用户名: 密码: 验证码:
乳腺癌分子分型及其与预后的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.总结基底样型乳腺癌(basal-like breast carcinoma, BLBC)的临床病理和形态学特征。
     2.完善乳腺癌免疫组化(immunohistochemistry, IHC)分型标准,评价CK/TN、TN、CK、ER/HER2四种分类方法与乳腺癌预后的关系;探讨各亚型预后上的差异,提供病理诊断、临床治疗和预后判断的依据。
     3.初步研究中国人群乳腺癌的基因表达谱(gene expression profiling, GEP)特征,筛选部分亚型之间的差异表达基因。
     4.验证三阴性乳腺癌(triple negative breast cancer, TNBC)的部分差异表达基因,分析其与临床病理参数及预后的相关性,为寻找TNBC特异性的分子标记和探索靶向治疗提供新的线索。
     材料与方法
     第一部分
     1.收集复旦大学附属肿瘤医院病理科1997-2002年具有完整临床病理及随访资料的乳腺癌石蜡标本543例,IHC检测ER、PR、HER2、CK5/6、CK14、CK17、EGFR、SMA、P63、vimentin的表达,运用CK/TN、TN、CK、ER/HER2四种分类方法进行IHC分型。
     2.基底样型乳腺癌的临床病理分析:总结基底样型乳腺癌的临床病理、组织形态学特点;评价基底样和肌上皮标记在基底样型乳腺癌中的表达情况;生存分析临床病理参数、形态学和IHC指标在评估基底样型乳腺癌预后中的意义。
     3.生存分析比较各亚型乳腺癌预后上的差异及CK/TN、TN、CK、ER/HER2四种分类方法在IHC分型中的差异及其与预后的关系。
     第二部分
     1.收集复旦大学附属肿瘤医院2002-2009年乳腺癌新鲜标本及相应石蜡组织50例,IHC检测石蜡组织中ER、PR、HER2、CK5/6、CK14、CK17、EGFR的表达,依据CK/TN分类将50例标本分为5个亚型:腔面A型、腔面B型、HER2过表达型、基底样型和裸表达型。
     2.50例乳腺癌新鲜标本抽提总RNA,运用琼脂糖凝胶电泳和Alignent2100生物分析仪进行RNA的质量检测。
     3.运用人类全基因组基因芯片技术对50例乳腺癌进行基因表达谱研究,层次聚类分析完成GEP分型,初步探讨中国人群的基因表达谱特征;筛选部分亚型之间的差异表达基因,并进行差异基因的Pathway和Gene Ontology(GO)分析,初步探讨差异基因的功能。
     第三部分
     1.收集复旦大学附属肿瘤医院2002-2009年乳腺癌新鲜标本92例(三阴性42例,腔面型50例),运用实时荧光定量逆转录聚合酶链反应(Real-time quantitative reverse transscripton polymerase chain reaction, Real-time RT-PCR)技术检测92例乳腺癌中SLC6A14、PTX3、FOXC1mRNA的表达,分析其在三阴性和腔面型乳腺癌之间的表达差异,以验证第二部分基因芯片的检测结果,并进一步分析SLC6A14、PTX3、FOXC1mRNA表达与临床病理参数的相关性。
     2.另收集1997-2003年具有完整临床病理资料及随访资料的乳腺癌石蜡包埋组织94例(三阴性57例,腔面型37例),IHC检测FOXC1蛋白的表达,比较FOXC1蛋白在三阴性和腔面型乳腺癌之间的表达差异,并分析其与临床病理参数及预后的相关性。
     结果
     第一部分
     1.依据CK/TN分类的IHC分型结果:基底样型乳腺癌占总例数的19.9%,腔面A型、腔面B型、HER2过表达型和裸表达型分别占42.2%、10.5%、16.6%、10.9%。
     2.基底样型乳腺癌的临床病理特征:发病年龄31-91岁,平均52.4岁,与其它各亚型无明显差异(P值>0.05)。肿瘤平均最大径2.9cm,显著大于腔面A型(P<0.05),与其它亚型无明显差异。淋巴结转移率为47.6%,低于腔面A型、HER2过表达型和裸表达型。75.1%的BLBC组织学分级为3级,显著高于非基底样亚型(P值均<0.001)。
     3.基底样型乳腺癌的组织病理学特征:70.4%的BLBC呈推挤性生长,72.2%以弥漫实性片状结构为主;67.3%可见合体细胞;61.1%的BLBC见泡状核,58.3%具有明显的核仁;BLBC核分裂计数3级占74.1%;化生的发生率为21.3%;73.1%伴间质淋巴细胞浸润;以上各特征在BLBC中的发生率显著高于其它各亚型(P<0.01)。BLBC坏死率高,以大片地图样坏死(38.0%)和中央性坏死(24.1%)为主。大片地图样坏死的发生率显著高于腔面型及HER2过表达型(P<0.01)。
     4.基底样型乳腺癌中基底及肌上皮标记的表达:基底样标记CK5/6阳性率最高,达63.0%,其余依次为CK17 (49.1%)、CK14 (47.2%)、EGFR (37.0%)。肌上皮标记的阳性率为23.1%。
     5.生存分析
     (1)543例乳腺癌的无病生存率和总生存率分别为61.7%、80.8%。局部复发率、远处转移率、病死率分别为9.8%、34.8%、19.2%。
     (2)裸表达型复发率最高(18.6%),其次为基底样型(12.0%),裸表达型的复发率显著高于腔面A型(P<0.05)。HER2过表达型转移率最高(46.7%),其次为基底样型(45.4%),基底样型、HER2过表达型和裸表达型的转移率均显著高于腔面型(P<0.05)。基底样型肺、脑转移率分别为22.2%、10.2%,高于其它各亚型,与腔面A型差异有显著性(P<0.05)。腔面A型骨转移率最高(39.3%),高于其它各亚型。
     (3) BLBC中,高临床分期组、淋巴结阳性组、出现脉管侵犯组、CK5/6阳性组的总生存率及无病生存率分别显著低于低临床分期组、淋巴结阴性组、无脉管侵犯组、CK5/6阴性组(P<0.05);核分裂计数3级组的总生存率显著低于核分裂计数2级组(P<0.05)。呈膨胀性生长、伴淋巴细胞浸润的BLBC的总生存率及无病生存率分别高于呈浸润性生长、不伴淋巴细胞浸润的BLBC,差异具有显著性(P<0.05)。淋巴细胞浸润,CK5/6表达是BLBC独立的预后因素。
