用户名: 密码: 验证码:
乙烯诱导柑橘果实脱落的转录基因组学研究及乙烯诱导基因的克隆和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果实脱落是影响柑橘产量的重要因素之一。乙烯调节脱落过程中细胞分裂、伸长、细胞壁水解等多种细胞学、生物化学进程,是主要的脱落激素。乙烯生物合成途径已经阐明。研究指出,柑橘叶片和果实中都存在两种乙烯生成系统,柑橘叶片在采摘后(老叶3-5天、新叶6-7天)乙烯合成表现为系统Ⅰ,老叶采后5天、新叶采后7天则表现出乙烯自动催化等典型的类似跃变型果实的乙烯生成系统Ⅱ的特征;柑橘作为一种非跃变型的果实,成熟果实中只有系统Ⅰ存在,外源乙烯能促进成熟相关的色素变化加快呼吸进程;但在幼果中表现出乙烯生成系统Ⅱ类似的特征。为探寻乙烯在柑橘成熟果实脱落过程中的作用机理,本研究进行了乙烯诱导下柑橘果实离层的表达谱分析,柑橘PRP、ERF和半胱氨酸蛋白酶基因全长cDNA克隆、表达分析和柑橘PRP、ERF、半胱氨酸蛋白酶基因RNAi载体的构建及转化等研究。
     1乙烯诱导下柑橘果实离层的表达谱分析
     利用Citrus Genome Array研究了在外源乙烯(20μL/L)诱导下柑橘果实离层的基因表达谱,在30395个达到探针对阀值(8对)要求的探针组中,检测到20639探针组对应的基因表达。应用GCOS软件系统进行数据管理、RMA进行数据预处理、随机方差模型的单因素方差分析法分析实验组与对照组间的差异基因之后,发现在FDR(false-discovery rate)≤0.02水平上乙烯处理4h、24h后分别有569和356条基因表达量的变化倍数≥4。其中,4h乙烯处理后表达量上调的有243条,处理24h后上调表达的有176条;而对应时间内表达量下调的则分别有326条和190条。分析了随机挑选的16条基因,所得结果与芯片数据高度一致。根据基因功能分类,发现这些乙烯应答基因涉及协迫应答、生物或非生物刺激、蛋白质代谢、物质转运、信号转导和转录等多种生物学过程。经过基因本体(Gene Ontology,GO)分析,差异表达基因中,发现富含羟脯氨酸蛋白-4(PRP4, proline-rich protein 4)基因、乙烯响应因子1(ERF1, ethylene response factor 1)基因和半胱氨酸蛋白酶(CysP,cysteine proteinase)基因高度受到乙烯调控,它们在柑橘果实脱落中所起的作用值得关注,因而被挑选出来进一步分析。
     2柑橘CsPRP4、CsERFl、CsUnknow和CsCysP基因全长cDNA克隆和表达分析
     根据HarvEst Citrus (Version 1.25)数据库提供的CsPRP4、CsERFl、CsUnknow和CsCysP序列信息设计了PCR引物,采用RT-PCR和SMART RACE技术和克隆操作,获得了这些基因的全长cDNA序列。
     序列分析结果显示,这4个基因的全长cDNA长度分别是1251bp、1453bp、1545bp和1452bp,开放阅读框(ORF)的长度分别是585bp、810bp、1101bp和1050bp,分别编码194、269、365和347个氨基酸,相应的推测分子量分别是20.79KD、29.25KD、41.6KD和38.4KD。蛋白理化性质分析表明CsPRP4和CsERF1性质稳定,而CsUnknow和CsCysP不稳定。
     生物信息学和基因差异表达分析表明:CsPRP4是受外源乙烯诱导表达量上升最强烈的编码细胞壁蛋白的基因,在叶片和果实离层均表达,受乙烯诱导后的叶片和果实离层表达存在差异;CsERF1是AP2超基因家族成员,具转录因子活性,在乙烯诱导下表达量大量增加,CsERF作为乙烯信号转导途径的中间组分,具有结合GCC-box的活性,通过与乙烯应答基因启动子中的GCC-box结合调控下游基因表达,可能是最终导致脱落的关键因子之一;CsUnknow基因,定位于内膜系统,具有GCC-box结合域,受乙烯强烈诱导,功能未知;CsCysP蛋白,是重要的水解蛋白酶之一,具有肽链内切酶活性,是一种跨膜蛋白,定位于液泡膜上。外源乙烯作用下,CsCysP在柑橘果实离层中受到强烈抑制,推测其负调控下游的脱落相关基因,受其作用的某些蛋白质的积累可能是脱落过程所必须的。
     3柑橘CsPRP4、CsERF1和CsCysP基因RNAi载体的构建及转化
     采用RT-PCR方法扩增柑橘目的基因PRP4、ERF1和CysP的cDNA片段,连接到TA克隆载体。双元载体pFGC5941和目的基因的克隆经限制性内切酶两次双酶切,将目的基因片段按正、反向插入到pFGC5941查耳酮合成酶内含子的两端,构成反向重复序列,即RNA干涉载体。通过菌液PCR、酶切检验或测序等证实正、反向基因片段均已正确插入到载体中。研究中保留了采用该法构建的全长正向片段与pFGC5941相连接后得到的产物,以用于基因的过量表达研究。采用根癌农杆菌介导的转基因法得到了大量抗性芽,其中部分已经嫁接成活,为下一步研究在干扰和过量表达这些基因后的表型打下了基础。
     4主要结论
     本实验在转录水平上大规模地研究了外源乙烯诱导下柑橘果实离层的基因表达谱的变化,获得了大量潜在的参与脱落进程的基因及其表达数据。在全面综合分析这些数据的基础上,基本明确了参与脱落过程的生理生化过程,加深了对乙烯在诱导柑橘果实脱落过程中基因调节等分子机理的认识。
     克隆获得了4条在柑橘果实脱落过程中受到强烈调控的基因CsPRP4、CsERFl、CsUnknow和CsCysP的全长cDNA。对这些基因进行了生物信息学分析,结合表达分析,推测了其在脱落过程中可能的作用。
     构建了CsPRP4、CsERF1、CsUnknow和CsCysP基因的过量表达载体和RNAi载体。通过根癌农杆菌介导的遗传转化,获得了大量抗性再生芽,部分芽已高接成活,为下一步揭示这些基因的功能奠定了基础。
Abscission is an important determinant of citrus yield. Ethylene is a major abscission hormone that regulates many biological processes involved in abscission such as cell division, cell expansion and cell wall decomposition. The biosynthesis of ethylene has been elucidated. Previous researches indicated that two ethylene production systems, systemⅠandⅡ, exist in both citrus fruit and leaves. During the first phase (3~5d in mature leaves and 6~7d in young leaves, after detachment)systemⅠis operating. During the second phase, which started 5d and 7d, respectively, in young leaves and mature leaves after harvest, systemⅡis initiated and ethylene evolution becomes autocatalytic and climacteric-like, which is typical in systemⅡ. Mature citrus fruits, which are generally considered as non-climacteric, only exhibit systemⅠ-like behavior, and respond to exogenous ethylene by undergoing ripening-related pigment changes and accelerated respiration. Young citrus fruitlets exhibit a climacteric-like rise in ethylene production after detachment, indicating an autocatalytic systemⅡ-like ethylene biosynthesis.
