基因表达迅速;而亲和组合中直至24h才达到略低于非亲和组合水平。研究结果表明,CanPOD基因与辣椒对疫病的抗性密切相关。
     6.利用实时定量技术对CanZf基因和CanOBP基因的表达进行了研究。荧光定量PCR分析表明在同一疫霉菌生理小种ph3侵染A3后,CanOBP基因和CanZf基因的表达量在根部和叶部有所区别,在根部表达高峰较早,为8h;在叶部稍微推迟,在12h达到高峰。CanOBP基因在叶部的表达量为对照的2万多倍,而CanZf基因在叶部的表达量为对照的28倍,说明这两个基因主要在叶部表达。分别在A3根部接种不同的生理小种ph3和ph1后,CanZf基因在非亲和组合中24h内表达量变化不大,在36h出现表达高峰;在亲和组合中,8h即达到最高峰值,且在24h内高于非亲和组合。非亲和组合中,CanOBP基因的表达量分别在2h和36h出现两个峰;而在亲和组合中,仅在8h出现一个峰值。这两个基因受不同辣椒疫霉菌生理小种的诱导后表达模式不同,说明其与辣椒疫病专化型抗性有关。
     7.利用实时定量技术对CanZf基因和CanOBP基因的表达调控进行了研究。分别用400mmol/L的甘露醇,400mmol/L的NaCl,5 mmol/L的水杨酸(SA),50 mmol/L的甲基茉莉酮酸(MeJA)和10 mmol/L H2O2和4℃低温处理辣椒材料A3。荧光定量PCR分析表明,CanOBP基因的表达受到SA和MeJA的强烈抑制,早期(8h前)受到H2O2抑制,但是该基因受到低温、干旱和高盐的诱导,提示它可能介导了辣椒对这些胁迫的反应。CanZf基因的表达受到低温、干旱胁迫的诱导和H2O2的抑制。SA和MeJA处理后,CanZf基因的表达也有差异,在2h受SA抑制,8h上升;而在12h内受到MeJA抑制。说明该基因可能参与了多种植物抗逆性途径,也可能该基因位于这些途径的交叉点。
     8.建立了辣椒遗传转化单倍体受体系统。在22个不同基因型材料,共有13个材料被诱导出胚状体,诱导成功率为59.09%。其中B19出胚率最高,达到22.86%。以P51和P53为实验材料,研究不同培养基和预处理温度对出胚率的影响。不同基因型对培养基的要求有差异。1mg/L 6-BA最适合P51,而4mg/LNAA+1mg/L6-BA更适合P53。变温处理(4℃,3d;35℃,4d)可以明显提高这两个基因型材料的诱导率。创制了一种辣椒小孢子诱导获得胚状体的培养方法,并已获得国家发明专利(专利号ZL200610042616.0)。
Pepper (Capsicum annuum L) which was widely planted around the world is an important economic vegetable crop in our country, while the pepper blight caused by Phytophthora capsici has been epidemic in many provinces and areas and has become the major limiting factor of pepper production. In this research, the evaluation technique of pepper resistance to Phytophthora capsici was development, the resistant mechanisms in physiology and biochemistry was investigated, and the difference in gene expression profile of Capsicum annuum infected by different physiological races of Phytophthora capsici was analyzed by cDNA-AFLP. After its full length was cloned via RACE technology, the sequence and structure characters of positive cDNA and corresponding protein were analyzed using bioinformatics, including the secondary structure , transmembrane zones, signal peptide and evolution pattern. The expression and regulation of these were analyzed by semi-quantitative RT-PCR and real-time quantitative techniques. The aim of this study is to reveal the resistant mechanism of pepper to P. capsici and establish basis for breeding of new pepper cultivar with resistance. The main results of our research are showed as follows:
     1. First, in vitro evaluation technique with lateral shoots of pepper resistance to Phytophthora capsici using CM334 with high resistance, N3 with moderate resistance and EC with sensitiveness. When the lateral shoots from the first branch after the second branch shot were inoculated with P. capsici, the difference of disease symptom between resistant and sensitive cultivars showed mostly significant under zoospore concentration with 1×104mL-1, temperature with 28℃, light intensity with 4000lx and photoperiod with 12h/d. Compared to in vitro leaf-inoculation, stem-inoculation and root-irrigating method, the evaluation results of 34 pepper materials using this technique showed marked positive correlation with these three common methods, and the correlation coefficient were0.9150** , 0.8730** and 0.8384**. These results suggested that the new technique could effectively evaluate the disease resistance of pepper to P. capsici.
     2. The changes of protective enzymes’activities were studied. The results showed that the activities of peroxidase (POD) were significantly higher in resistant cultivars than those in susceptible ones, though activities increased both in resistant and susceptible cultivars after inoculation. Results analysis showed that there was a positive correlation between the activities of phenylalanine ammonia lyase (PAL),polyphenol oxidase (PPO) ,β-1,3-Glucanase and chitinase and the pepper resistance to Phytophthora capsici.
