用户名: 密码: 验证码:
TcLr24小麦抗叶锈病相关基因的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小麦叶锈菌(Puccinia triticina)引起的小麦叶锈病是一种在世界范围内普遍流行的气传性病害,严重威胁小麦生产。选育并合理利用抗病品种是防治麦类锈病危害最经济、安全、有效的途径之一。因此,利用和发掘抗叶锈资源,延长品种的抗叶锈性寿命,成为小麦叶锈病防治的一项任务。本研究选择当前在我国抗性较好的小麦抗叶锈病近等基因系TcLr24为研究对象,应用同源序列法和cDNA-AFLP技术对其进行抗病相关基因的研究,利用荧光实时定量PCR进行表达分析,同时利用BSMV VIGS技术对基因进行了初步的功能验证。主要结果如下:
     1根据已克隆植物抗病基因NBS保守结构域设计引物,从携带小麦抗叶锈病基因Lr24的回交6代近等基因系材料TcLr24中获得了1个通读的小麦抗病基因同源片段RGA1。该片段含有NB-ARC保守结构域,具有抗病基因NBS特征结构域(P环、激酶2、激酶3a等)。
     2以获得的RGA1片段为靶序列,利用RACE技术获得了2822bp的TcLr24 cDNA全长RGA1。RGA1包含2397bp的开放阅读框,编码799个蛋白质氨基酸序列,RGA1编码产物具有NBS、LRR等抗病基因保守结构域,与多个已知植物抗病基因的功能相应区域一致。Southern杂交结果表明,其在TcLr24基因组中为单拷贝。实时荧光定量PCR对RGA1基因的表达情况研究表明,该基因为组成型表达。BSMV VIGS功能验证没有发生表型改变。
     3本研究利用cDNA-AFLP技术筛选了84对引物能够在小麦近等基因系TcLr24和感病对照Thatcher之间揭示出多态性,根据基因表达与否以及表达量,获得了9种不同差异表达的多态性条带类型,分别代表了不同状态下测试材料的表达状况。
     4成功克隆和测序了121个差异表达片段(Transcript-derived fragments,TDFs),测序结果在NCBI上应用BLASTx比对进行推导的蛋白质序列的相似性分析,结果共有32条为功能已知的同源序列,占总数的27%;比对上功能未知的序列37条占总数的30%;没有比对上的序列45条占总数的37%。已知功能序列的TDFs涉及初级代谢、转运相关、抗病与防御、转录相关、信号传导相关、细胞结构、能量代谢、蛋白储运等。
     5从差异表达并测序的片段中选取了9个进行荧光实时定量PCR分析,证实了这些基因差异表达是由于叶锈菌诱导表达的结果,发生在小麦与叶锈菌互作的早期。与cDNA-AFLP表达基本一致,说明利用cDNA-AFLP分析基因的表达是可靠的。
     6利用RACE的方法获得了3个激酶基因,包括TaSTK (1475bp),TaRLPK (2398 bp),TaLRRK (2038 bp),分别编码丝氨酸/苏氨酸蛋白激酶(408aa),类受体激酶(656aa),LRR-受体激酶(595aa)。InterProScan分析表明,它们所编码的蛋白都具有典型的蛋白激酶的核心区域,属于激酶类基因,并且这三个蛋白的磷酸化作用需要依赖ATP。经Psort预测显示,TaSTK编码的蛋白最可能分布在叶绿体基质中,几率为85.4%,而TaRLPK和TaLRRK编码的蛋白分布在质膜中的可能性较大,几率分别为51.4%和46%,表明TaRLPK和TaLRRK编码的蛋白是膜蛋白。氨基酸比对及进化树分析表明,TaSTK,TaRLPK,TaLRRK分别与大麦、水稻、小麦等激酶具有较高的相似性。
     7利用BSMV VIGS基因沉默技术对3个激酶基因进行了初步的功能分析。结果表明3个基因被沉默后发生了不同程度的表型变化,并且组织学观察的结果与其表型变化一致。其中,TaSTK基因被沉默的小麦叶片接种叶锈菌后表型由“;”转变成“1”,组织学中观察到,接种叶锈菌120hpi,寄主细胞坏死,但菌丝仍然扩展明显。而TaRLPK和TaLRRK基因被沉默的小麦叶片在接种叶锈菌后表型由“;”转变成“2”,表现为中抗反应。120hpi组织学观察发现,叶锈菌侵染后形成少量坏死,但是这些坏死不能完全抑制病原菌的生长,表现出对叶锈菌的中度抗性反应。研究表明这三个激酶基因参与了小麦抗叶锈性。
Wheat leaf rust caused by Puccinia triticina is one of the most devastating diseases worldwide, which is resposible for major damage in wheat and results in both yield losses and downgrading in quality. The use of resistant cultivars is the most economical and environmentally sound method to reduce the damage. So, discovery and utilization of favorable genes in wild source and prolonging resistant cultiver the life of becomes an important task to reduce the damage caused by wheat leaf rust. The study was carried out to investigate resistance related genes from TcLr24 by homology-based method and complementary DNA amplified fragments length polymorphism (cDNA-AFLP) analysis. The expression patterns of the test fragments were conducted through real- time PCR. At the same time the genes were selected for further functional analysis using BSMV VIGS technique. The main results were discrived as follows:
     1. One through reading fragment was obtained and sequenced from cDNA of TcLr24 according to the conserved sequence of resistance gene analogs (RGA). The deduced amino acids of protein RGA1 contained a NB-ARC conserved domain which were identical to the NBS conserved domains (P-Loop, kinase-2, kinase-3a) of many plant resistance genes.