     To explore the mechanism of ethylene action in the abscission of mature fruit, changes in transcriptome in the abscission zone of mature fruit during ethylene-induced abscission were studied. Several highly ethylene-regulated genes, CsPRP4、CsERF1、CsUnknow and CsCysP, were full-length cloned. Bio-informatics researches, together with quantitative RT-PCR studies on their expression changes, were performed on these genes to probe their possible roles in ethylene-induced abscission. Construction of overexpression and RNAi vectors was conducted for these genes, and transformation was done via agrobacterium-mediated transformation using the constructs and sweet orange explants. Regenerated antibiotic buds were obtained and some of them were successfully grafted.
     1. Profiling genes involved in ethylene-induced abscission in mature citrus fruit
     Ethylene responsive genes in mature Valencia orange fruit abscission zones were analyzed by using Affymetrix GeneChip citrus genome array. Fruit were treated with 20μL/L of ethylene for 0,4 and 24h and RNA was extracted from abscission zones and subjected to genechip analysis. GCOS software was used to analyze the original genechip hybridization data. RMA (robust multiarray analysis) was used to filtrate the unreliable dada. Of the 30395 total probe sets that exceed the probe pair threshold on the microarray,20639 detected changed expression of their corresponding genes.569 and 326 genes were identified to be ethylene-responsive as shown by more than 4-fold changes in their expression levels after 4 and 24 h of ethylene treatment at FDR (false-discovery rate)≤0.02 level. Of these genes,243 and 176 were up-regulated, whereas 326 and 190 were down-regulated, respectively, after 4 and 24h of ethylene treatment. Results from relative quantitative RT-PCR analysis performed on 16 selected genes were highly agreeable with those observed from microarray analysis. Classification based on their functions showed that these ethylene-responsive genes are related to a variety of different processes including responses to stress, responses to abiotic or biotic stimulus, protein metabolism, transport, signal transduction and transcription. The most significant changes in expression were found for genes encoding proline-rich protein 4, ethylene response factor 1 and cysteine proteinase, and their possible involvement in abscission was further studied.
     2. Cloning and Expression Analysis of CsPRP4、CsERF1、CsUnknow and CsCysP genes
     Primers were designed from sequences deposited in HarvEst Citrus (Version 1.25) database, and the full-length cDNAs of CsPRP4、CsERF、CsUnknow and CsCysP genes were cloned by using methods of RT-PCR and SMART-RACE.
     Sequence analysis revealed that the full-length cDNAs of CsPRP4, CsERF, CsUnknow and CsCysP are 1251bp、1453bp、1545bp and1452bp respectively, and their corresponding ORFs are 585bp、810bp、1101bp and 1050bp in length which would encode 194,269,365 and 347 amino acids with calculated molecular masses of 20.79KD,29.25KD,41.6KD and 38.4KD, respectively. Protein physiochemistry analysis suggested that CsPRP4 and CsERF1 would be stable while CsUnknow and CsCysP would be unstable.