     3. 80 ESTs of different expression gene were got from pepper tread with Phytophthora capsici. 22 ESTs were submitted to GenBank, whose accessed number are as follows: GO496263,GO496264,GO496265,GO496266,GO496267,GO496268, GO496269,GO496270,GO496271,GO496272,GO496273,GO496274,GO496275,GO496276,GO496277,GO496278,GO496279,GO496280,GO496281,GO496282,GO496283,GO496284.
     4. Six TDFs were selected and got full-length cDNA, they are CanPOD(FJ5961 78), CanZf(FJ596179), CanTF(FJ617518), CanNADPH(FJ617519),CanBPM4(FJ617 520), CanOBP(FJ617521). Bioinformatics analysis showed that these six genes all have a complete ORF.The deduced amino acid sequence of CanPOD and CanOBP were have typical trasmembrance protein and CanPOD protein has a typical singal peptide.Phylogenetic analysis showed taht CanNADPH had close relationship with Ricinus communisi NADPH:quinone oxidoreductase(EEF49550.1), CanZf had close relationship with oryza sativa Japonica zinc finger protein(Os03g0788800), the sequence of CanOBP is conservetive, it was conjectured CanOBP gene related to the interaction between pepper and Phytophthora capsici.
     5. CanPOD mRNA expression were analyzed by semi-quantitative RT-PCR. The results show that intensive expression of CanPOD gene was induced by Phytophthora capsici. Different dynamic changes in the expression of CanPOD gene of incompatible intera -ctions and compatible interactions, which of incompatible interactions the CanPOD was expressed early and quickly ,which of compatible interactions, the up-regulated time of this gene is long, from 8h to72h
     6. The expression of CanZf and CanOBP were detected by real-time quantitative PCR. After treat with different physiological races of Phytophthora capsici, the CanOBP gene is up-regulated expression in A3’s root of incompatible interactions and compatible interactions. There are two expression peaks of incompatible interactions which were at 2h and 36h; but there is only one expression peak of compatible interactions, which was at 8h. The expression is also different between root and leaf after inoculation with ph3. The expression maximal peak (at 12h) in leaves is later than that in root, but it particularly higher than that in root. Furthermore, low temperature(at4℃), drought(400mmol/Lmannitol), high salt concentration(400mmol/LNaCl) could lead to up-regulated expression of CanOBP, and CanOBP is inhibited by SA(5 mmol/L), MeJA(50mmol/L) and H202(10mmol/L).
     The expression of CanZf is also up-regulated after treat with different physiological races of Phytophthora capsici. In incompatible interactions, the expression is 63 times at 36h contrast with CK, and in compatible interactions, the expression is 81 times at 8h contrast with CK. In leaves, the expression of CanZf is similar to CanOBP. Low temperature (at 4℃) and drought(400mmol/Lmannitol) could induced to up-regulated expression of CanZf, and H202.(10mmol/L) could suppressed expression of CanZf. After the expression of CanZf inhibition early which treated with SA (5mmol/L), MeJA (50mmol/L) and high salt concentration (400mmol/LNaCl), it is up-regulated expression later.
     The results indicated that CanOBP and CanZf play important roles in pepper resistant to Phytophthora capsici, and it can responded to many stress.
     7. Establishment of high efficient pepper haploid cultivation system. Genotype is a limit factor for pepper haploid cultivation. In this article, anther culture of 22 genotypes were tested, the embryoes could induced from 13 genotypes.The best culture medium is 1 mg·L-1 6-BA for P51 and that is 4 mg·L-1 NAA +1 mg·L-1 6-BA for P53. Changing temperature is best for embryos induced, first 4℃,3d,and then 35℃,4d. We created a method of embryoid obtainment from induced microspore of pepper, and have access to national patent.
引文
[1]邹学校.中国辣椒[M].北京:中国农业出版社,2002
    [2]彭相儒,刘文朴,程秉铨.乌鲁木齐地区辣椒疫霉病田间症状及病原菌分离鉴定[J].新疆农业科学,1998,(3):126-128.
    [3]刘宝康.陕西省辣椒疫病的诊断[J].陕西农业科学,1993,3:13-14.
    [4]常彩涛.陕西辣椒疫病菌种的鉴定[J].西北农业学报,1993,2(1):87-90.
    [5]肖淑芹,陆秀华,刘惕若.黑龙江省辣椒疫病发生情况调查[J].黑龙江农业科学,2002,5:45-46.
    [6]马辉刚.云南辣椒疫病菌种的鉴定[J].云南农业大学学报,1988,3(2):125-130.
    [7]刁治民,罗桂花.青海辣椒疫病的初步研究[J].青海师范大学学报,1994,4:55-59.
    [8]杨学辉,肖崇刚,袁洁.贵州辣椒疫病病原鉴定及生物学特性研究[J].西南农业大学学报(自然科学版),2004,26(4):413-416.
    [9]张政兵,郭海明.辣椒疫病防治研究进展[J].农药研究与应用,2006,10(4) :10-12.
    [10]沈崇尧,王有琪,田林等.甘肃省辣椒疫病病原菌鉴定及生物学特性研究[J].云南农业大学学报,1990,(2):72-77.