     2. The full length sequence of disease resistance homology gene in the cDNA from TcLr24 was 2822bp named as RGA1 which was obtained by the rapid amplification cDNA ends (RACE) based on RGA1 fragment. The predicated RGA1 protein encode 799 amino acids. BLASTp analysis showed that the deduced amino acids of protein contained NBS conserved domain and many leucine-rich repeats (LRR) domains, which were identical to the conserved domains of many plant resistance genes. These sequences appeared to be induced by Puccinia triticina and were genes in the wheat leaf tissue . There is one copy in DNA of TcLr24 by Southern hybridazation. Expression patterns revealed by real-time PCR analyses indicated that RGA1 gene was constitutive genes in the wheat leaf tissue in the incompatible interaction between host and pathogen. Silencing RGA1 using BSMV VIGS reduced the transcript level of gene through real time PCR analysis, of which the gene showed no changed phenotype.
     3. Eighty-four pairs of primers could amplify differential expression bands among TcLr24 and Thatcher by cDNA-AFLP analysis. Polymorphic bands were grouped into nine different types, and four types of them were supposed to correspond to disease- resistant gene.
     4. One hundreds and twenty-one differential expression bands were cloned and sequenced. Blastx analysis showed that the thirty-two transcript derived fragments (TDFs) accounted for 27% of all the TDFs showed high homology with the function known gene. Thirty-seven TDFs accounted for 30% were homology with unknown function genes. Fouty-five sequences accounted for 37% were no match with any sequence in the database. All TDFs were classified, energy and metabolism, transporters, disease/defense, transcription, energy gene, cell structure, signal transduction, protein storage were supposed to correspond to the expression of the disease-resistant genes.
     5. Based on their functional analysis, nine genes were selected for further real time PCR analysis. The results indicated that expression patterns revealed by real time PCR analysis were basically in accord with the cDNA-AFLP analysis. These results demonstrated that the TDFs were most likely pathogen-induced genes.
     6. Three kinase-encoding genes were obtained using the rapid amplification cDNA ends (RACE) method, including TaSTK (1475bp), TaRLPK (2398 bp), TaLRRK (2038 bp), which respectively encoded Ser/Thr protein kinase, Receptor protein kinase, LRR-receptor protein kinase. InterProScan analysis revealed that three genes were deduced to proteins with protein kinase activity, thus characterizing as kinase-encoding genes. ATP-dependent phosphorylation feature were observed for TaSTK,TaRLPK,TaLRRK. Psort analysis indicated TaSTK had 85.4% probability of target in chloroplast stroma. TaRLPK,TaLRRK had 51.4%, 46% probability of target in membrane. The analysis of multiple alignment and phylogenetic tree demonstrated that TaSTK, TaRLPK, TaLRRK were highly similar to barley, rice, wheat kinase.
     7. Three kinase genes were carried out for further functional analysis using BSMV VIGS technique. Positive silencing for each gene could be detected using real time PCR analysis, of which wheat plants of three silenced genes each showed changed phenotype. Further histological observation indicated the same results. Plants of silenced gene TaSTK showed larger area of hypersensitive cell death with slight amount sporulation showing infection type of“1”. Wheat plants with silenced TaRLPK, TaLRRK gene, each showed sporulation around with relatively small area of hypersensitive cell death, indicating resistant infection type of“2”. The results implied three kinase genes might play an important role in the defense response.
引文
[1]Komer J A.Genetics of resistance to wheat leaf rust[J].Annual Review Phytopathology,1996,34:435~455.
    [2]Kloppers F J,Pretorius Z A.Effects of combinations amongst genes Lr13,Lr34 and Lr37 on components of resistance in wheat to leaf rust[J].Plant Pathology,1997,46:737~750.
    [3]Knott D R.The wheat rust breeding for resistance[J].Theor Appl Genet,1989,191~198.
    [4]谭明谱.水稻白叶枯抗性基因Xa22(t)的克隆[D].重庆:华中农业大学,2004.