     6.四种分类方法对各亚型预后判断结果的比较
     (1)对无病生存率的判断结果:CK/TN、TN和ER/HER2分类对各亚型无病生存率的评价结果基本相同。而采用CK分类,腔面B型无病生存率显著高于基底样型,基底样型显著低于裸表达型。
     (2)对总生存率的判断结果:四种分类方法相同的结果是,腔面A型总生存率显著高于非腔面型。而对其它各亚型的判断存在一些差异。
     1.RNA质检:所有样本RNA的纯度和完整性良好,符合表达谱芯片的要求。
     2.聚类分析:(1)50例样本大致可分为以腔面A型、HER2过表达乳腺癌、三阴性乳腺癌为主的三个亚型;HER2过表达型与腔面B型、基底样型与裸表达型显示相似的基因表达谱特征。(2)IHC分型界定的三阴性、非三阴性、腔面A型乳腺癌与GEP分型能较好的对应吻合,但在其它亚型的界定上存在重叠交叉。
     3.差异表达基因的筛选:腔面A与B型的差异基因共190个,均表达上调;腔面A与HER2过表达型的差异基因共137个,73个基因表达上调,64个表达下调。腔面B与HER2过表达型的差异基因仅8个,均表达上调;三阴性与腔面型的差异基因共611个,217个基因表达上调,394个表达下调;三阴性与非三阴性乳腺癌的差异基因共411个,167个基因表达上调,244个基因表达下调。
     4. TNBC与腔面型乳腺癌差异基因的Pathway和GO分析,差异基因参与了多条通路和多种生物学过程。
     第三部分
     1. Real-time RT-PCR检测结果与基因芯片检测结果对比:SLC6A14、PTX3、FOXC1在TNBC和腔面型乳腺癌中差异表达趋势一致。
     2. SLC6A14、FOXC1mRNA在TNBC中表达显著高于腔面型(P<0.05)。PTX3两者之间的表达无显著差异(P>0.05)。
     3. SLC6A14、PTX3、FOXC1mRNA表达与三阴性乳腺癌肿瘤大小、组织学分级、临床分期、淋巴结转移以及患者年龄均未见相关性(P>0.05)。
     4. FOXC1蛋白主要定位于细胞浆、可见于细胞膜,正常乳腺上皮和肌上皮FOXC1蛋白均为强阳性染色。FOXC1蛋白在TNBC中的阳性率为66.7%,基底样型乳腺癌中的阳性率为76.6%,腔面型中的阳性率为32.4%,三阴性及基底样型乳腺癌中FOXC1蛋白的表达水平显著高于腔面型(P=0.002)。
     5.三阴性乳腺癌中高年龄组(>50岁)与低年龄组(≤50岁),FOXC1蛋白表达有显著差异(P<0.05)。FOXC1蛋白表达与肿瘤大小、组织学分级、临床分期、淋巴结转移均未见相关性(P>0.05)。
     6.三阴性乳腺癌中FOXC1阳性组的无病生存率和总生存率均低于FOXC1阴性组,但两者差异无显著性(P>0.05)。
     结论
     1.基底样型乳腺癌具有独特的临床病理和形态学特征;CK5/6是其最敏感的标记,CK14特异性最强。
     2.临床分期、淋巴结状态、膨胀性生长、淋巴细胞浸润、脉管侵犯、核分裂计数、CK5/6表达与基底样型乳腺癌临床预后相关。高临床分期、淋巴结阳性、脉管侵犯、高核分裂计数、CK5/6阳性提示预后差;膨胀性生长、淋巴细胞浸润提示预后好;淋巴细胞浸润、CK5/6是基底样型乳腺癌的独立预后因素。
     3.各亚型乳腺癌的无病生存率、总生存率、复发率、转移率及转移部位分布存在一定差异。
     4. CK/TN、TN、CK和ER/HER2分类在评价不同亚型乳腺癌的预后方面存在差异。
     5.中国人群乳腺癌GEP分型可能不同于西方人群,其具有自身的特点:分型相对简单,可分为三个亚型,腔面A型、HER2过表达乳腺癌、三阴性乳腺癌;HER2过表达型与腔面B型、基底样型与裸表达型显示相似的基因表达谱特征,可能属于同一个分子亚型。
     6.当前使用的乳腺癌免疫组化分型方法仍存在一定的局限性,在部分亚型的界定上与GEP分型不能很好的对应和吻合。
     7.经基因芯片检测分析,部分亚型乳腺癌之间基因表达存在明显差异,差异基因参与了不同的Pathway和GO分类,提示各亚型乳腺癌可能存在不同的发生发展机制。
     8. TNBC中SLC6A14、PTX3、FOXC1mRNA的表达水平高于腔面型,它们可能与TNBC的发生发展有一定的相关性。
     9. TNBC及BLBC中FOXC1蛋白的表达显著高于腔面型,其可望成为TNBC、BLBC新的特异性分子标记。
Objective:To summarize clinicopathological and morphological features of basal-like breast carcinoma (BLBC); To perfect the standards of immunohistochemistry (IHC) classification in breast cancer. To evaluate the prognostic differences among subtypes of breast cancer using four IHC classifications (CK/TN, TN, CK, ER/HER2), and guide clinical treatment and prognosis evaluaton; To study GEP features of breast cancer in Chinese people and screen differentially expressed genes among subtypes of breast cancer; To validate several differentially expressed genes of triple negative breast cancer (TNBC) and analyze their correlation with clinicopathological parameters and prognosis, and provide new clue of looking for specific molecular markers and targeted therapy of TNBC.