    [11]朱宗源,陆金萍,周新根等.上海郊区青椒疫病病原菌鉴定及其生物学特性[J].上海农业学报,1992,8(3):36-41.
    [12]张国珍,梁月,戴万安.西藏辣椒疫病病原鉴定、生物学特性及室内杀菌剂生物测定[J].西藏农业科技,2003(4):23-30.
    [13]梁耀琦,吕金殿.陕西线辣椒疫病发生于危害损失研究[J].植物保护,1992,18(1):14-15
    [14]孔芹,李广中,鹿娟等.保护地辣椒主要病害症状及综合防治技术[J].中国农村小康科技,2007,9 :69-70.
    [15]保国宝.保护地辣椒疫病发生的原因及综合防[J].青海农技推广,2007,2:51-52.
    [16]王志田,崔元瑜,杨华等.新疆辣椒疫病菌鉴定及生物学特性研究.新疆农业科学,1993,4:164-167.
    [17]方中达,陆家云,叶钟音等.中国农业百科全书(植物病理学卷)[M].北京:农业出版,1996,274~275.
    [18]史凤玉.辣椒疫霉菌生物学特性及辣椒对疫病的抗性的研究[D].密山:黑龙江八一农垦大学,2000.
    [19]李怀方等.园艺植物病理学[M].中国农业出版社,2001:133.
    [20] Ko W H.Hormoral heterothallism and homothallism in Phytophthora[J].Annual Review of Phytopathology,1988,26:57-73
    [21] Ann P J, Ko W H.Effect of chloroneb and ethazol on mating type of Phytophthora parasitica and Phytophthora cinnamomi[J].Bot Bult Academia Sinica,1989,30:207-210
    [22] Hord M J ,Ristaino J B.Effects of physical and chemical factors on the germination of oospores of Phytophthora capsici in vitro[J].Phytopathology,1991,81:1541-1546.
    [23]贾菊生.新疆辣椒疫病及防治研究[J].植物病理学报,1992,22(3):257-262
    [24]刘永刚,张海英,郭建国,吕和平,贺春贵,宋尚有甘肃省辣椒疫霉菌的交配型分布及其致病力差异[J].植物保护学报,2008,135(5)448-452
    [25] Gil Ortega R,Palazón Espaňol C,Ciartero Zueco J.Interactions in the pepper Phytophthora capsici system.Plant Breeding,114:74-77.
    [26] Silvar C,Merino F,Díaz J,et al.Diversity of Phytophthora capsici in Northwest Spain:Analysis of Virulence,Metalaxyl Response,and Molecular Characterization[J].Plant Disease,2006,90:1135-1142.
    [27]郭亚辉,许志刚.水稻条斑病斑病菌致病力分化研究[J].邯郸农业高等专科学校学报, 2001,18(3):6-9.
    [28]方中达.植病研究方法(第三版)[M].中国农业出版社,1998:380-382.
    [29] Bonnie R. ,Glosier·E,benezer A.,et al.A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici- Physiological races of P. capsici in pepper[J].Euphytica,2008,162:23-30.
    [30] Hwang B K, de Cock A W, Bahnweg G. Restriction fragment length polymorphisms of mitoehondrial DNA among Phytophthora capsic isolates from pepper(Capsicum annum). Syst. Appl. Microbio.,1991,14:111-116.
    [31]王得元,安康,王汝贤,等.广州市辣椒疫病病原鉴定[J ].广东农业科学,2001,2:37-39.
    [32]李智军,龙卫平,郑锦荣,等.广州辣椒疫霉菌分离鉴定及其致病力和生理小种分化研究[J].华南农业大学学报,2007,28(1):50~54.
    [33]罗德旭.辣椒疫霉菌生理小种及其抗性研究[D].杨凌:西北农林科技大学,2008
    [34]杨学辉.贵州辣椒疫病研究[D].重庆:西南农业大学,2004.
    [35]李国英.新疆辣椒疫病菌的越冬规律[J].植物病理学报,1994,25(2):161~165.
    [36]刘学敏,周艳玲,李立军,等.接种体密度、土壤水分基质势和土壤温度对辣椒疫病死苗率的影响(英文) [J] ,植物病理学报,2004,3:254-260 .
    [37]谢丙炎,朱国仁.辣椒疫霉致病毒素[J].菌物系统,1997,16 (4):274-280.
    [38]章元寿.植物病理生理学[M].江苏:江苏科学技术出版社.
    [39]谢丙炎,朱国仁,吴新平.辣椒疫霉产毒缺陷与抗性突变体筛选及其遗传特性[J].植物保护学报,2000,27(3):243-248.
    [40]李海燕,肖淑琴,刘惕若.辣椒疫霉菌粗毒素对叶片组织超微结构的影响[J].园艺学报, 2005,32 (4) :713-715.
    [41]李俊,王开峰,张正光,等.辣椒疫霉elicitin基因的克隆及其原核表达[J].中国农业科学,2007,40(6):1166-1173.
    [42] Kamoun S,Lindqvist H,Govers F.A novel class of elicitin-like genes from Phytophthora infestans[J].Molecular Plant-Microbe Interactions,1997,10:1028-1030.