    [5]Halterman D A, Wise R P.A single amino acid substitution in sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1for disease resistance signaling[J].Plant Journal,2004,38: 215~226.
    [6]Shen Q H, Zhou F, Bieri S, et al. Recognition Specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus[J].Plant Cell,2003,15: 732~744.
    [7]Halterman D, Wei F, Wise R P. Powdery mildew-induced Mla mRNA are alternatively spliced and contain multiple upstream open reading frames[J].Plant Physiology,2003,131: 558~567.
    [8]Collins N, Drake J, Ayliffe M, et al. Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants[J].Plant Cel1,1999,11:1365~1376.
    [9]Dodds P N, Lawrence G L, Ellis J G. Contrasting modes of evolution acting on the complex N locus for rust resistance in flax[J]. Plant Journal,2001,27: 439~452.
    [10]Bendahmane A, Kanyuka K, Baulcombe D C. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato[J].Plant Journal,2000,21:73~81.
    [11]Song J, Bradeen J M,Naess S K, et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight[J]. Proc Natl Acad Sci USA,2003,100: 9128~9133.
    [12]Ballvora A,Ercolano M R,Wei J,et al.The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes[J]. Plant J,2002,30: 361~371.
    [13]Feuillet C,Schachermagr G,Keller B. Molecular cloning of a new receptor–like kinase gene encoding the Lr10 disease resistance locus of wheat[J].The Plant Journal,1997,11(1): 45~52.
    [14]Aarts M G M,Hekkert B L,Holub E B,et al. Identification of R gene homologous DNA fragments genetically linkind to disease resistance loci in Arabidopsis thaliana[J]. Mol Plant- Microbe Interact, 1998, 11:251~258.
    [15]Leister D, Kurth T, Schulze P, et al. RFLP and physical mapping of resistance gene homologues in rice (Q.sative) and Barley (H.vulgare)[J].Theories Applied Genet,1999 ,98:509~520.
    [16]刘继海,程在全,杨明挚,等.云南3种野生稻中抗病基因同源序列的克隆及序列分析[J].中国农业科学,2003,36(3):273~280.
    [17]Collins N, Park W, Spielmeyer.Resistance gene analogs in barley and their relationship to rust resistance genes.Genome,2001,44:375-381.
    [18]黄宣,徐子勤,陈立余,等.小麦NBS-LRR类抗病基因同源序列的分离与鉴定[J].分子细胞生物学报,2006,39(2):91-96.
    [19]Yu Y G,Buss G,Saghaih M A.Isolation of a superfamily of candidate disease-resistance gene in soybean based on a conserved nucleotide-binding site[J].Proceedings of the National Academy of Sciences USA,1996, 93:11751~11756.
    [20]杨秀红,陈庆山,杨庆凯,等.大豆NBS类抗病相关基因的克隆与序列分析[J].高技术通讯,2005,15(2):71~78.
    [21]Leister D,Ballvora A,Salamini F,et al. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants[J]. Proceedings of the National Academy of Sciences USA,1996,14:421~429.
    [22]Collins N L,Webb C A,Seah S,et al. The isolation and mapping of disease resistance gene analogs in maize[J]. Mol Plant-Microbe Interact,1998,11:968~978.
    [23]Ohmori T,Murata M,Motoyoshi F. Characterization of disease resistance gene-like sequences in near-isogenic lines of tomato[J]. Theor Appl Genet,1998,96:331~338.
    [24]Shen K A,Meyers B C,Islam-Faridi M N,et al. Resistance gene candidates identified by PCR with degenerated oigonucleotide primers map to clusters of resistance genes in lettuce[J]. Mol Plant -Microbe Interact,1998,11: 815~823.
    [25]Fourmann M,Charlot F,Froger N,et al. Expression,mapping,and genetic variability of Brassica napus disease resistance gene analogues[J]. Genome,2001,44:1083~1099.
    [26]Vicente J G,King G J. Characterisation of disease resistance gene-like sequences in Brassica oleracea L[J].Theor Appl Genet,2001,102:555~563.
    [27]Gaspero G D,Cipriani G. Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis ssp. )[J]. Theor Appl Genet,2002,106:163~172.
    [28]Brotman Y,Silberstein L,Kovalski I,et al. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance[J]. Theor Appl Genet,2002,104: 1055~1056.
    [29]Hunger S,Di G,Mohring S,et al.Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta wlgaris L.) [J].Genome,2003,46:70~82.
    [30]He L , Du C , Covaleda L , et al.Cloning , characterization , and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploidy cotton (Gossypium hirsutum L.) [J]. Mol Plant Microbe Interact,2004,17:1234~1241.
    [31]Chen G S, Pan D R, Zhou Y F, et al.Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato[J]. J Biosci, 200732(4):713~721.