     Bioinformatics and expression analysis showed that CsPRP4 was probably the most highly induced cell-wall gene and expressed differentially between leaves and fruit abscission zones when induced by exogenous ethylene. CsERF1 is a member of the AP2 supperfamily possessing transcription activator activity. ERF1, with GCC-box binding activity and as a component of the ethylene signal transduction pathway, plays an important role in modulating the expression of genes downstream of it by binding the GCC boxes located in the promoters of many ethylene responsive genes, and may be one of the key factors that eventually cause abscission. The function of CsUnknow encoded protein is unknown, but its expression was highly induced by ethylene. The sequence of CsUnknow suggested that it probably located in endomembrane system and possessed GCC-box binding motif. CsCysP, a transmembrane protein located in vacuolar membrane, is one of the important hydrolytic proteases with endopeptidase activity. The expression of CsCysP was strongly repressed by exogenous ethylene treatment, suggesting that it negatively regulates downstream gene(s) and that the accumulation of proteins targeted by CsCysP may be required in abscission. 3. Construction of CsPRP4、CsERF1 and CsCPA RNAi vectors and transformation
     By using RT-PCR, the targeted cDNA sequences of PRP4、ERF1 and CysP were amplified from citrus and T/A cloned. Binary vector pFGC594 and target sequences were sequentially digested twice with endonucleases and then the target sequences were inserted in sense and antisense directions, respectively, into the two sides of the chalcone synthase gene intron that was carried in the vector to form inverted repeats. Various methods such as PCR by using bacteria containing the constructs, digestion of the isolated plasmids with endonucleases, and sequencing verified that all the constructs were correct. The sense constructs used in the construction of RNAi expression vectors were used as over-expression constructs. Antibiotic resistant buds were regenerated after transformation of citrus explants via agrobacterium-mediated transformation, and some of the buds have been successfully grafted onto rootstock seedlings, which should have paved a way towards the elucidation of the genes' functions.
     4. Conclusion remarks
     In this work, a large-scale study on the changes in transcriptome profiles of ethylene-induced genes during fruit abscission was carried out and a large quantity of data about the genes involved in abscission and their expression changes were generated. Comprehensive analysis of the data provided information of the biological pathways involved in abscission, and deepened our understanding of the molecular mechanism on gene regulation during ethylene-induced abscission.
     The full-length cDNAs of 4 ethylene-regulated genes CsPRP4、CsERF1 CsUnknow and CsCysP during ethylene-induced abscission were obtained, and were analyzed with bioinformatics methods. In combination with the expression analysis, the roles of the genes in abscission were assumed.
     The overexpression and RNAi expression vectors were constructed for CsPRP4、CsERF1、CsUnknow and CsCysP. Regenerated antibiotic buds were obtained through agrobacterium-mediated transformation, and some of the buds were survived after grafting, which placed a base for further characterization of the genes'functions.
引文
[1]Robert RK and Luis N. Citrus Genetics, Breeding and Biotechnology[M]. Citrus Germplasm Resources.2006,45-140 Edited by I.Khan
    [2]中国柑橘协会.中国柑橘品种[M],2008,中国农业出版社
    [3]Fritz R. Cost/Benefit analysis of abscission registration for Citrus mechanical harvesting. Southern Agricultural Economics Association Annual Meeting, Atlanta, Georgia, January 31-February 3[D],2009
    [4]Katz E, Lagunes PM and Riov J. Goldschmidt Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit [J]. Planta,2004,219:243-252
    [5]Aharoni Y. Respiration of oranges and grapefruit harvested at different stages of development [J]. Plant Physiol,1968,43:99-102
    [6]Brady CJ and Speirs J. Ethylene in fruit ontogeny and abscission [M]. Boca Raton: CRC Press,1991,235-258
    [7]Mordy AA, Jeffrey KB and Donald JH. Feedback mechanisms in tomato and strawberry fruit tissues in relation to fruit ripening and climacteric patterns [J]. Postharvest Biology Technology,2000,20:151 - 162
    [8]Purvis AC and Barmore CR. Involvement of ethylene in chlorophyll degradation in peel of citrus fruits Robinson tangerine, calamondin [J]. Plant Physiology,1981,68: 854-856
    [9]Goldschmidt EE, Huberman M and Goren R. Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists [J]. Plant Growth Regulation,1993,12:325-329