     Materials and methods:
     PartⅠ:(1) The formalin-fixed paraffin-embedded samples of 543 cases of breast cancer with complete clinicopathologic and follow-up data were collected in the Department of Pathology, Cancer Hospital, Fudan University. The cases were initially diagnosed between 1997 and 2002. Immunohistochemical staining of ER, PR, HER2, CK5/6, CK14, CK17, EGFR, SMA, P63, vimentin was performed. Four classifications of CK/TN, TN, CK, ER /HER2 were used to IHC phenotyping analysis. (2)The clinicopathological and morphological characteristics of BLBC were summarized; the expression of basal-like and myoepithelial markers were analyzed in BLBC. (3) The relationship between clinicopathological, morphological, immunohistochemical parameters and prognosis in BLBC was investigated by survival analysis. The prognostic differences of breast cancer subtypes were compared using CK/TN, TN, CK, ER/HER2 classifications.
     PartⅡ:(1) The frozen tissues and corresponding formalin-fixed paraffin-embedded samples of 50 cases of breast cancer from 2002-2009 were obtained from Cancer Hospital, Fudan University. Immunohistochemistry study of ER, PR, HER2, CK5/6, CK14, CK17 and EGFR was performed. According to CK/TN classification, the cases were divided into five subtypes:luminal-A, luminal-B, HER2-overexpression, basal-like and null subtype. (2)The total RNA of 50 frozen samples was extracted and purified, and RNA quality was controlled by agarose gel electrophoresis and Alignent 2100 bioanalyzer. (3)Gene expression profiling of 50 cases of breast cancer was studied using genomewide microarray technology. The GEP classification was completed by hierarchical clustering analysis, to study GEP characteristics of Chinese breast cancer. Differentially expressed genes between different subtypes were screened and their biological functions were analyzed by Pathway and Gene Ontology (GO) analysis.
     PartⅢ:(1) The frozen tissue samples of 92 cases of breast cancer acquired from 2002-2009 were collected in Cancer Hospital, Fudan University. The expression of SLC6A14, PTX3, FOXC1 mRNA in 92 cases were detected by Real-time RT-PCR, and the expression of these genes was compared between TNBC and luminal subtype to validate the results of microarray. (2) The formalin-fixed paraffin-embedded samples of 94 cases of breast cancer with complete clinicopathologic and follow-up data acquired from 1997 to 2003 were collected, including BLBC (57 cases) and luminal subtype (37 cases). The expressin of FOXC1 protein was detected by IHC staining, to compare its expression difference between TNBC and luminal subtype and study its association with clinicopathologic parameters and prognosis in breast cancer.
     Results:
     PartⅠ:(1) According to CK/TN classification, BLBC, luminal-A, luminal-B HER2-overexpression and null subtype constituted 19.9%,42.2%,10.5%,16.6%,10.9% of breast cancer, respectively. (2) The average tumor size was 2.9cm, significantly bigger than luminal-A (P>0.05). The metastasis rate of lymph node was 47.6%, lower than luminal-A, HER2-over expression and null type.75.1% of BLBCs were histologically grade 3, higher than other non-basal-like subtypes. (3) The histopathologic features of BLBC: 70.4% of BLBCs showed expansive growth,72.2% showed diffusely solid pattern; Syncytial cells, vesicular nuclei and prominent nucleoli, nuclei of grade 3 and metaplasia was seen in 67.3%,61.1%,58.3%,74.1%,21.3% of BLBC, respectively. The necrosis rate of BLBC was high and predominant of geographic and central necrosis. The incidence of geographic necrosis was significantly higher than luminal and HER2-overexpression type. (4)The expression rate of CK5/6 was highest among basal-like markers, up to 63.0%. The expression rate of CK17, CK14, EGFR was 49.1%,47.2%,37.0%, respectively. The expression rate of myoepithelial markers was 23.1%. (5) Survival analysis:(a) The disease-free survival and overall survival of 543 cases were 61.7% and 80.8% respectively. Local recurrence, distant metastasis and fatality rate were 9.8%,34.8%,19.2%, respectively. (b)The recurrence rate was highest in null type (18.6%), the second was BLBC. Pulmonary and brain metastasis rate of BLBC were 22.2% and 10.2% respectively, higher than other subtypes. (c) Univariate analysis demonstrated the following as poor prognostic factors for overall and disease-free survival:high clinical staging, positive lymph node, vascular invasion, positivity with CK5/6; the following as good prognostic factors for overall and disease-free survival:expansive growth and lymphocytic infiltrates. Multivariate analysis indicated that lymphocytic infiltrates and expression of CK5/6 were independent prognostic factors of BLBC. (3) The evaluation results of prognosis were essentially consistent using CK/TN, TN, ER/HER2 classifications, but CK classification was different from other three classifications.
     PartⅡ:(1) The purity and integrity of RNA in all samples was good. (2) 50 cases of breast cancer can be divided into three groups predominant of luminal-A, HER2-overexpression breast cancer (including HER2-overexpression subtype and luminal-B) and TNBC. There was similar expression pattern between HER2-overexpression and luminal-B, basal-like and null subtype. (3) TNBC, non-TNBC, luminal-A subtype defined by IHC was consistent with GEP classification, there was certain overlapping in distinguishing luminal-A and luminal-B, luminal-B and HER2-overexpression type, HER2-overexpression and TNBC, basal-like and null subtype.(4)Screening of differentially expressed genes showed that the number of differentially expressed genes of luminal-A vs. luminal-B subtype, luminal-A vs. HER2-overexpression subtype, luminal-B vs. HER2-overexpression subtype, TNBC vs. non-TNBC, TNBC and luminal subtype was 190,137,8,611,411, respectively.
     PartⅢ:(1) The expression of SLC6A14, PTX3 and FOXC1 mRNA in TNBC and luminal subtypes of breast cancer is consistent in Real-time RT-PCR and microarray detection. (2) The expression of SLC6A14 and FOXC1 mRNA in TNBC was significantly higher than luminal subtype of breast cancer. There was no significan difference of PTX3 mRNA expression between TNBC and luminal subtype of breast cancer. (3) No relationship was found between SLC6A14, PTX3 and FOXC1 mRNA expression in TNBC and other clinicopathologic factors of such as tumor size, histological grade, clinical stage, lymph node metastasis and age of patients. (4) FOXC1 protein was located in the cytoplasm and was occasionally seen in the cell membrane. The normal mammary epithelium and myoepithelium were strongly positive for FOXC1 protein. The epresssion rate of FOXC1 protein in TNBC and BLBC was significantly higher than luminal subtype of breast cancer (66.7% vs.32.4%; 76.6% vs.32.4%). (5) There was significant difference of FOXC1 protein expression between the high age group and low age group. No relationship was found FOXC1 protein expression and other clinicopathologic parameters such as tumor size, histological grade, clinical stage, lymph node metastasis in TNBC. (6) The disease-free and overall survival of FOXC1-positive group was lower than FOXC1-negative group, but there was no statistical significance.