    [43] Cordelier S,de Fuffray P,Kauffmann S.Biological and molecular comparison between localized and systemic acquired resistance induced in tobacco by a Phytophthora megasperma glycoprotein elicitin. Plant Molecular Biology,2003,51:109-118.
    [44]林柏青,张松林.辣椒品种抗疫病鉴定方法的初步研究[J].中国蔬菜,1994(4):21-24.
    [45] KIM F S, HWANG B K.Virulence to Korean Pepper cultivars of isolates of phytophora capsici from different geographic areas[J]. Plant Dis,1992 ,76 :486-489.
    [46]王争鸣,范茂林.辣椒种子消毒与催芽[J].
    [47]武华国.辣椒疫病病原的特征特性、病害循环及其防治措施[J].湖南农业科学,2000,5:36力差异[J].植物保护学报,2008,135(5)448-452
    [25] Gil Ortega R,Palazón Espaňol C,Ciartero Zueco J.Interactions in the pepper Phytophthora capsici system.Plant Breeding,114:74-77.
    [26] Silvar C,Merino F,Díaz J,et al.Diversity of Phytophthora capsici in Northwest Spain:Analysis of Virulence,Metalaxyl Response,and Molecular Characterization[J].Plant Disease,2006,90:1135-1142.
    [27]郭亚辉,许志刚.水稻条斑病斑病菌致病力分化研究[J].邯郸农业高等专科学校学报, 2001,18(3):6-9.
    [28]方中达.植病研究方法(第三版)[M].中国农业出版社,1998:380-382.
    [29] Bonnie R. ,Glosier·E,benezer A.,et al.A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici- Physiological races of P. capsici in pepper[J].Euphytica,2008,162:23-30.
    [30] Hwang B K, de Cock A W, Bahnweg G. Restriction fragment length polymorphisms of mitoehondrial DNA among Phytophthora capsic isolates from pepper(Capsicum annum). Syst. Appl. Microbio.,1991,14:111-116.
    [31]王得元,安康,王汝贤,等.广州市辣椒疫病病原鉴定[J ].广东农业科学,2001,2:37-39.
    [32]李智军,龙卫平,郑锦荣,等.广州辣椒疫霉菌分离鉴定及其致病力和生理小种分化研究[J].华南农业大学学报,2007,28(1):50~54.
    [33]罗德旭.辣椒疫霉菌生理小种及其抗性研究[D].杨凌:西北农林科技大学,2008
    [34]杨学辉.贵州辣椒疫病研究[D].重庆:西南农业大学,2004.
    [35]李国英.新疆辣椒疫病菌的越冬规律[J].植物病理学报,1994,25(2):161~165.
    [36]刘学敏,周艳玲,李立军,等.接种体密度、土壤水分基质势和土壤温度对辣椒疫病死苗率的影响(英文) [J] ,植物病理学报,2004,3:254-260 .
    [37]谢丙炎,朱国仁.辣椒疫霉致病毒素[J].菌物系统,1997,16 (4):274-280.
    [38]章元寿.植物病理生理学[M].江苏:江苏科学技术出版社.
    [39]谢丙炎,朱国仁,吴新平.辣椒疫霉产毒缺陷与抗性突变体筛选及其遗传特性[J].植物保护学报,2000,27(3):243-248.
    [40]李海燕,肖淑琴,刘惕若.辣椒疫霉菌粗毒素对叶片组织超微结构的影响[J].园艺学报, 2005,32 (4) :713-715.
    [41]李俊,王开峰,张正光,等.辣椒疫霉elicitin基因的克隆及其原核表达[J].中国农业科学,2007,40(6):1166-1173.
    [42] Kamoun S,Lindqvist H,Govers F.A novel class of elicitin-like genes from Phytophthora infestans[J].Molecular Plant-Microbe Interactions,1997,10:1028-1030.
    [43] Cordelier S,de Fuffray P,Kauffmann S.Biological and molecular comparison between localized and systemic acquired resistance induced in tobacco by a Phytophthora megasperma glycoprotein elicitin. Plant Molecular Biology,2003,51:109-118.
    [44]林柏青,张松林.辣椒品种抗疫病鉴定方法的初步研究[J].中国蔬菜,1994(4):21-24.
    [45] KIM F S, HWANG B K.Virulence to Korean Pepper cultivars of isolates of phytophora capsici from different geographic areas[J]. Plant Dis,1992 ,76 :486-489.
    [46]王争鸣,范茂林.辣椒种子消毒与催芽[J].
    [47]武华国.辣椒疫病病原的特征特性、病害循环及其防治措施[J].湖南农业科学,2000,5:36
    [70]毛爱军,胡拾,耿三省.辣椒疫病菌接种鉴定技术研究[J].北京农业科学,1998,16(2):2 1-24.
    [71]易图永,张宝玺,谢丙炎,等.辣椒疫病三种接种方法的比较[J].中国蔬菜,2003(2):16-18.
    [72] Alcazar MD, Peroxidase isoenzyaes in the defese response of Capisicum annuum to Phytophthora capsic.[J].Physiologia plantarum,1995,94:736-742.