    [10]Goren R. Anatomical, physiological and hormonal aspects of abscission in citrus [J]. Hortic Review,1993,15:145-182
    [11]Burns JK. Abscission in citrus fruit, leaves and flowers:physiology, molecular biology and possible points of control [M]. Proceedings of the Citrus Abscission Workshop,1998:28-34
    [12]Shimada T, Fuiii H and Endo T. Toward comprehensive expression profiling by microarray analysis in citrus:monitoring the expression profiles of 2213 genes during fruit development[J], Plant Science,2005,168(5):1383-1385
    [13]Angeles Martinez-Godoy M, Mauri N and Juarez J. A genome-wide 20 K citrus microarray for gene expression analysis[J]. BMC Genomics,2008,9:318
    [14]李瑶主编基因芯片与功能基因组[M],2004,化学工业出版社
    [15](美)鲍特尔(Bowtell D.等著,吕化等译,DNA微阵列实验指南[M],2008,科学出版社
    [16]Foment J, Gadea J and Huerta L. Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies[J]. Plant Mol. Biol,2005,57(3):375-391
    [17]Goldberg-Moeller R, Shlizerman L, Zur N and Sadka A. The use of genomic approach to identify factors involved in the induction of flower bud dierentiation in Citrus[D]. Plant & Animal Genome XV Conference, p.78, SanDiego, Calif, USA, January 2007
    [18]Albrecht U and Bowman KD. Gene expression in Citrus sinensis(L.)Osbeck following infection with the bacterial pathogen Candidatus Liberi bacterasia ticus causing Huanglongbing in Florida. Plant Science.2008,175:291-306
    [19]宋震,周常勇.柑橘衰退病毒分子生物学研究进展.西南农业学报.2005,18(2):213-216
    [20]Maul P, McCollum GT, Popp M, Guy CL and Porat R. Transcriptome profiling of grapefruit flavedo following exposure to low temperature and conditioning treatments uncovers principal molecular components involved in chilling tolerance and susceptibility [J]. Plant Cell Environ.2008,31 (6):752-768
    [21]Agusti J, Merelo P and Cercos M. Ethylene-induced differential gene expression during abscission o fcitrus leaves. Journal of Experimental Botany.2008, 59:2717-2733
    [22]Fujii H, Shimada T and Sugiyama A. Profiling gibberellin (GA3)-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Scientia Hort-iculture.2008,116(3):291-298
    [23]Fujii H, Shimada T, Sugiyama A et al. Profiling etylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant science.2007, 173:340-348
    [24]Cereos M, Soler G, Domingo J. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol.2006,62(5):13-527
    [25]Alos E, Roca M. and Iglesias DJ. An evaluation of the basis and consequences of a Stay-Green mutation in the navel negra Citrus Mutant Using transcriptomic and
    proteomic profling and metabolite analysis. Plant physiology.2008,147:1300-1315
    [26]Marcotrigiano M. Chimeras and variegation:patterns of deceit[J]. Hortscience, 1997,32:773-784
    [27]张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展[J].果树学报,2006,23(6):871-876
    [28]LiuQ, Zhu A, Chai LJ, Zhou WJ, Yu KQ, Ding J, Xu J andDeng XX, Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development[J], Journal of Experimental Botany,2009, 2:1 - 13
    [29]Kallioniemi AO, Kallioniemi P, Sudar D and Rutovitz DJW. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors[J]. Science,1992,(258):818-821
    [30]Heiskanen MA, Bittner ML, Chen Y, et al. Detection of gene amplification by gen omic hybridization to cDNA microarrays[J]. Cancer Res,2000,60(4):799-802
    [31]Gabino R, Miguel AN, Domingo JI, Omar RR, Marion G, Antonio U and Manuel T. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome [J/OL]. BMC Genomics,2008,9(381):doi:10.1186/1471-2164-9-381
    [32]Anthony BB and Sara EP. Last Exit:Senescence, Abscission, and Meristem Arrest in Arabidopsis[J]. The Plant Cell,1997, (9):1169-1179
    [33]. Butenko MA, Stenvik GE, Alm V, S(?)ther B,. Patterson SE and Aalen RB. Ethylene-dependent and-independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. Experimental Botany,2006,57(14):3627--3637
    [34]Patterson SE. Cutting loose Abscission and dehiscence in Arabidopsis [J]. Plant Physiology,2001,126:494--500
    [35]Addicott FT, Abscission[M], Berkeley. Los Angeles. London, University of California Press,1982,113-151
    [36]Shimshon BY and Irving LE. Ethylene Production and Abscission of Fruit and Leaves of Orange Botanical Gazette,1970,131(2):144-150
    [37]G6mez-Cadenas A, Tadeo FR, Talon M and Primo-Millo E. Leaf abscission induced by ethylene in water stressed intact seedlings of (Citrus reshni Hort. ex
    Tan.) requires previous abscisic acid accumulation in roots. Plant Physiology, 1996,12:401-408
    [38]Fredrick T. Addicott Environmental Factors in the Physiology of Abscission[J]. Plant Physiology,1968; 43(9):1471 - 1479.