     Conclusions:
     (1) BLBC shows distinctive clinicopathological and morphological features; CK5/6 is most sensitive of all basal-like markers and the specificity of CK14 is highest. (2)Clinical stage, metastasis of lymph node, expansive growth, lymphocytotic infiltrates, high mitotic index and expression of CK5/6 are associated with prognosis of BLBC. (3)There are some disparities in recurrence and metastasis rate, and distribution of metastasis sites between different subtypes of breast cancer. (4)CK/TN, TN, CK and ER/HER2 classifications have certain differences on evaluation of the prognosis of each subtype of breast carcinoma. (5) SLC6A14 and FOXC1 mRNA expression in TNBC is significantly higher than luminal subtype of breast cancer. There is possibly an association between these genes and developing of TNBC. (6)FOXC1 protein expression in TNBC and BLBC is significantly higher than luminal subtype of breast cancer. It is promising to become a specific molecular marker of TNBC and BLBC.
引文
[1]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature,2000,406:747-752.
    [2]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. Proc Natl Acad Sci USA, 2001,98:10869-10874.
    [3]van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature,2002,415:530-536.
    [4]van de Rijn M, Perou CM, Tibshirani R, et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome[J]. Am J Pathol,2002,161:1991-1996.
    [5]Megha T, Ferrari F, Benvenuto A, et al. p53 mutant in breast cancer. Correlation with cell kinetics and cell of origin[J]. J Clin Pathol,2002,55:461-466.
    [6]Tang P, Wang X, Schiffhauer L, et al. Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers[J]. Ann Clin Lab Sci,2006,36:16-22.
    [7]Tang P,Wang X, Schiffhauer L, et al. Expression patterns of ER-a, PR, HER-2/neu, and EGFR in different cell origin subtypes of high grade and non-high grade ductal carcinoma in situ[J]. Ann Clin Lab Sci,2006,36:137-143.
    [8]Steinman S, Wang J, Bourne P, et al. Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast[J]. Ann Clin Lab Sci, 2007,37:127-134.
    [9]Matos I, Dufloth R, Alvarenga M, et al. p63, cytokeratin 5, and p-cadherin:three molecular markers to distinguish basal phenotype in breast carcinomas [J]. Virchows Arch,2005,477:688-694.
    [10]Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma[J]. Clin Cancer Res,2004,10:5367-5374.
    [11]Livasy CA, Karaca G, Nanda R, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma[J]. Mod Pathol,2006,19:264-271.
    [12]Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer:clinical features and patterns of recurrence[J]. Clin Cancer Res,2007,13:4429-4434.
    [13]Tischkowitz M, Brunet JS, Begin LR, et al. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer[J]. BMC Cancer,2007,7:134.
    [14]Bauer KR, Brown M, Cress RD. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype:a population-based study from the California cancer Registry[J]. Cancer,2007,109:1721-1728.
    [15]Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients:a single-institution compilation compared with the National Cancer Institute's Surveillance, Epidemiology, and end results database[J]. Cancer,2007,110:876-884.
    [16]Jumppanen M, Gruvberger-Saal S, Kauraniemi P, et al. Basal-like pehotype is not associated with patient survival in estrogen receptor negative breast cancers[J]. Breast Cancer Res,2007,9:R16.
    [17]Sorlie T, Perou CM, Fan C, et al. Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer[J]. Mol Cancer Ther, 2006,5:2914-2918.
    [18]Reis-Filho JS, Steele D, Palma SD, et al. Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue[J]. Mod Pathol,2006,19:307-319.
    [19]Laakso M, Tanner M, Nilsson J, et al. Basoluminal carcinoma:a new biologically and prognostically distinct entity between basal and luminal breast cancer[J]. Clin Cancer Res,2006,12:4185-4191.
    [20]Kreike B, van Kouwenhove M, Horlings B, et al. Gene expression profiling and histopathological characterization of triple negative/basal-like carcinomas[J]. Breast Cancer Res,2007,9:R65.
    [21]Hu Z, Fan C, Oh DS, et al. The molecular portraits of breast tumors are conserved across the microarray platforms [J]. BMC Genom,2006,7:96.
    [22]Megha T, Ferrari F, Benvenuto A, et al. p53 mutant in breast cancer. Correlation with cell kinetics and cell of origin [J]. J Clin Pathol 2002;55:461-466.
    [23]Tang P, Wang X, Schiffhauer L, et al. Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers [J]. Ann Clin Lab Sci 2006;36:16-22.
    [24]Tang P,Wang X, Schiffhauer L, et al. Expression patterns of ER-α, PR, HER-2/neu, and EGFR in different cell origin subtypes of high grade and non-high grade ductal carcinoma in situ[J]. Ann Clin Lab Sci 2006;36:137-143.
    [25]Steinman S, Wang J, Bourne P, et al. Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast [J]. Ann Clin Lab Sci 2007;37:127-134.
    [26]Matos I, Dufloth R, Alvarenga M, Zeferino LC, Schmitt F. p63, cytokeratin 5, and p-cadherin:three molecular markers to distinguish basal phenotype in breast carcinomas [J]. Virchows Arch 2005; 477:688-694.
    [27]Abd El-Rehim DM,Pinder SE,Paish CE,et al.Expression of luminal and basal cytokeratins in human breast carcinoma[J] J Pathol,2004,203(2):661-671.
    [28]Rodriguez-Pinilla SM,Sarrio D,Honrado E,et al.Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas[J].Clin Cancer Res,2006,12(5):1533-1539.
    [29]Kim MJ, Ro JY, Ahn SH, et al. Clinicopathologic significance of the basal-like subtype of breast cancer:a comparison with hormone receptor and HER2/neu-overexpressing phenotypes[J]. Hum Pathol,2006,37:1217-1226.