    [32]Lee S Y,Seo J S,Rodriguez-Lanetty M. Comparative analysis of superfamilies of NBS- encoding disease resistance gene analogs in cultivated and wild apple species[J]. Mol GenGenomics,2003,269:101~108.
    [33]Huettel B,Santra D, Muehlbauer J.Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster[J]. Theories Applied Genet,2002,105:479~490.
    [34]Xu Q,Wen X P,Deng X X. Isolation TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt)[J]. Theor Appl Genet,2005,111: 819~830.
    [35]杨明挚,陈小兰,尹梅.黑子南瓜中STK类抗病基因同源序列的克隆及序列分析[J].云南大学学报(自然科学版),2005,27(2):176~179.
    [36]孔凡晶,马有志,陈孝,等.簇毛麦端体6VS的抗病同源序列的克隆及分析[J].中国农业科学,2003,36(10):1223~1227.
    [37]梁凤山,周春江,孔凡娜,等.桃基因组中R类抗病基因同源序列的克隆与序列分析[J].河北农业大学学报(自然科学版),2005,28(1):44~48.
    [38]曹必好,雷建军,夏勇,等.结球甘蓝NBS-LRR类R基因同源序列序列的分离[J].中国农业科学,2004,37(7):1081~1084.
    [39]黄代青,王平,吕柳新.柚cDNA中NBS-LRR类R基因同源序列的分离[J].中国农业科学,2004,37(10):1580~1584.
    [40]丁国华,琴智伟,刘宏宇,等.黄瓜NBS类型抗病基因同源序列的克隆与分析[J].园艺学报,2005,32(4):638~642.
    [41]Deng Z,Gmitter F G. Cloning and characterization of receptor kinase class disease resistance gene candidates in citrus[J]. Theor Appl Genet,2003,108:53~61.
    [42]Bendahmane A,Farnham G,Moffett P,et al. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato[J]. Plant Journal, 2002, 32:195~204.
    [43]Baehem C W B,Van derhoeven R S, De Bruijn S M,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development[J]. Plant Journal,1996,9 (5):745~753.
    [44]Money T,Reader S,Qu L J,et al.AFLP-based mRNA Finger printing[J].Nueleic Acids Research, 1996, 24(13):2616~2617.
    [45]Baehem C W,Oomen R J F J,Visser R G F.Transcript imaging with cDNA-AFLP:a step-by-step protocol[J]. Plant Molecular Biology Reporter,1998,16(2):157~173.
    [46]Gupta S K,Charpe A,Koul Sunita,et al.Development and validation of molecular markers linked to an Aegilops umbellulata-derived leafrust-resistance gene Lr9 for marker-assisted selection in bread wheat[J]. Genome,2005,48(5):823-830.
    [47]Cherukuri D P,Gupta S K,Charpe A,et al. Identification of a molecular marker linked to an Agropyron elongatum-derived gene Lr19 for leaf rust resistance in wheat[J].Plant Breeding,2003, 122(3):204~208.
    [48]王锋.cDNA-AFLP技术原理及其在研究植物基因差异表达中的应用[J].生物学通报,2005,40(7):59-61.
    [49]韩斌,彭建营.cDNA-AFLP技术及其在植物基因表达研究中的应用[J].西北植物学报,2006, 26(8):1753-1758.
    [50]Anita L B,Frederik C B.Cloning of a specific ripening-related gene from the multiple of Ripening-related genes identified from a single band excised from a cDNA-AFLP gel[J]. Plant Molecular Biology Reporter,2004,22:225-236.
    [51]Oomenr J F J,Bergervoet M J E M,Bechem C W B,et al. Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato[J].Plant Physiology and Biochemistry,2003,41(11-12):965-971.
    [52]Chuanzao M,Keke Y,Ling Y,et al.Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.) : aluminium-regulated genes for the metabolism of cell wall components[J].Journal of Experimental Botany,2004,55(394):137-143.
    [53]刘志勇,杜永臣,王孝宣,等.高温胁迫下番茄叶片差异表达基因的cDNA-AFLP分析[J].园艺学报,2008,7:7~13.
    [54]谷俊涛,鲍金香,王效颖,等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因[J].作物学报,2009,35(9):1597~1605.
    [55]肖月华,罗明,侯磊,等.棉花类LRR抗病蛋白(LRR-RL)基因的克隆和序列分析[J].遗传学报,2002,29(70):654~659.
    [56] Polesani M,Desario F,Ferrarini A,et al.cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola[J]. BMC Genomics,2008,9:142.
    [57]Eckey C, Korell M, Leib K,et al. Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase[J].Plant molecular Biology,2004,55:1~15.
    [58]张岗,董艳玲,夏宁,等.利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征[J].作物学报,2010,36(3):401~409.