    [39]Hua J, Chang C,Sun Q and Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science[J].1995,269:1712--1714
    [40]Christine ME, Punita N, Jeffery CY, Gretchen H, Thomas JG and Jason WR. Auxin Response Factor 1 and Auxin Response Factor2 regulate senescene and floral organ abscission in Arabidopsis thaliana [J]. Development,2005:4563 -4574
    [41]王权帅,赵丹莹,申琳,生吉萍.脱落调节物质对植物器官脱落的调控[J].西北植物学报,2009,29(11):2352-2359
    [42]王淼,阳佳位,魏召新.柑橘脱落研究进展[J].中国南方果树,2009,38(2):61-63
    [43]Melinka AB, Grethe-Elisabeth S, Vibeke A, Barbro S, Sara EP and Reidunn BA. Ethylene-dependent and-independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. Experimental Botany,2006,57(14):3627-3637
    [44]Pech JC and Bouzayen ML. Climacteric fruit ripening:Ethylene-dependent and independent regulation of ripening pathways in melon-fruit[J]. Plant Science, 2008,175:114-120
    [45]Gane R, Production of ethylene by some ripening fruits[J]. Nature,1934,134: 1008 doi:10.1038/1341008a0
    [46]潘延云,郭毅,赵云峰,孙大业.乙烯在植物中的信号转导[J].浙江大学学报(农业与生命科学版),2003,29(4):453-460
    [47]Yang SF and Hoffman NE. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review, Plant Physiology,1984,35:155-189
    [48]Bleecker AB and Kende H. Ethylene:a gaseous signal molecule in plants [J]. Annu.Rev. Cell Dev. Biol.2000,16:1 - 18
    [49]Wang KLC, Li H and Ecker JR. Ethylene biosynthesis and signaling net works[J]. The Plant Cell,2002, (Supplement):131 - 151
    [50]殷学仁,张波,李鲜,陈昆松.乙烯信号转导与果实成熟衰老的研究进展[J].园艺学报.2009,36(1):133-140
    [51]Lieberman M. Biosynthesis and Action of Ethylene[J]. Annual review of plant physiology,1979,30:533-591
    [52]Yu YB, Doadams O and Yang SF.1-aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis[J]. Arch Biochem Biophys.1979,198:280-286
    [53]Yang S. Regulation of biosynthesis and action of ethylene [J]. Acta Hort. (ISHS) 1987,201:53-60
    [54]徐昌杰,陈昆松,张上隆.乙烯生物合成及其控制研究进展[J].植物学通报,1998,15(增刊):54-61
    [55]Yamagami T, Tsuchisaka A,Yamada K, Haddon WF, Harden LA and Theologis A. Biochemical diversity among the 1-amino-cyclopropane-l-carboxylate synthase isozymes encoded by the Arabidopsis gene family[J]. Biol.Chem.2003,278: 49102-49112
    [56]Fluhr R and Mattoo AK. Ethylene-biosynthesis and perception [J]. Critical reviews in plant science.1996,15:479-523
    [57]Liang XW, Abel S, Keller JA, Shen NF and Theologis A. The 1-aminocy-clopropane-1-carboxylate synthase gene family of Arabidopsis thaliana [J]. Proc. Natl.Acad.Sci.1993,89:11046-11050
    [58]Liang XW, Shen NF and Theologis A. Li+-regulatedl-aminocyclopropane-l-carboxylate Synthase gene expression in Arabidopsis thaliana [J]. Plant J. 1996,(10):1027-1036
    [59]Arteca J.M., Arteca R.N. A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase(ACS6) in mature Arabidopsis leaves[J]. Plant Mol. Biol. 1999, (39):209--219
    [60]Raz V and Ecker JR. Regulation of differential growth in the apical hook Arabidopsis[J]. Development.1999,(126):3661-3368
    [61]De-Paepe A, Vuylsteke M,Van-Hummelen P, Zabeau M and Van der Straeten D. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response in Arabidopsis[J]. Plant J.2004,(39):537-559
    [62]Katz E, Riov J, Weiss D. and Eliezer EG. The climacteric-like behaviour of young, mature and wounded citrus leaves[J]. Journal of Experimental Botany.2005, 56(415):1359--1367
    [63]Hua J and Meyerowitz EM. Ethylene response are negatively regulated by a
    receptor gene family in Arabidopsis[J]. Cell.1998,94:261--271
    [64]Woeste K, and Kieber JJ. Astrong loss-of-function allele of RAN1 results in constitutive activation of ethylene responses as well as a rosette-lethal phenotype. Plant Cell.2000,12:443-455
    [65]Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso, JM, Dailey WP, Dancis A, and Ecker JR. Responsive to antagonisitl, a Menkes/ Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis[J]. Cell,1999,97:383-393
    [66]Gamble RL, Coonfleld ML and Schailer GE. Histidine kinase activity of the ETRI ethylene receptor from Arabidopsis[J]. Proc Natl Acid Sci,1998, (95):7825-7829
    [67]Anne EH and Jennifer L. Ethylene perception by the ERS1 protein in Arabidopsis[J], Plant Physiology,2000.123:1449-1457
    [68]Alonso J.M., Hirayama T, Roman G, Nourizadeh S, and Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science, 1999,284:2148-2152
    [69]Chen YF, Etheridge N and Schaller GE. Ethylene signal transduction[J]. Annals of Botany,2005,95:901-915
    [70]安丰英,郭红卫.乙烯信号转导的分子机制[J].植物学通报,2006,23(5):531-542
    [71]Ouaked F,Rozhon W, Leeourieux D and Hirt H. AMAPK Pathway mediates ethylene signaling in Plants[J]. EMBO Journ.,2003,(22):1282-1288
    [72]Zhong GY, Riov J, Goren R and Holland D. Ethylene-induced MAP kinase genes from citrus fruit abscission zone [D]. Acta Hortic, Ⅷ International Symposium on Plant Bioregulation in Fruit Production 1996,463:69-73
    [73]Mehta A, Silva MS, Guidetti-Gonzalez S, Carrer H, Takita MA and Martins NF. Signaling pathways in a Citrus EST database [J]. Genetics and Molecular Biology. Suppl.2007,30(3):734-751
    [74]Lashbrook CC, Giovannoni JJ, Hall BD. Transgenic analysis of tomato endo-b-1,4-glucanase gene function. Role of cell in floral abscission [J]. Plant Journ.,1998,13:303--310
    [75]Smith DL, Starrett DA and Gross KC. A gene coding for tomato fruit β-galactosidase Ⅱ is expressed during fruit ripening. Cloning, characterization,