    [30]Korsching E, Packeisen J, Agelopoulous K, et al. Cytogenetic alterations and cytokeratin expression patterns in breast cancer:integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis[J]. Lab Invest, 2002,82:1525-1533 Cancer Res,2004,10:5367-5374.
    [31]皋岚湘,杨光之,丁华野,等.基底细胞样型浸润性乳腺癌病理形态观察[J].中华病理学杂志,2008,37(2):83-87.
    [32]刘慧,范钦和,李霄.基底样型乳腺癌的临床病理特点和预后意义[J].中华病理学杂志,2009,38(5):316-322.
    [33]Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights:International Consensus Panel on the Treatment of Primary Breast Cancer [J]. J Natl Cancer Inst,1998,90:1601-1608.
    [34]Fulford LG, Reis-Filho JS, Ryder K, et al. Basal-like grade Ⅲ invasive ductal carcinoma of the breast:patterns of metastasis and long-term survival[J]. Breast Cancer Res,2007,9:R4.
    [35]Liu H, Fan QH, Zhang ZH, etal. Basal-HER2 phenotype shows poorer survival than basal-like phenotype in hormone receptor-negative invasive breast cancers[J]. Human Pathol,2008,39(2):167-174.
    [36]Hicks DG, Short SM, Prescott NL, et al. Breast cancers with brain metastasis are more likely to be estrogen receptor negative, expression the basal cytokeratin CK5/6, and overexpression HER2 or EGFR. Am J Surg Pathol 2006; 30:1097-1104.
    [37]Tsuda H, Takarabe T, Hasegawa F, et al. Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases[J]. Am J Surg Pathol, 2000,24:197-202.
    [38]Carter D, Pipkin RD, Shepard RH, et al. Relationship of necrosis and tumor border to lymph node metastases and 10-year survival in carcinoma of the breast [J]. Am J Surg Pathol,1978,2:39-46.
    [39]Gilchrist KW, Gray R, Fowble B, et al. Tumor necrosis is a prognostic predictor for early recurrence and death in lymph nodepositive breast cancer:a 10-year follow-up study of 728 Eastern Cooperative Oncology Group patients[J]. J Clin Oncol 1993;11:1929-1935.
    [40]Rakha EA, Putti TC, Abd El-Rehim DM, et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation[J]. J Pathol, 2006,208:495-506.
    [41]Pease AC, Solas D, Sullivan EJ, et al. Generated oligonucleotide arrays for rapid DNA sequence analysis[J]. Proc Natl Acad Sci USA,1994,91:5022-5026.
    [42]Lipshutz RJ, Morris D, Chee M, et al. Using oligonucleotide probe arrays to access genetic diversity[J]. Biotechnique,1995; 19:442-447.
    [43]Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995;270:467-470.
    [44]Uackenbush J. Microarray analysis and tumor classification [J]. N Engl J Med,2006,354:2463-2472.
    [45]Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[J]. N Engl J Med, 2004,351:2817-2826.
    [46]Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptorpositive breast cancer[J]. J Clin Oncol,2006,24:3726-3734.
    [47]Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival [J]. Proc Natl Acad Sci USA,2005,102:3738-3743.
    [48]Calza S, Hall P, Auer G, et al. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients[J]. Breast Cancer Res,2006,8:R34.
    [49]Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets[J]. Proc Natl Acad Sci USA,2003,100: 8418-8423.
    [50]Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study[J]. Proc Natl Acad Sci USA,2003,100:10393-1039
    [51]West M, Blanchette C, Dressman H, et al. Predicting the clinical status of human breast cancer by using gene expression profiles [J]. Proc Natl Acad Sci USA.2001,98:11462-11467.
    [52]Kapp AV, Jeffrey SS, Langerod A, et al. Discovery and validation of breast cancer subtypes[J]. BMC Genomics,2006,7:231.
    [53]Sloan JL, Mager S. Cloning and functional expression of a human Na+ and Cl- dependent neutral and cationic amino acid transporter ATB0+ [J]. J Biol Chem,1999,274:23740-23745.
    [54]Nakanishi T, Hatanaka T, Huang W, et al. Na+ and Cl-coupled active transport of carnitine by the amino acid transporter ATB0,+ from mouse colon expressed in HRPE cells and Xenopus oocytes[J]. J Physiol,2001,532:297-304.
    [55]Gupta N, Prasad PD, Ghamande S, et al. Up-regulation of the amino acid transporter ATB0,+ (SLC6A14) in carcinoma of the cervix. Gynecologic Oncology,2006,100:8-13.
    [56]Gupta N, Miyauchi S, Robert G, et al. Upregulation of the amino aci transporter ATB0,+ (SLC6A14) In colorectal cancer and metastasis in humans. Biochimica et Biophysica Acta,2005,1741:215-223.
    [57]Alles VV, Bottazzi B, Peri G, et al. Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes [J]. Blood, 1994,84:3483-3493.
    [58]Doni A, Peri G, Chieppa M, et al. Mantovani, Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells [J]. Eur J Immunol,2003,33:2886-2893.
    [59]Breviario F, d'Aniello EM, Golay J, et al. Interleukin-1-inducibl genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid Pcomponent [J]. J Biol Chem,1992,267:22190-22197.
    [60]Klouche M, Peri G, Knabbe C, et al. Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells[J].Atherosclerosi, 2004,175:221-228.
    [61]Lee GW, Lee TH, Vilcek J.TSG-14, a tumor necrosis factor-and IL-1-inducible protein, is a novel member of the pentraxin family of acute phase proteins[J].J. Immunol,1993,150:1804-1812.
    [62]Basile A, Sica A, d'Aniello EM, et al. Characterization of the promoter for the human long pentraxin PTX3; role of NF-kappa B in tumor necrosis factor-alpha and interleukin-lbeta regulation[J].J Biol Chem,1997,272:8172-8178.
    [63]Abderrahim-Ferkoue A, Bezy O, Chiellini C, et al.Characterization of the long pentraxin PTX3 as a TNF alpha-induced secreted protein of adipose cells [J].J Lipid Res, 2003,44:994-1000.
    [64]Nauta AJ, Bottazzi B, Mantovani A, et al.Biochemical and functional characterization of the interaction between pentraxin 3 and Clq[J].Eur. J. Immunol,2003,33:465-473.