    [59]王锋.cDNA-AFLP技术原理及其在研究植物基因差异表达中的应用[J].生物学通报,2005, 40(7):59~61.
    [60]陈云芳.小麦叶锈菌诱导TcLr19 cDNA文库的构建与EST分析[D].河北:河北农业大学,2007.
    [61]褚栋.小麦抗叶锈近等基因系TcLr38的cDNA-AFLP分析[D].河北:河北农业大学,2007.
    [62]高世刚.六个小麦抗叶锈病近等基因系mRNA表达差异研究[D].河北:河北农业大学,2008.
    [63]王文霞,褚栋,高士刚.小麦抗叶锈近等基因系TcLr38的cDNA-AFLP分析[J].中国农业科学,2010,43(2):293-303.
    [64]王文霞.小麦抗叶锈近等基因系TcLr38的差异表达分析[D].河北:河北农业大学,2009.
    [65]陈玉婷.小麦叶锈菌诱导TcLr19的表达分析[D].河北:河北农业大学,2010.
    [66]王景雪,孙毅,梁爱华.扩增未知序列DNA片段的PCR技术研究进展[J].生物工程程进展,2001,21(1):51~57.
    [67]田振东,柳俊,谢从华.cDNA文库与RACE方法结合克隆一个马铃薯病程相关蛋白基因cDNA[J].遗传学报,2003,30 (11):996~1002.
    [68]王邦俊,王强,张志刚.利用RACE技术扩增大豆抗病基因同源cDNA5′末端序列[J].遗传,2003,25(4):425~427.
    [69]李红,孟薇,邵勇.利用RACE技术和生物信息学资源快速钓取多个侯选同源基因[J].生物技术通讯,2001,12(4):257~259.
    [70]De M, Linda E, Whitexnan P II, et al.Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol dehydronenase in Eucalyptus globulus Labill[J].Plant Science,1999,143 (2):173~182.
    [71]Peddy M K,Nair S, Sinnh B N, et al.Cloning and expression of a nuclear encoded plastid specific 33kDa ribonucle-oprotein nene (33RNP) from pea that is linht stimulated[J].2001,263(1):179~ 187.
    [72]Linnle S E,Dyear J M.Cloning and expression of sucrose synthase 1 cDNA from sugarcane[J]. Journal of Plant Physiology,2001,158(1):129~131.
    [73]邬珺超,蒋滢.cDNA末端快速扩增技术的研究进展[J].氨基酸和生物资源,2003,25(1):25-31.
    [74]陈观水.甘薯抗病相关基因的克隆与分析[D].福建:福建农林大学,2007.
    [75]宋东辉.水稻抗病性相关的蛋白激酶基因OsBIMK2和OsBISERK1的克隆鉴定与功能分析[D] .浙江:浙江大学,2004.
    [76]王海燕,刘大群,杨文香.1个小麦NBS类抗病基因同源cDNA序列的克隆与鉴定[J].植物病理学报.2009,39 (5),507-513.
    [77]Voinnet O.RNA silencing as a plant immune system against viruses[J].Trends Genet,2001,17 (8):449~459.
    [78]Burch-Smith T M,Anderson J C,Martin G B,et al.Applications and advantages of virus-induced gene silencing for gene function studies in plants[J].Plant Journal,2004,39 (5):734~746.
    [79]Kumagai M H,Donson J,Della-Cioppa G,et al.Cytoplasmic inhibition of carotenoed bilsynthesis with virus-derived RNA[J].Proc Natl Acad Sci,USA,1995,92 (5):1679~1683.
    [80]Ruiz M T,Voinnet O,Baulcombe D C. Initiation and maintenance of virus-induced gene silencing. Plant Cell,1998,10 (6):937~946.
    [81]Ratcliff F,Martin-Hernandez A M,Baulcombe D C.Tobacco rattle virus as a vector for analysis of gene function by silencing.Plant J,2001,25 (2):237~245.
    [82]Turnage M A,Muangsan N,Peele C G,et al.Geminivirus-based vectors for gene silencing in Arabidopsis[J].Plant J,2002,30(3):107~114.
    [83]Liu Y L,Schiff M,Dinesh-Kumar S P.Virus-induced gene silencing in tomato[J].Plant J,2002,31(6):777~786.
    [84]Lu R,Malcuit I,Moffett P,et al.High through put virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance[J].The EMBO Journal,2003,22:5690~5699.
    [85]Holzberg S,Brosio P,Gross C,et al. Barley stripe mosaic virus-induced gene silencing in amonocot plant[J]. The Plant Journal, 2002,30:315~327.
    [86]张增艳,姚乌兰,辛志勇.植物基因功能鉴定新工具—病毒诱导基因沉默技术的研究进展.植物遗传资源学报[J],2006,7(1):100~105.