    and expression pattern [J]. Plant Physiology.1998,117:417-423
    [76]Gonza'lez-Carranza ZH, Whitelaw CA and Swarup R. Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis [J]. Plant Physiology.2002,128:534-543
    [77]Wittenbach VA and Bukovac MJ. Cherry fruit abscission:peroxidase activity in the abscission zone in relation to separation. J. Amer. Soc. hort. Sci.1975,(100): 387-391
    [78]Gomez L, Kelly P, Sexton R and Trewavas AJ. Identification of chitinase mRNA in abscission zones from bean (Phaseolus vulgaris Red Kidney) during ethylene-induced abscission[J]. Plant Cell and Environment.1987, (10):741-746
    [79]Cho HT and Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana [J]. PNAS,2000,97(17):9783-9788
    [80]Burns JK and Lewandowski DJ. Genetics and expression of pectinmethylesterase, endo-glucanase and polygalacturonase genes in Valencia orange [J].Acta Hort, 2000,535:65--80
    [81]Burns JK, Lewandoski DJ and Nairn CJ. Endo-1,4-β-glucanase gene expression and cell wall hydrolase activities during abscission in Valencia orange [J]. Physiologia Plantarum.1998,102:217-225
    [82]Wu ZC and Burns JK. A P-galactosidase gene is expressed during mature fruit abscission of'Valencia'orange (Citrus sinensis) [J]. Journal of Experimental Botany.2004,55:1483-1490
    [83]Kostenyuk IA, Zon J and Burns JK. Phenylalanine ammonialyase gene expression during abscission in citrus [J]. Physiologia Plantarum.2002,116:106-112
    [84]Burns JK. Using molecular biology tools to identify abscission materials for citrus [J]. HortScience,2002,37:15-20
    [85]Wu ZC and Burns JK. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in Valencia' orange during abscission [J]. Journal of Experimental Botany.2003,54:1183-1191
    [86]Hong SB and Tucker ML. Molecular characterization of a tomato polygalacturonase gene abundantly expressed in the upper one-third of pistils from opened and unopened flowers[J]. Plant Cell Report.2000 (in press)
    [87]Zhong GY, Goren R, Riov J, Sisler EC and Holland D. Characterization of an ethylene-induced gene isolated from Citrus sinensis by competitive hybridization [J]. Physiol Plant.2001,113(2):267-274
    [88]Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J. Barajas P and Cheuk R. Genomewide insertional mutagenesis of Arabidopsis thaliana[J]. Science.2003,301:653-657
    [89]Zhong GY and Burns JK. Profiling ethylene regulated genes in Arabidopsis by microarray[J]. Plant Mol. Biol.,2003,53(9):117-131
    [90]Arumuganathan K., Earle E. D., Nuclear DNA content of some 479 important plant species[J], Plant Molecular Biology Reporter,1991,9(3):208-218
    [91]DRAFT OF THE INTERNATIONAL CITRUS GENOME CONSORTIUM WHITE PAPER [EB/OL].2003
    [92]Manuel T, Fred G and Gmitter J. Citrus Genomics, International Journal of Plant Genomics,2008, Article ID 528361,17 pages,2008. doi:10.1155/2008/528361
    [93]Roose ML, Niedz RP, Fred G and Gmitter J. Analysis of a 1.2x whole genome sequence of Citrus sinensis[D]. Plant & Animal Genome XV Conference, p.81, San Diego, Calif, USA, January 2007
    [94]Bausher M. G., Singh ND, Lee SB, Jansen RK and Daniell H. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var'Ridge Pineapple' organization and phylogenetic relationships to other angiosperms[J], BMC Plant Biology.2006,(6):1-11
    [95]Adams MD, Kelley JM, Gocayne JD, Dubnick M, Poly-Meropoulos MH, Hong X, Merril CR, Wu A, Olde B, Mornrno RF and Kerlavage A R. Complementary DNA sequencing:expressed sequence tags and human genome project[J]. Science.1991, 252(5013):1651-1656
    [96]Hisada S, Akihama T, Endo T, Moriguchi T andOmura M. Expressed sequence tags of Citrus fruit during rapid cell development phase[J], Journal of the American Society for Horticultural Science.1997,122(6):808-812
    [97]Reis MS, Takita MA, Palmieri DA and Machado MA. Bioinformatics for the Citrus EST project (CitEST)[J]. Genetic and Molecular Biology.2007,30 (3): 1024-1029
    [98]Katz E, Fon M and Lee YJ. The citrus fruit proteome:insights into citrus fruit metabolism[J]. Planta.2007,226:989-1005
    [99]Lliso I, Tadeo F, Phinney BS, Wilkerson CG and Talon M. Protein changes in the albedo of citrus fruits on postharvesting storage[J], Journal of Agricultural and Food Chemistry.2007,55(22):9047-9053
    [100]Cassab GI. Plant cell wall proteins[J]. Annu RevPlant Physiol Plant Mo Biol, 1998,49:281-309
    [101]Jose-Estanyol M and Puigdomenech P. Plant cell wall glycoproteins and their genes[J].Plant Physiol Biochem.2000,38(1-2):97-108
    [102]Jose M, Puigdomenech P. Transley review No.55:structure and expression of genes coding for structural proteins of the plant cell wall[J]. New Phytol,1993, 125 (2):259-282
    [103]Menke U, Renault N and Mueller-Roeber B. StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins[J]. Plant Physiol.2000,122 (3):677-686
    [104]Bradley DJ, Kjellbom P and Lamb CJ. Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein:a novel, rapid defence response[J]. Cell.1992,70:21-30
    [105]Hong JC, Nagao RT and Key JL. Developmentally regulated expression of soybean proline-rich cell wall protein genes[J]. The Plant Cell,1989,1 (9): 937-943
    [106]Wyatt RE, Nagao RT and Key JL. Patterns of soybean praline-rich protein gene expression[J]. The Plant cell,1992,4 (1):99-110