    [65]Garland C, Hirsch E, Bozza S, et al. Mantovani, Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response[J]. Nature,2002,420:182-186.
    [66]Ravenna L, Sale P, Maura DV, et al. Up-regulation of the inflammatory-reparative phenotype in human prostate carcinoma. The Prostate,2009,69:1245-1255.
    [67]Nauta AJ, Haij S, Bottazzi B, et al. Human renal epithelial cells produce the long pentraxin PTX3. Kidney International,2005,67:543-553.
    [68]Margheri F, Serrati S, Lapucci A. Systemic sclerosis-endothelial cell antiangiogenic pentraxin 3 and matrix metalloprotease 12 control human breast cancer tumor vascularization and development in Mice [J]. Neoplasia 2009,11(10):1106-1115.
    [69]Noga BQ, Jun Y, Snydera EL, et al. Cell type-specific DNA methylation patterns in the human breast cancer [J]. PNAS,2008,105 (37):14076-14081.
    [70]Muggerud AA, Ronneberg JA, Wrnberg F, et al. Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer [J]. Breast Cancer Research 2010,12:R3.
    [1]Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin,2006, 56:106-130.
    [2]Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Incidence-SEER 17 Regs Public-Use, Nov 2005 Sub (1973-2003 varying), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2006, based on the November 2005 submission.
    [3]Zujewski J, Liu ET. The 1998 St. Gallen's consensus conference:an assessment. J Natl Cancer Inst,1998,90:1587-1589.
    [4]Hayes DF, Isaacs C, Stearns V. Prognostic factors in breast cancer:current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 2001,6:375-392.
    [5]Isaacs C, Stearns V, Hayes DF. New prognostic factors for breast cancer recurrence. Semin Oncol,2001,28:53-67.
    [6]Masood S. Prognostic/predictive factors in breast cancer. Clin Lab Med,2005, 25:809-825.
    [7]Elston CW, Ellis IO, Pinder SE. Pathological prognostic factors in breast cancer. Crit Rev Oncol Hematol,1999,31:209-223.
    [8]Early Breast Cancer Trialists'Collaborative Group. Polychemotherapy for early breast cancer:an overview of the randomized trials. Lancet.1998;352:930-942.
    [9]Early Breast Cancer Trialists'Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival:an overview of the randomized trials. Lancet,2005,365:1687-1717.
    [10]Early Breast Cancer Trialists'Collaborative Group. Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. An overview of 61 randomized trials among 28,896 women. N Engl J Med,1988,319:1681-1692.
    [11]Fox MS. On the diagnosis and treatment of breast cancer.JAMA,1979,241:489-494.
    [12]Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights:International Consensus Panel on the Treatment of Primary Breast Cancer. J Natl Cancer Inst, 1998,90:1601-1608.
    [13]Pease AC, Solas D, Sullivan EJ, et al. Generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA,1994,91:5022-5026.
    [14]Lipshutz RJ, Morris D, Chee M, et al. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques,1995,19:442-447.
    [15]Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270:467-470.
    [16]Quackenbush J. Microarray analysis and tumor classification. N Engl J Med,2006, 354:2463-2472.
    [17]Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med,2004,351:2817-2826.
    [18]Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptorpositive breast cancer. J Clin Oncol, 2006,24:3726-3734.
    [19]van't Veer LJ, Dai H, van de Vijver MJ, et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res,2003;5:57-58.
    [20]van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med,2002,347:1999-2009.
    [21]van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature.2002;415:530-536.
    [22]Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA.2005; 102:3738-3743.
    [23]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature.2000;406:747-752.
    [24]Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418-8423.
    [25]Calza S, Hall P, Auer G, et al. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res.2006;8:R34.
    [26]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA.2001;98:10869-10874.
    [27]Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA.2003;100:10393-10398.
    [28]West M, Blanchette C, Dressman H, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA. 2001;98:11462-11467.
    [29]Hu Z, Fan C, Oh DS, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics.2006;7:96.
    [30]Sorlie T, Perou CM, Fan C, et al. Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer. Mol Cancer Ther. 2006;5:2914-2918.
    [31]Fan C, Oh DS, Wessels L, et al. Concordance among geneexpression-based predictors for breast cancer. N Engl J Med.2006;355:560-569.
    [32]Ribeiro-Silva A, Ramalho LN, Garcia SB, et al. P63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas:further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology.2005;47:458-466.
    [33]Jacquemier J, Padovani L, Rabayrol L, et al. European Working Group for Breast Screening Pathology; Breast Cancer Linkage Consortium. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol.2005;207:260-268.
    [34]Kesse-Adu R, Shousha S. Myoepithelial markers are expressed in at least 29% of oestrogen receptor negative invasive breast carcinoma. Mod Pathol.2004; 17:646-652.
    [35]Foulkes WD, Brunet JS, Stefansson IM, et al. The prognostic implication of the basal-like(cyclinEhigh/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res.2004;64:830-835.
    [36]Abd El-Rehim DM, Ball G, Pinder SE, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterized series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer.2005;116:340-350.
    [37]Jones C, Ford E, Gillett C, et al. Molecular cytogenetic identification of subgroups of grade Ⅲ invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res.2004; 10:5988-5997.
    [38]Foulkes WD, Stefansson IM, Chappuis PO, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst.2003;95:1482-1485.
    [39]van der Groep P, Bouter A, van der Zanden R, et al. Re:Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2004;96:712-713.
    [40]Palacios J, Honrado E, Osorio A, et al. Re:Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst.2004;96:712-714.
    [41]Siziopikou KP, Cobleigh M. The basal subtype of breast carcinomas may represent the group of breast tumors that could benefit from EGFR-targeted therapies. Breast. 2007;16:104-107.
    [42]Rakha EA, Putti TC, Abd El-Rehim DM, et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol.2006;208:495-506.
    [43]Banerjee S, Reis-Filho JS, Ashley S, et al. Basal-like breast carcinomas:clinical outcome and response to chemotherapy. J Clin Pathol.2006;59:729-735.
    [44]Livasy CA, Karaca G, Nanda R, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol.2006;19:264-271.
    [45]Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res.2004;10:5367-5374.