    [87]Hein I,Barciszewska-Pacak M, Hrubikova K,et al.Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley[J]. Plant Physiology, 2005,138:2155~2164.
    [88]Scofield S R,Huang L,Brandt A S,et al.Development of a virus-induced gene-silencing system for hexaptoid wheat and its use in functional analysis of the Lr21-mecliated leaf rust resistance pathway[J]. Plant Physilology,2005,138:2165~2173.
    [89]Zhou H Z,Li S,Deng Z Y,et al.Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive resonse to stripe rust fungus infection[J].The plant Journal,2007,52:420~434.
    [90]刘迪.小麦条锈抗病相关基因的分离和功能分析[D].北京:中国农业科学院,2008.
    [91]徐亮胜.小麦与条锈菌互作相关基因的克隆与功能分析及源于四倍体小麦的抗条锈基因YrPI480148的分子标记[D].陕西:西北农林科技大学,2010.
    [92]Meyer J D,Silva D C,Yang C,et al.Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian Soybean rust in soybean[J].Plant Physiology,2009,150:295~307.
    [93]Cakira C,Tor M. Factors influencing Barley stripe mosaic virus-mediated gene silencing in wheat.PMPP,2010,74:246~253.
    [94]Huang L,Steven A,Wanlong L.Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat [ J].Genetics,2003,164:655-664.
    [95]Feuillet C, Travella S, Stein N.Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome[J].Proceedings of the National Academy of Sciences of the USA, 2003,100:15253-15258.
    [96]Cloutier S,Brent D,Caroline L,et al.Leaf rust resistance gene Lr1,isolated from bread wheat (Triticum aestivum L.) is a member of the largepsr567 gene family [J].Plant Molecular Biology, 2007,65:93-106.
    [97]Simon G K,Evans S L,Wolfgang S,et al.A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat [ J].Science,2009,323:1360~1363.
    [98]Roelf A P,Race specificity and methods of study[M].The Cereal Rust Vol.1 New York:Academic Press,1985:131~164.
    [99]Roelfs A P,Singh R P,Saari E E.Rust diseases of wheat[M]:Concepts and Methods of Disease. CIMMYT,Mexico,1992.
    [100]Bachem C W B,Vander R S, Bruijn S M et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:Analysis of gene expression during potato tuber development[J]. Plant J.1996,9:745~753.
    [101]康振生,王瑶,黄丽丽,等.小麦品种对条锈病低反应型抗性的组织学和超微结构研究中国农业科学,2003,36(9):1026~1031.
    [102]李星.小麦抗叶锈病基因Lr41差异表达研究[D].河北:河北农业大学,2008.
    [103]Sears E R.Agropyron-wheat transfers induced by homoeologous pairing[C].Proceeding of the 4th International Wheat Genetics Symposium.Columbia, USA : University of Missouri, 1973:191~199.
    [104]Yang W X,Liu D Q.Advance in localization and molecular markers of wheat leaf rust resistance genes[J]. Agricultural Science in China,2004,(10):770~779.
    [105]杨文香,孟庆芳,刘大群.1999年我国小麦叶锈菌毒性基因发生动态研究[J].植物保护学报,2004,31(1):45~50.
    [106]徐大庆,黄国红,杨文香,刘大群.小麦叶锈菌毒性及分子多态性分析[J].农业生物技术学报, 2002,10(1):41~45.
    [107]魏新燕,杨文香,刘大群.150个小麦品种(系)抗叶锈基因Lr35分子检测[J].中国农业科学,2004,37(12):1951~1954.
    [108]Long D L,Kolmer J A. A North American System of Nomenclature for Puccinia triticina[J]. Phytopathology,1988,79: 525~529.
    [109]Qin G J,Chen P D,Gu H Y,et al.Isolation of resistance gene analogs from wheat based on conserved domains of resistance gene[J].Acta Betanica Sinica,2003,45(3):340~345.
    [110]Boyes D C,Nam J,Dangl J,et al. The Arabidopsis thaliana RPMI disease resistance gene product is a peripheral plasma membrane protein that is degrade coincident with the hypersensitive response[J].Proceedings of the National Academy of Sciences USA,1998,95:15849~15854.
    [111]Bent A F.Plant disease resistance genes:function meets structure[J].Plant Cell,1996,8:1757~1771.
    [112]Meyers Blake C,Allan W,Richard W. Plant disease resistance gene encode members of an ancient and diverse protein family within the nucleotide binding superfamily[J].The Plant Journal,1999,20(3):317~332.
    [113]Martin G B,Brommonschenkel S H,Chunwongse J,et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science,1993,262:1432~1436.
    [114]Hammond-kosack K E,Jones J D. Plant disease resistance genes[J]. Plant Mol.Biol,1997,48:575~607.