    [107]Schmidt JS, Lindstrom JT and Vodkin LO. Genetic length polymorphisms create size variation in praline-rich proteins of the cell wall[J]. Plant J,1994,6 (2): 177-184
    [108]Gyorgyey J, Nemeth K, Magyar Z, Kelemen Z, Alliotte T, Inze D and Dudits D. Expression of a novel-type small proline-rich gene of alfalfa is induced by 2, 4-dichlorophenoxiacetic acid in dedifferentiated callus cells[J]. Plant Molecular Biology,1997,34:593-602
    [109]Goodwin W, Pallas JA and Jenlins GI. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus[J]. Plant Molecular Biology,1996,31:771-781
    [110]Deutch CE and Vinicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein[J]. Plant Molecular Biology,1995,27:411-418
    [111]Fowler TJ, Bernhardt CB and Tierney ML. Characterization and expression of four proline-rich cell wall proteins in Arabidopsis encoding two distinct subsets of multiple domain proteins[J]. Plant Physiol,1999,121:1081 - 1091
    [112]Riechmann JL and Meyerowitz EM. The AP2/EREBP Family of Plant Transcription Factors [J]. Biol. Chem.,1998,379:633-646
    [113]Hao D, Ohme-Takagi M and Sarai A. Unique mode of GCC box recognition by the DNA-binding factor (ERF domain) in plants [J]. Journal of Biological Chemistry,1998,273:26857-26861
    [114]Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C.C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Horn E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC and Ecker JR. Genome-wide insertional mutagenesis of Arabidopsis thaliana[J]. Science.2003, (301):653 -657
    [115]Ohme-Takagi M and Ahinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. PNAS,1995,7:173-182
    [116]Solano R, Stepanova A, Chao Q and Ecker JR. Nuclear events in ethylene signaling:a transcriptional cascade mediated by Ethylene-insensitive3 and ethylene response factor1[J].Genes Dev,1998,12:3703-3714
    [117]Klee HJ. Ethylene signal transduction Moving beyond Arabidopsis [J]. Plant Physiology,2004,135:660-667
    [118]Giovannoni J, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grierson D and Klee H. Genetic mapping of ripening and ethylene-related loci in tomato[J]. Theor. Appl. Genet.1999,98:1005-1013
    [119]Fujimoto SY, Ohra M and Usui A. Arabidopsis ethylene-response element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression[J]. The Plant Cell,2000,12:393-404
    [120]Watanabe H, Abe K, Emmori Y, Hosoyama H and Arai S. Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds
    (oryzains)[J]. Biol. Chem.1991,266:12897-16902
    [121]Kato H and Minamikawa T. Identification and characterization of a rice cysteine endopeptidase that digests glutelin[J]. Eur. J. Biochem.1996,239:310-316
    [122]Lohman KN, GanS, John MC. and Amasino RM. Molecular analysis of natural leaf senescence in Arabidopsis thaliana[J]. Physiol. Plant.1994,92:322-328
    [123]Nadeau JA, Zhang XS, Li J and O Neill SD. Ovule development:identification of stage-specific and tissue-specific cDNAs[J]. Plant Cell.1996,8,213-239
    [124]VercherY, CarrascoP and Carbonell J. Biochemical and histochemical detection of endoproteolytic activities involved in ovary senescence or fruit development in Pisum sativum[J]. Plant Physiology.1989,76:405-411
    [125]Lipshutz RJ, Fodor SP, Gingeras TR and Lockhart DJ. High density synthetic oligonucleotide arrays[J]. Nat Genet,1999,21(1 Suppl):20-24
    [126]Rosen S and Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols:Methods in Molecular Biology. Edited by:Krawetz S, Misener S, Totowa NJ. Humana Press; 2000:365-386.
    [127]Sambrook J, Fritsch EF and Maniatis T. Molecular Cloning:A Laboratory Manual[M]. Cold Spring Harbor,1989, NY:21-52
    [128]Irizarry RA, Bolstad BM, Collin F, Cope L M, Hobbs B and Speed TP. Summaries of Affymetrix GeneChip probe level data[J]. Nucleic Acids Research, 2003,31(4):e15
    [129]Ding Y and Wilkins D. The effect of normalization on microarray data analysis[J]. DNA Cell Biol,2004,23(10):635-642
    [130]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay Y D, Antonellis K J, Scherf U, Speed T P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics,2003,4(2):249-264
    [131]Benjamini Y and Hochberg Y. Controlling the false discovery rate:A practical and powerful approach to multiple testing[J]. Statistical Soc.Ser. B-Methodol-ogical,1995,57:289-300
    [132]Thellin O, Zorzi W and Lakaye B. Housekeeping genes as internal standards: Use and limits[J]. Biotechnol,1999,75:291-295
    [133]Czechowski T, Stitt M and Altmann T. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiol,2005,139:5-17
    [134]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res.2001,29(9):e45
    [135]Livak K J, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△Ct method[J]. Methods, 2001,25(4):402-408
    [136]叶庆亮,彭爱红,曹立,江东,钟广炎.柑橘类果树组织总RNA优异且通用的提取方法[J].江西农业大学学报,2007,29(5):732-739
    [137]Valeriano DC, Marcello D and Fabio MR. RNA extraction from plant tissues:The use of calcium to precipitate contaminating pectin sugars [J]. Molecular Biotechnology,2005,31:113 - 119
    [138]Yu DQ, Chen CH and Chen ZX. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell,2001, 13(7):1527-1540
    [139]Zhang YJ and Wang LJ. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J].BMC Evol Biol,2005,5(1): 1-12.