    [46]Kim MJ, Ro JY, Ahn SH, et al. Clinicopathologic significance of the basal-like subtype of breast cancer:a comparison with hormone receptor and HER2/neu-overexpressing phenotypes. Hum Pathol.2006;37:1217-1226.
    [47]Kusinska R, Potemski P, Jesionek-Kupnicka D, et al. Immunohistochemical identification of basal-type cytokeratins in invasive ductal breast carcinoma relation with grade, stage, estrogen receptor and HER2. Pol J Pathol.2005;56:107-110.
    [48]Rodriguez-Pinilla SM, Sarrio D, Honrado E, et al. Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. J Clin Pathol.2006. [Epub ahead of print November 14.]
    [49]Rodriguez-Pinilla SM, Sarrio D, Honrado E, et al. Prognostic significance of basal-like phenotype and fascin expression in nodenegative invasive breast carcinomas. Clin Cancer Res.2006;12:1533-1539.
    [50]Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S. Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol. 2006;125:512-518.
    [51]van de Rijn M, Perou CM, Tibshirani R, et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol. 2002;161:1991-1996.
    [52]Abd El-Rehim DM, Pinder SE, Paish CE, et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol.2004;203:661-671.
    [53]Kesse-Adu R, Shousha S. Myoepithelial markers are expressed in at least 29% of oestrogen receptor negative invasive breast carcinoma. Mod Pathol.2004; 17:646-652.
    [54]Yehiely F, Moyano JV, Evans JR, et al. Deconstructing the molecular portrait of basal-like breast cancer. Trends Mol Med.2006;12:537-544.
    [55]Tsuda H, Takarabe T, Hasegawa T, et al. Myoepithelial differentiation in high-grade invasive ductal carcinomas with large central acellular zones. Hum Pathol. 1999;10:1134-1139.
    [56]Tsuda H, Takarabe T, Hasegawa F, et al. Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lungand brain metastases. Am J Surg Pathol. 2000;24:197-202.
    [57]Rodriguez-pinilla SM, Sarrio D, Honrado E, et al. Prognostic significance of basal-like phenotype and Fascin expression in nodenegative invasive breast carcinomas. Clin Cancer Res.2006;12:1533-1539.
    [58]Potemski P, Kusinska R, Watala C, et al. Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology.2005;69:478-485.
    [59]Charafe-Jauffret E, Ginestier C, Monville F, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene.2006;25:2273-2284.
    [60]Rouzier R, Perou CM, Symmans WF, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res.2005; 11:5678-5685.
    [61]Lakhani SR, Reis-Filho JS, Fulford L, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11:5175-5180.
    [62]Laakso M, Loman N, Borg A, et al. Cytokeratin 5/14-positive breast cancer:true basal phenotype confined to BRCA1 tumors. Mod Pathol.2005;18:1321-1328.
    [63]Reis-Filho JS, Steele D, Di Palma S, et al. Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol.2006;19:307-319.
    [64]Pinilla SM, Honrado E, Hardisson D, et al. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat.2006;99:85-90.
    [65]Arnes JB, Brunet JS, Stefansson I, et al. Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin Cancer Res.2005; 11:4003-4011.
    [66]Fulford LG, Easton DF, Reis-Filho JS, et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology.2006;49:22-34.
    [67]Matos I, Dufloth R, Alvarenga M, et al. P63, cytokeratin 5, and P-cadherin:three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch.2005;447:688-694.
    [68]Rakha EA, El-Sayed ME, Green AR, et al. Prognostic markers in triple-negative breast cancer. Cancer.2007;109:25-32.
    [69]Rakha EA, El-Rehim DA, Paish C, et al. Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer.2006;42:3149-3156.
    [70]Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA.2006;295:2492-2502.
    [71]Hamperl H. The myothelia (myoepithelial cells). Normal state; regressive changes; hyperplasia; tumors. Curr Top Pathol.1970;53:161-220.
    [72]Murad TM. A proposed histochemical and electron microscopic classification of human breast cancer according to cell of origin.Cancer.1971;27:288-299.
    [73]Moll R, Franke WW, Schiller DL, et al. The catalog of human cytokeratins:patterns of expression in normal epithelia, tumors and cultured cells. Cell.1982;31:11-24.
    [74]Moll R, Krepler R, Franke WW. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation.1983;23:256-269.
    [75]Woodcock-Mitchell J, Eichner R, Nelson WG, et al. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982;95:580-588.
    [76]Pulford KA, Gatter KC, Mason DY. The characterization of two monoclonal anti-keratin antibodies and their use in the study of epithelial disorders. Histopathology.1985;9:825-840.
    [77]Knight J, Gusterson B, Jones RR, et al. Monoclonal antibodies specific for subsets of epidermal keratins:biochemical and immunocytochemical characterization applications in pathology and cell culture. J Pathol.1985;145:341-354.
    [78]Wetzels RH, Kuijpers HJ, Lane EB, et al. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol. 1991;138:751-763.
    [79]Wetzels RH, Holland R, van Haelst UJ, et al. Detection of basement membrane components and basal cell keratin 14 in noninvasive and invasive carcinomas of the breast. Am J Pathol.1989;134:571-579.
    [80]Gould VE, Koukoulis GK, Jansson DS, et al. Coexpression patterns of vimentin and glial filament protein with cytokeratins in the normal, hyperplastic, and neoplastic breast. Am J Pathol.1990; 137:1143-1155.
    [81]Jarasch ED, Nagle RB, Kaufmann M, et al. Differential diagnosis of benign epithelial proliferations and carcinomas of the breast using antibodies to cytokeratins. Hum Pathol.1988;19:276-289.
    [82]Guelstein VI, Tchypysheva TA, Ermilova VD, et al. Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. Int J Cancer.1988;42:147-153.
    [83]Dairkee SH, Ljung BM, Smith H, et al. Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease. Breast Cancer Res Treat.1987;10:11-20.
    [84]Tsubura A, Okada H, Senzaki H, et al. Keratin expression in the normal breast and in breast carcinoma. Histopathology.1991;18:517-522.
    [85]Dairkee SH, Puett L, Hackett AJ. Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue. J Natl Cancer Inst. 1988;80:691-695.
    [86]Dairkee SH, Mayall BH, Smith HS, et al. Monoclonal marker that predicts early recurrence of breast cancer. Lancet.1987; 1:514.