    [73] Candela M. E.,Alcazar M. D., Espin,A., et al. Soluble phenolic acids in Capsicum annuum stems infected with Phytophthora capsici[J].Plant Pathology,1995,44:116-123
    [74] Palloix A.,Daubeze A.M.,Pochard E.Time sepuences of root infection and resistance expression in an artificial ino-culation method of pepper with Phytophthora capsici[J].Phytopathology.1988,123:12-14.
    [75] Mozzetti C.,Ferraris L.,Tamietti G.,et al.Variation in enzyme activities in leaves and cell suspensions as markers incompatibility in different Phytophthora-pepper interactions [J].Physiolo- gical and Molecular Plant Pathology,1995,46(2):95-107.
    [76]方文慧,葛长鹏,常彩涛.辣椒疫病接种鉴定方法的筛选[J].天津农业科学,1996,2(3):12-13.
    [77] L I Z J,LONG W P,In vitro Leaf Technique for the Evaluation of Pepper Resistance to Phytophthora capsici[J]Journal of South China Agricultural University,2007,28(2):47-51(in chinese)
    [78] C. egea-gilabert,G. bilott,M.E. Requena,et al.Pepper morphological traits related with resistance to Phytophthora capsici[J].BIOLOGIA PLANTARUM,2008,52 (1):105-109.
    [79] Candela, M.E., López, M.,Sabater, F.Carotenoids from Capsicum annuum fruits: changes during ripening and storage.Biol. Plant,1984,26:410-414.
    [80] Hwang B.K.,Kim,W.B.,Kim,W.K..Ultrastructure at the host-parasite interface of Phytophthora capsici in root and stems of Capsicum annuum[J]Phytopathology,1989,127:305-315.
    [81] Kim W.B.,Hwang,B.K..Histological changes in the roots and stems of pepper plants infected with Phytophthora capsici[J]Korean J.Plant Pathol,1989,5:40-48.
    [82] Aguirreolea,J.,Irigoyen,J.,Sanchez-diaz M,et al.Physiological alterations in pepper during wilt induced by Phytophthora capsici and soil water deficit[J].Plant pathol,1995,44:587-596.
    [83]朱英波,史凤玉,李超,等.辣椒抗疫性组织病理学初步研究[J].中国农学通报,2002,18(5):55-56.
    [84] Hwang B.K.Soluble proteins,esterases and superoxide dismutase in stem tissue of pepper plants in relation to age-related resistance to phytophthara capsici[J].Phytothology,1991,132:129-138.
    [85] Jeun Y.C,Hwang B.K.Carbohydrate,amino acids,phenolic and mineral nutrient contents of pepper plants in relation to age-related resistance to Phytophthora capsic[iJ].Phytopathology,1991,131:40-52.
    [86]倪春梅,郝丽珍.辣椒植株组织中可溶性糖含量与辣椒抗疫病关系的研究[J].内蒙古科技与经济,2001,l:74一75.
    [87]王兰兰,程鸿.辣椒苗期抗疫病鉴定及抗性机制的研究[J].甘肃农业科技,1996,3:37一39.
    [88]王晓敏.辣椒疫霉菌孢子诱导技术及辣椒抗疫病的机制研究[D].西北农林科技大学,2006
    [89]毛爱军,王永健,冯兰香,等.疫病病菌侵染后辣椒幼苗体内保护酶活性的变化[J].华北农学报,2003,18( 2) : 66-69.
    [90] Mozzetti, C., Ferraris, L.,Tamietti, G.,et al.Variation in enzyme activities in leaves and cell suspensions as markers of incompatibility in different Phytophthora–pepper interactions[J].Physiological and Molecular Plant Pathology,1995,46: 95–107.
    [91] Fernandez-Pavia, S.Host-pathogen interactions in the root rot Phytophthora capsici-Capsicum annuum resistant CM-334 pathosystem. [D].New Mexico State University.1997.
    [92] Fernandez-Pavia, S.,Liddell, C.Resistance of Capsicum annuum CM-334 to Phytophthora root rot and phenol biosynthesis[J].Phytopathology,1997,87:529.
    [93] Klessing, F. D., Malamy, J.The salicylic acid signal in plants[J].Plant Molecular Biology,1994,26:1439–1458.
    [94] Rhodes, M. J. C.. Physiological roles for secondary metabolites in plants: some progress, many outstanding problems[J].Plant Molecular Biology,1994,24:1–20.
    [95] Damaris Godinez-Vidal,Mario Rocha-Sosa,Edgar B,et al.Phenylalanine ammoni alyase activity in chilli CM-334 infected by Phytophthora capsici and Nacobbus aberran[sJ].Eur J Plant Pathol ,2008,120:299-303.
    [96] Molot,P.M..Relations between capsidiol concentration, speed of fungal invasion and level of induced risistance in cultivars of pepper(Capsicum annuum)susceptible or resistant to Phytophthora capslci[J].Physiol Plantpathol,1981,18:379-389.