    [140]Ohme-Takagi M and Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene responsive element[J]. Plant Cell,1995,7:173 - 182
    [141]Wilson K, Long D, Swinburne J and Coupland G. A dissociation in-sertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2[J]. Plant Cell,1996,8:659-671
    [142]Sun S, Yu JP, Chen F, Zhao TJ, Fang XH, Li YQ and Sui SF. TINY, a dehydrati-responsive element (DRE)-binding protein-like transcription factor connecting the DRE-and ethylene-responsive element-mediated signaling pathways in Arabidopsis[J]. J Biol Chem,2008,283:6261-6271
    [143]Kazuko YS and KazuoS. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology.2006,57:781-803
    [144]Guo H and Ecker JR. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor [J]. Cell, 2003,115:667-677
    [145]J.萨姆布鲁克,D.W拉塞儿著,分子克隆指南(第三版)[M].2002,科学出版社
    [146]Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer A A and Yu YK. Protein database searches using compositionally adjusted substitution matrices", FEBS J.2005,(272):5101-5109
    [147]Altschul SF, Madden TL, SchafferAA, Zhang JH, Zhang Z, MillerW and Lipman DJ. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J], Nucleic Acids Res.1997,(25):3389-3402
    [148]Marchler-Bauer A,Anderson J.B, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He SQ, Hurwitz DI, Jackson JD, Ke ZX, Krylov D, Lanczycki CJ, Liebert CA, Liu CL, Lu F, Lu SN, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin J J, Zhang DC, and Bryant SH. CDD:a conserved domain database for interactive domain family analysis[J]. Nucleic Acids Research.2007, (35):237-240
    [149]Combet C, Blanchet C, Geourjon C and Deleage G. NPS@:Network Protein Sequence Analysis[J]. Trends Biochem Sci.2000,25(3):147-150
    [150]Marchler-Bauer A. CDD:specific functional annotation with the Conserved Domain Database[J]. Nucleic Acids Research.2009,37(D):205-210
    [151]Marchler-Bauer A and Bryant SH, CD-Search:protein domain annotations on the fly, Nucleic Acids Research.2004,32(W)327-331
    [152]Napoli C, Lemieux C and Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans[J]. The Plant Cell,1990,2:279-289
    [153]Bass BL. Double-stranded RNA as a template for gene silencing[J]. Cell,2000, 101:235-238
    [154]Makoto K. RNA interference in crop plants, Current Opinion in Biotechnology[J],2004,15(2):139-143
    [155]Waterhouse PM and Helliwell CA. Exploring plant genomes by RNA induced gene silencing. Nat. Rev. Genet.,2002,4:29--38
    [156]Chuang CF, and Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J], Proc. Natl. Acad. Sci.,2000, 97(9):4985-4990
    [157]Waterhouse PM, Wang MB, and Lough T, Gene silencing as an adaptive defence against viruse[J]s, Nature,2001,411(6839):834-842
    [158]Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D and Stoutjesdijk PA. Construct design for efficient, effective and high-throughput gene silencing in plants[J], Plant.2001,27(6):581-590
    [159]Kerschen A, Napoli CA, Jorgensen RA and Muller AE. Effectiveness of RNA interference in transgenic plants[J]. FEBS Lett.2004,566 (1-3):223-228
    [160]邓晶,刘峰,郭清泉,陈建荣,张学文.苎麻CCoAOMT基因干扰表达载体构建及对烟草的转化[J].湖南农业大学学报(自然科学版),2008,34(2):132-135
    [161]张广辉,梁月荣,陆建良,董俊杰.茶树咖啡因合成酶基因RNA干涉表达载体构建[J].茶叶科学,2006,26(4):243-248
    [162]彭昊,翟英,张芊,张治国等.水稻高效RNA干涉体系的建立及其功能分析[J].中国农业科学.2006,39(9):1729-1735
    [163]谢玉明,郭琛,张家银,韩健,袁飞荣,邓子牛.农杆菌介导phyB基因转化枳壳研究[J].湖南农业大学学报(自然科学版).2008,134(1):68-72
    [164]谢玉明,邓子牛,郭琛.农杆菌介导甜橙遗传转化的初步研究[J].湖南农业大学学报(自然科学版),2005,31(6):627-630
    [165]Vandesompele J, De Preter K and Pattyn F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology,2002,3:RESEARCH0034
    [166]Thellin O, Zorzi W and Lakaye B. Housekeeping genes as internal standards: Use and limits[J]. Biotechnolgy,1999,75:291-295
    [167]Czechowski T, Stitt M and Altmann T. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiology,2005,139:5-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700