    [87]Heatley M, Maxwell P, Whiteside C, et al. Cytokeratin intermediate filament expression in benign and malignant breast disease. J Clin Pathol.1995;48:26-32.
    [88]Santini D, Ceccarelli C, Taffurelli M, et al. Differentiation pathways in primary invasive breast carcinoma as suggested by intermediate filament and biopathological marker expression. J Pathol.1996;179:386-391.
    [89]Takei H, Iino Y, Horiguchi J, et al. Immunohistochemical analysis of cytokeratin#8 as a prognostic factor in invasive breast carcinoma. Anticancer Res. 1995;15:1101-1105.
    [90]Domagala W, Lasota J, Bartkowiak J, et al. Vimentin is preferentially expressed in human breast carcinomas with low estrogen receptor and high Ki-67 growth fraction. Am J Pathol.1990;136:219-227.
    [91]Domagala W, Lasota J, Dukowicz A, et al. Vimentin expression appears to be associated with poor prognosis in nodenegative ductal NOS breast carcinomas. Am J Pathol.1990;137:1299-1304.
    [92]Domagala W, Wozniak L, Lasota J, et al. Vimentin is preferentially expressed in high-grade ductal and medullary, but not in lobular breast carcinomas. Am J Pathol. 1990;137:1059-1064.
    [93]Malzahn K, Mitze M, Thoenes M, et al. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch.1998;433:119-129.
    [94]Hicks DG, Short SM, Prescott NL, et al. Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol.2006;30:1097-1104.
    [95]Dabbs DJ, Chivukula M, Carter G, et al. Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Mod Pathol.2006; 19:1506-1511.
    [96]Tot T. The cytokeratin profile of medullary carcinoma of the breast. Histopathology. 2000;37:175-181.
    [97]Bertucci F, Finetti P, Cervera N, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res.2006;66:4636-4644.
    [98]Hungermann D, Buerger H, Oehlschlegel C, et al. Adenomyoepithelial tumours and myoepithelial carcinomas of the breast a spectrum of monophasic and biphasic tumours dominated by immature myoepithelial cells. BMC Cancer.2005;5:92.
    [99]Coyne JD, Dervan PA, Barr L. High-grade carcinomas of the breast showing patterns of mixed ductal and myoepithelial differentiation (including myoepithelial cell-rich carcinoma of the breast). Histopathology.2004;44:580-584.
    [100]Leibl S, Gogg-Kammerer M, Sommersacher A, et al. Metaplastic breast carcinomas: are they of myoepithelial differentiation?:immunohistochemical profile of the sarcomatoid subtype using novel myoepithelial markers. Am J Surg Pathol. 2005;29:347-353.
    [101]Leibl S, Moinfar F. Metaplastic breast carcinomas are negative for Her-2 but frequently express EGFR (Her-1):potential relevance to adjuvant treatment with EGFR tyrosine kinase inhibitors? J Clin Pathol.2005;58:700-704.
    [102]Bossuyt V, Fadare O, Martel M, et al. Remarkably high frequency of EGFR expression in breast carcinomas with squamous differentiation. Int J Surg Pathol. 2005;13:319-327.
    [103]Dunne B, Lee AH, Pinder SE, et al. An immunohistochemical study of metaplastic spindle cell carcinoma, phyllodes tumor and fibromatosis of the breast. Hum Pathol. 2003;34:1009-1015.
    [104]Carter MR, Hornick JL, Lester S, et al. Spindle cell (sarcomatoid) carcinoma of the breast:a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol.2006;30:300-309.
    [105]Tse GM, Tan PH, Chaiwun B, et al. P63 is useful in the diagnosis of mammary metaplastic carcinomas. Pathology.2006;38:16-20.
    [106]Barnes PJ, Boutilier R, Chiasson D, et al. Metaplastic breast carcinoma: clinical-pathologic characteristics and HER2/neu expression. Breast Cancer Res Treat. 2005;91:173-178.
    [107]Reis-Filho JS, Milanezi F, Paredes J, et al. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol.2003;11:1-8.
    [108]Reis-Filho JS, Milanezi F, Steele D, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology.2006;49:10-21.
    [109]Piekarski JH, Biernat W. Clinical significance of CK5/6 and PTEN protein expression in patients with bilateral breast carcinoma. Histopathology. 2006;49:248-255.
    [110]Tang P, Wang X, Schiffhauer L, et al. Expression Patterns of ER-alpha, PR, HER-2/neu, and EGFR in different cell origin subtypes of high grade and non-high grade ductal carcinoma in situ. Ann Clin Lab Sci.2006;36:137-143.
    [111]Tang P, Wang X, Schiffhauer L, et al. Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers. Ann Clin Lab Sci.2006;36:16-22.
    [112]Bryan BB, Schnitt SJ, Collins LC. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod Pathol. 2006;19:617-621.
    [113]Hannemann J, Velds A, Halfwerk JB, et al. Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res.2006;8:R61.
    [114]Paredes J, Lopes N, Milanezi F, et al. P-cadherin and cytokeratin 5:useful adjunct markers to distinguish basal-like ductal carcinomas in situ. Virchows Arch. 2007;450:73-80.
    [115]Savage K, Lambros MB, Robertson D, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas:a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res.2007; 13:90-101.
    [116]Li H, Cherukuri P, Li N, et al. Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res.2007;67:501-510.
    [117]Moyano JV, Evans JR, Chen F, et al. AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest.2006; 116:261-270.
    [118]Signoretti S, Di Marcotullio L, Richardson A, et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest.2002;110:633-641.
    [119]Sorlie T, Wang Y, Xiao C, et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer:gene expression analyses across three different platforms. BMC Genomics.2006; 7:127.
    [120]Fulford LG, Reis-Filho JS, Ryder K, et al. Basal-like grade Ⅲ invasive ductal carcinoma of the breast:patterns of metastasis and long-term survival. Breast Cancer Res.2007;9:R4.
    [121]Saal, LH, Holm, K, Maurer, M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.2005,65,2554-2559.
    [122]Yehiely, F, Moyano, JV, Evans, JR, et al. Deconstructing the molecular portrait of basal-like breast cancer. Trends Mol Med.2006,12:537-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700