    [97]毛爱军,水杨酸诱导辣椒抗疫病作用和及生化机制的研究[D].中国农业科学研究生院.2003.
    [98]李惠霞,谢丙炎,冯兰香.β-氨基丁酸诱导辣椒产生PR蛋白及其酶活性的变化.园艺学报,2006,33 (6) :1335-1337.
    [99] L I Z J, LONG W P,et al..Identification of Phytophthora capsici resistance and main agronomical trait s of pepper resources from AVRDC[J],GUANGZHOU agricultural science,2006,12:30-33(in chinese).
    [100] Guerrero Moreno A,et al..Current status of pepper breeding for resistance to Phytophthora capsici in Mexico.Synopsis of the IVth Meeting of Capsicum Working Group of Eucarpl[aJ].Wageningen (The Netherlands),1980,52-56.
    [101] Gilortega, R.,et al.Response of pepper to inoculation with Phytophthora capsici at different daylength and temperature[J].Capdicum Newsletter,1987,6:68-69.
    [102]李智军,龙卫平,郑锦荣,等.2个辣椒疫病抗性资源的抗性遗传分析.华南农业大学学报,2008,29(2):30-33
    [103] Pochard F.J et al. Reeherches sur lepiment in Rapport de activate Station de Amelioration des Plantes Maralcheres, 1985~1986.Montfavet. France,-1987, 49~66
    [104] Joha1 GS,Briggs S P..Reductase activity encoded by the HMI disease resistance gene in maize[J]. Science, 1992.258:985-987
    [105]易图永,辣椒抗疫病相关基因的分析和QTL定位[D].湖南农业大学,2003.
    [106]邱敏,曹蕾,贺俐.辣椒抗菌蛋白cDNA的分离与表达的初步分析.漳州师范学院学报(自然科学版),2007,3:91-95.
    [107]贺俐,辣椒应答疫霉的转录谱分析及相关候选抗病基因的cDNA分离[D],福建农林大学,2008
    [108]王永成.辣椒疫病抗性相关基因的克隆与分析[D].西北农林科技大学,2008.
    [109] ang P,et al.Science,1992,257:967
    [110] liang P,et al.Cancer Res,1992.52:6966
    [111] Liang P,et al.Nucleic Acids Res 1993,21:32695
    [112] Wesh J,et al.Nucleic Acids Res 1992,20:4965
    [113] Ralph D,et al.Proc.Natl Acad.Sci.USA1993,90:10710
    [114] Wong KK,et al.Proc.Natl.Acad.Sci.USA 1994,91:639
    [115] Jack Q,WiIkinson MB,Lanahan TW,et al.Identification of mRNAs with enhances expression in ripening strawberry fruit using polymerases chain reaction differential display[J].Plant Mol Biol,1995,27:1097-1108.
    [116]贾晋.大白菜和萝卜败蕾相关基因的差异表达及克隆研究[D].西北农林科技大学,2008
    [117]王振英,郑坚瑜.用mRNA差别显示方法分析黑麦盐胁迫下应答基因cDNA片段的表达特性[J].作物学报,2001,27( 6):851-856.
    [118]邹胜伟,陈清轩.基因差异表达研究方法的探讨——从DD—PCR到cDNA RDA[J].生命科学,2000,12(2):80-82.
    [119]张党权,谭晓风,等.植物基因cDNA克隆新技术及进展[J].中国生物工程杂志,2002,22(4):70-74.
    [120] DiathenkoL,LauYF,Chenehik A,etal.Suppression subtractive hybridization: a method for generating differentially regulated or tissues Pecifiee DNA Probes and libraries[J].proe.Natl. Aead.Sei.USA,1996,93(12):6025一6030.
    [121] Birch PRJ,Avrova A0,et al.Isolation of potato genes that are induced during an ear y stage of the hypersensitive response to phytophthora infestans[J].Mol Plant Microbe I n,1999, 12(4):56-361.
    [122]杨传平,王玉成,刘桂丰等.应用SSH技术研究NaHC03胁迫下怪柳基因的表达[J].遗传学报,2 00 4,3 1( 9):926-933
    [123]林凡云,胡银岗,宋国琦,等.糜子干旱后复水过程中基因表达谱的初步分析[J].西北农林科技大学学报,2007,35(3):81-86.
    [124]毛伟华,龚亚明,宋兴舜,等.黄瓜cDNA芯片的构建及其在黄瓜缺镁胁迫下基因差异表达研究中的应用[J].园艺学报,2006,33(4):767-772.
    [125]刘仁虎,赵建伟,肖勇,等.拟南芥cDNA芯片和油菜-拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因[J].中国科学C辑生命科学,2005,35 (1):13-21.
    [126] Bachem CWB,van der Hoeven RS,de Bruijn SM,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression tuber development [J].Plant J,1996,9(5):745-753.
    [127] Yang L,Zheng BS,Mao CZ,et al.Analysis of gene expression during enhanced seminal root elongation of rice under upland condition by cDNA-AFLP [J] .J Plant Physiol Mol Biol,2003,29(1);65-70.