    [115]Baker B,Zambryski P,Staskawicz B. Sigaling in plant microbe interactions[J].Science,1997, 276:726~733.
    [116]Bent A F. Plant disease resistance genes:function meets structure[J].Plant Cell,1996,8:1757~1771.
    [117]Warren R F,Henk Adan,Mowery Patricia,et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS2 partially suppresses multiple bacterial and downy midew resistance genes[J]. Plant Cell,1998,10:1439~1450.
    [118]Kobe B,Reisenhofer J.The leucine-rich repeat:A versatile binding motif [J].Trends BiochemSci,1994,19:415~421.
    [119]Seah S,Spelmeyer W,Jahier J,et al.Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat[J].MPMI,2000,13(3):334~341.
    [120]Seah S,Sivasithamparam K,Karakousis A,et al.Cloning and characterization of a family of disease resistance gene analogs from wheat and barley[J]. Theor Appl Genet,1998,97:937~945.
    [121]Felton G W,Korth K L,Wesley S V,et al.Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory.Curr Biol,1999:317~320.
    [122]Lorenzo O,Piqueras R,Sanchez-Serrano J J,et al.Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense[J].Plant Cell,2003,15:165~178.
    [123]Anderson J P,Badruzsaufari E,Schenk P M,et al.Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis[J].Plant Cell,2004,16:3460~3479.
    [124]王萍,栾非时,沉克农,窦宝旗. 4种染色方法对甜瓜白粉病菌染色效果的观察比较.菌物系统,2002,21(4):592~596.
    [125]Bevan M,Bancroft I,Bent E,et al.Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature,1998,118:1067~1078.
    [126]Zhang L,Meakin H,Dicknson M.Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP[J].Mol Pathol,2003,4(6):469~477.
    [127]Gabriels S H E J,Takken F L W,Vossen J H,et al.cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response[J]. Molecular Plant-Microbe Interactions,2006,19:567~576.
    [128] Jean L S A,Roberta L R,Liliane B A G,et al.Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodules[J].FEBS Letters,2002,515(1):44~50.
    [129]韩斌,彭建营.cDNA-AFLP技术及其在植物基因表达研究中的应用[J].西北植物学报,2006,26(8):1753-1758.
    [130]McClelland M,Mathieu-Daude F,Welsh J.RNA fingerprinting and differential display using arbitrarily primed PCR[J].Trends in Genetics,1995,11:242~246.
    [131]Gupta S K,Charpe A,Koul Sunita,et al. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leafrust-resistance gene Lr9 for marker-assisted selection in bread wheat[J].Genome,2005,48(5):823-830.
    [132]Zheng X,Chen X,Zhang X,et al.Isolation and identification of a gene in response to rice blast disease in rice[J].Plant Molecular Biology,2004,54(1):99-109.
    [133]郭军,崔冬玉,王晓武,等.cDNA-AFLP结合研究马铃薯晚疫病菌小种特异无毒基因差异表达片段[J].中国马铃薯,2004,18(1):1~3.
    [134]Dellagi A,Birch P R J,Heilbronn J. cDNA-AFLP analysis of differential gene expression in theprokaryotic plant pathogen Erwinia carotovora[J].Microbiology,2000,146(1):165-171.
    [135]Vanderbiezen E A,Juwanah,Parker J E,et al.cDNA-AFLP display for the isolation of peronospora parasitica genes expressed during infection in Arabidopsis thaliana[J]. Molecular plant-microbe interactions,2000,13(8):895~898.
    [136]Camoni L,Harper J F,Palmgren M G.14-3-3 Protein activate a plant calcium-dependent protein kinase (CDPK). FEBS lett,1998,430:381~384.
    [137]梁小娥,张大鹏,贾文锁.苹果和葡萄果实蛋白激酶特性分析[J] .植物生理学报,2000,26(3):257~262.
    [138]Romeis T,Piedras P,Zhang S,et al.Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobaco cell cultures and leaves: convergence of resistance gene,elicitorm wound,and salicylate responses[J].Plant Cell,1999,11:273~287.
    [139]Schaller A and Aeckling C. Modulation of plasma membrance H+- ATPases activity differentially activates wound and pathogen defense responses in tomato plants[J]. Plant cell,1999,11: 1721~1727.
    [140]Assmann S M,Simoncini L,Schroeder J I.Blue light activates electrogenec ion pumping in guard cell protoplasts of Vicia faba[J]. Nature,1985,318:285~287.
    [141]Sze H,Li X,Palmgren M G.Energization of plant cell membranes by H+-pumping ATPases regulation and biosynthesis[J]. Plant Cell,1999,11:677~690.
    [142]郑用琏,Balance G M.小麦与褐斑病菌之间的分子互作Ⅰ:受病原菌诱导的寄主PR基因的表达[J].华中农业大学学报,1994,13(3):213~218.