    [128] Marnik Vuylsteke,Johan D Peleman,Michiel JT van Eijk,et a1.AFLP-based transcriptprofiling (cDNA-AFLP) for genome wide expression analysis[J].Nature protocols,2007,2(6),1399-1413
    [129] Vuylsteke M, Daele H,Vercauteren A,et al.Genetic dissection of transcriptional regulation by cDNA-AFLP[J].Plant J,2006,45(3):439-460.
    [130] Bachem CWB,van der Hoeven RS,de Bruijn SM,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression tuber development [J].Plant J,1996,9(5):745-753.
    [131] Yang L,Zheng BS,Mao CZ,et al.Analysis of gene expression during enhanced seminal root elongation of rice under upland condition by cDNA-AFLP [J] .J Plant Physiol Mol Biol,2003,29(1);65-70.
    [132] ChristianW.B.,Bachem,Ronald J.F.J..Transcript Imaging with cDNA-AFLP: A Step-by-Step .Plant Molecular Biology Reporter ,1998,16::157-173.
    [133] Donson J,Fang Y,Espiritu-Santo G, et al.Comprehensive gene expression analysis by transcript profiling[J]. Plant Molecular Biology, 2002, 48:75-95.
    [134]孙涌栋,张兴国,厚瑞贤等授粉后黄瓜果实膨大相关基因的鉴别[J].植物生理分子生物学学报,2005(04):11-15.
    [135]肖月华,罗明,韦宇拓等.棉花纤维起始基因表达的cDNA-AFLP分析[J].农业生物技术学报,2003,11(1):20-24.
    [136] HabuY , Fukada-TanakaS , Hisatomi Y,et al. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochem Biophys Research Comm,1997, 234:516-521.
    [137] Je′rome Bove, Philippe Lucas,Be′atrice Godin,et al.Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia[J].Plant Molecular Biology,2005,57:593–612.
    [138] Qin L,Prins P,Jones JT,et al.GenEST: a powerfull link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP [J].Nuc Acids Research,2001,29:1616-1622.
    [139] Xianwu Zheng, Xuewei Chen, Xiaohong Zhang,et al.Isolation and identification of a gene in response to rice blast disease in rice[J].Plant Molecular Biology,2004,54:99-109.
    [140] Whitcomb J M, Rashtchian A, Hughes S H, A new PCR based method for the generation of rested deletiosn. Nucleic Acids Res,1993,21:4143-4146.
    [141] Zegzouti H,Jones B,Manty C,et al.ERS, a tomato cDNA encoding an ethylene-responsive LEA-like protein:characterization and expression in response to drought, ABA and wounding [J].PMB,1997,35:847-854.
    [142] Mazeynat F,Mouzeyan S,Nicolas P, et al..Cloning, sequence and characterization of a sunflower (Heliczuthus czuuuus L.) pathogen-induced gene showing sequence homology with auxin-induced genes from plants [J].PMB,1998,38(5):899-903.
    [143] Mechelen J R V, Schuurink R C, Smits M, et al. PMB, 1999, 39:1283-1298
    [144] Tai T H, Dahlbeck D, Clank E T, Gajiwala P, Pasion R, Whaler M C, Stau R E and Staskawic B J.Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato, PNAs,1999,96(24): 14153-14158.
    [145] Burleigh S H.Relative quantitative RT-PCR to study the expression of plant autrieut transpoaem in arbusonlar myeorrhizas[J].Plant sci,2001,160:899-904.
    [146]朱玉贤.现代分子生物学(第二版)[M],高等教育出版社,2002.
    [147]陈国菊,石丽,雷建军,等.中国商陆抗病毒蛋白基因的克隆及其转化辣椒[J].园艺学报,2008,35( 6):847-852.
    [148]谭洁,巩振辉.农杆菌介导的NPKI基因转化辣椒的研究[J].西北农业学报,2008,17( 3):267-270.
    [149]罗欢,段承杰,陈保善,等.辣椒CaNPR1- RNAi表达载体的构建及其对辣椒的转化[J].广西植物,2008,28(1):107-112.
    [150]蒋苏,陈宽,蔡润,等.用花药愈伤组织作为转化受体的水稻转基因植株的分析[J].遗传学报,2004,31 (12):1381-1387.
    [151]王玉英,孙敬三,王敬驹,等.小黑麦和辣椒花粉植株的诱导[J].中国科学,1973,1:104-107.
    [152]邢永萍,张树根,张军民,等.保护地甜椒新品种海丰26号选育初报[J].辣椒杂志,2003,2:22-23..
    [153]张菊平,辣椒花药小孢子培养及胚发生机理研究[D].西北农林科技大学,2007
    [154]高俊凤,植物生理学实验指导[M].高等教育出版社,2006
    [155]陈建勋.植物生理学实验指导[M].广州:华南理工大学出版社,2002:30-35.
    [156]张穗,肖培英,等.氟铃脲对水稻纹枯病毒的毒力和作用机制.植物保护学报,2007,34(1):187-90.
    [157] Mauch F,Mauch-Mani B,Boller T. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combination of chitinase andβ-1,3-glucanase [J].Plant Physiology, 1988,88:936-942.
    [158] Ayer A M, Harel E. Polyphnol oxidase in plants [J]. Phytochem,1979,18:193-215.
    [159]路兴波,吴洵耻,周凯南.小麦抗感纹枯病品种酶活性比较研究[C].植物保护21世纪展望.暨第三届全国青年植物保护科技工作者学术研讨会论文集.北京:科学技术出版社,1998:267-269.
    [160]王海河,林奇英,谢联辉,等.黄瓜花叶病毒三个毒株对烟草细胞内防御酶系统及细胞膜通透性的影响[J].植物病理学报,2001,31(1):43-49.
    [161]王利英,侯喜林,刘琳.甘蓝链格孢菌侵染对白菜保护酶活性和H2O2含量的影响[J].园艺学报2008, 35 (7) : 1065– 1068
    [162] Broekaert W F, van Parijs J, Allen A K, Peumans W J. Comparison of some molecular, enzymatic and antifungal properties of chitinase from thorn-apple, tobacco and wheat[J].. Physiological and Molecular Plant Pathology, 1988, 33:319-331.
    [163] Fukuda T,Kido A,Kajino K.Cloning of differentially expressed genes in highly and low metastatic rat Osteosarcomas by a modified cDNA-AFLP method[J].Biochemical and Biophysical Research Communications, 1999,261(1):35-40.
    [164]李巍.生物信息学导论[M].河南新闻出版社,2004:1
    [165] Anniss,A.M.,Apostopoulos, J,Dworkin, S.,exal.An oxysterol-binding protein family identified in the mouse[J].DNA Cell Biol,2002,21:65-71.
    [166] Repa, J.J.,Berge, K.E,Pomajzl, C.,Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver[J].X receptors and J. Biol.Chem. 2002,277:18793-18800.
    [167] Schroepfer , G.J.J. . Oxysterols: modulators of cholesterol metabolism and other processes. [J].Physiol. Rev. 2000,80:361–554.
    [168] Bakos, J.T., Johnson, B.H. and Thompson, E.B. Oxysterol-induced cell death in human leukemic T-cells correlates with oxysterol binding protein occupancy and is independent ofglucocorticoid-induced apoptosis[J].Mol. Biol. 1993.46,415-426.
    [169] Blein, J.P., Coutes-Thevenot, P., Marion, D.From elicitins to lipid transfer proteins: a new insight in cell signaling involved in plant defense mechanisms[J].Trends Plant Sci,2002,7:293-296.
    [170] A kamoto H, Araki T, Meshi T, Lwabuchi M. expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress[J].Gene,2000,248:23-32.
    [171] Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H, Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia[J].Plant journal, 2003, 36(6):830-841
    [172] Mukhopadhyay A, Vij S, Tyagi A K. Over expression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco[J].Proc Natl Acad Sci USA, 2004,101(16):6309-6314.
    [173] Rizhsky L, Davletova S, Liang H, Mittler R. The zinc-finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. The journal of Biological Chemistry, 2004,279:11736-11743
    [174]黄新杰,郭军,屈志鹏,等.小麦TaLSD1锌指蛋白基因的电子克隆及序列分析[J].西北植物学报,2007,27 (11):2147- 2152.
    [175] Jeum Kyu Hong,Hyong Woo Choi.RING-finger protein gene,CaRFP1,in disease susceptibility and osmotic stress tolerance[J].Plant Mol Biol,2007,63:571-588.
    [176]巩振辉,张菊平,刘珂珂,等.一种辣椒小孢子诱导获得胚状体的培养方法.中国.发明专利,专利号:ZL200610042616.0.
    [177] Fnlaioka H, Ogawa T, Matsuoka M, et al. Direct gene delivery into isolated microspores of rapeseed (Brassica napa}r L)and the prodnction of fertile transgenic plants. Plant Cell Reports, 1998, 17(5):323-328
    [178] Jalme A, Becker D, Brettsclmeider R,et al.Regeneration of transgenie,microspore-derived, fertile barley Theoretical and AppliedUenetics,1994,89:525-533.
    [179] Stoger E, Fink C, Pfosser M, et al. Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Reports,1995,14:273-278.
    [180]陈彩艳,肖晗,张文利,等.以花药愈伤组织为受体的水稻转化和RNA干扰研究[J].中国科学c辑生命科学2006,36 (4):289-301.
    [181] Mjah,M.A.et a1.:1985.Jbd.,70:113—116.
    [182]吴传银,陈英.粳稻花药培养基因型差异的研究[J].遗传学报,1987,3:168-174
    [183]赵瑞堂,朱惠梅,毕艳娟.小麦花药培养诱导率的配合力、遗传力初步研究[J].遗传,1985,(04):17-19.
    [184]袁亦楠,朱德蔚,连勇,等.番茄游离小孢子培养形成胚状体的初步研究[J].农业生物技术学,1999,7(1):85-88.
    [185]李春玲.甜椒花药培养中雄核发育和花粉胚的形态发生[C].
    [186]胡含,陈英.植物体细胞遗传与作物改良[D].北京大学出版社,1988:55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700