    [143]Thimmol-Lapuram J,Ko T S,Korban S S. Characterization and expression ofβ-1,3-glucanases genes in pearch[J]. Mol Genet Genomics,2001,265:469~479.
    [144]Li W L,Faris J D,Muthukrishnan S,et al. Isolation and characterization of novel cDNA clones of acidic chitinaseas andβ-1,3-glucanases from wheat spikes infected by Fuasrium graminearum[J]. Theor Appl Genet,2001,102:353~362.
    [145]Ziadi S,Barbedette S,Godard J F,et al. Production of pathogenesis-related proteins in the cauliflower (Brassica oleracea var. botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl[J]. Plant Pathology,2001,50:579~586.
    [146]Torii K U.Receptor kinase activation and signal transduction in plants:an emerging picture[J]. Curr Opin Plant Biol, 2000, 3:361~367.
    [147]Morris E R,Walker J C. Receptor-like protein kinases: The keys to response[J].Curr opin plant biol.2003.6:339~342.
    [148]Shiu S H,Karlowski W M,Pan R,et al.Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J].Plant cell, 2004, 16: 1220~1234.
    [149]Conrath U,Silva H,Klessig D.Protein dephosphrylation mediates aslicylic acid-induced expression of PR-1genes intobacco[J].Plant J.1997,11:7456~757.
    [150]Stone J M,Walker G L.Plant protein kinase families and signal transduction[J].Plant Plant Physiol,1995,108:451~457.
    [151]牛吉山,于玲,马正强等,一个小麦丝氨酸-苏氨酸蛋白激酶基因的克隆和分析[J],植物学报,2002,44(3),325~328.
    [152]王华忠,牛吉山,陈佩度,等.利用瞬间表达技术分析小麦抗病相关基因的功能[J].遗传学报,2005,32(9):930~936.
    [153]曹爱忠,李巧,陈雅平,利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究[J],作物学报,2006,32(10):14444~1452.
    [154]Song W Y,Wang G L,Chen L L,et al.A recptor kinase-like protein encoded by the rice disease resistance geneXa21[J].Science,1995,270:1804~1806.
    [155]牛吉山,张丽娜,王映红,等,普通小麦中一个类受体激酶基因的克隆、鉴定和表达分析[J].植物生理与分子生物学学报,2006,32(1)79~86.
    [156]Niu J S,Yu L,Ma Z Q,et al.Molecular cloning and characterization of a serine/threonine protein kinase gene from Triticum aestivum[J]. Acta Botanica Sinica, 2002, 44. 325~328.
    [157]陈亮.中间偃麦草中抗病相关基因基因TiERF1与TiDPK1的分离与功能研究[D].北京:中国农业科学院,2010.
    [158]张兆沛,王志伟,张慧荣.植物类受体蛋白激酶研究概况[J].山西农业科学,2009,37(8):75~78.
    [159]Liu J P, Zhu J K.A calcium sensor homolog required for plant salt tolerance[J].Science, 1998, 280 (5371):1943~1945.
    [160]Gomez-Gomeza L,Bollerb T.Flagellin perception: a paradigm for innate immunity[J].Trends in Plant Science,2002,7(6):251~256.
    [161]Scheer J M and Ryan C A J r,The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family[J].Proc Natl Acad Sci,2002,99:9585.
    [162]Chinchill D,Zipfel C, Robatzek S,et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.Nature ,2007,448:497~501.
    [163]Dunning F M,Sun W X,Jansen K L,et al.Identification and Mutational Analysis of Arabidopsis FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception[J].The Plant Cell,2007,19:3297~3313.
    [164]Huffaker A,Gregory P,Ryan C A.An endogenous peptide signal in Arabidopsis activates components of the innate immune response.2006,103 (26):10098~10103.
    [165] Yamaguchi Y,Pearce G,Ryan C A.The cell surface leucine-rich repeat receptor for AtPep1,an endoaenous peptide elicitor in Arabidopsis,is functional in transgenic tobacco cells.Proc Natl Acad Sci USA. 2006,103:10104~10109.
    [166]牛吉山,常阳,刘瑞,等,一个二粒小麦LRR类受体蛋白激酶基因的克隆和鉴定,植物病理学报,2009,39(2):217-220.
    [167]Shpak E D,McAbee J M,Pillitteri L J,et al.Stomatal Patterning and Differentiation by Synergistic Interactions of Receptor Kinases. Science,2005,309:290-293.
    [168]Godiard L,Sauviac L,Torii K U.ERECTA,an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J,2003,36(3):353~365.
    [169]Zanten M V, Snoek L B, Proveniers M C.The many functions of ERECTA.Trends in Plant Science,2009,14(4):214~218.
    [170]Chinchilla D,Zipfel C,Robatzek S,et al.A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.Nature,2007,448(7152):497~500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700