用户名: 密码: 验证码:
基于施工机械安全监控的GPS技术与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缓解各种能源紧缺问题,我国相继开展了许多大型工程项目建设。随着我国大型工程项目建设规模的扩大和科学技术的进步,大型工程项目质量安全监管于段将会或已经走向现代化高新技术势必代替传统技术的发展趋势。对于大型工程项目质量监管新手段的研究一直是施工部门长期关注的焦点课题。
     针对大量大型施工设备在狭小的施工场地高密度布放、高强度作业、大重量承载、广范围移动运行,在高空交错混杂,一旦发生机械故障、吊运物件脱落、施工设备之间或施工设备与施工建筑物之间发生碰撞,都将可能造成重大的人员伤亡和严重的经济损失,严重影响工程项目施工进度。目前对施工设备运行状态的安全监控处于传统的人工值守方法,这缺乏实时性和自动化,安全监控也难以保证。为攻克解决这一技术难题,考虑到GPS技术具有先天独特的优势,本文将GPS实时精密定位方法应用于施工机械安全监控,可为工程施工安全提供新的技术保障;对于提高施工设备管理的现代化水平,具有较高理论意义和重要应用价值。本文完成的主要工作以及取得的创新性成果总结如下:
     1.GPS监控信号实时交换与并行解码技术和方法研究:通过分析GPS监控终端的串口通信、监控信号实时传输与多路接收以及GPS监控终端和控制中心服务器端的信号通讯软件设计与实现,探讨了多路GPS监控信号实时交换技术的实现方法与具体流程,通过实验测试与数据比对分析,验证了多路GPS监控信号实时交换的可行性和有效性;同时,以某品牌GPS-OEM板为例,对其GPS信号数据结构进行解析之后,通过对观测值数据和导航电文的解码转换实现,提出了一种基于数据流方式和多线程技术相结合的多路GPS监控信号实时并行解码转换方法,通过试验与结果分析验证了本文方法是行之有效的。
     2. GPS伪距差分监控研究与精度分析:对GPS伪距单历元差分定位算法进行了详细推导,给出了精度评定公式,并作了算法实现。通过静态和动态试验分析,利用C/A码观测值对算法作了验证并进行了精度分析,并基于DGPS计算模式分别对C/A、P1和P2三种伪距差分观测值精度和监控精度进行了比较,算例计算结果表明:C/A码差分观测值精度略优于P1码和P2码,而P1码和P2码基本相当;C/A码伪距差分单历元定位精度略优于P1和P2码,在H方向上较为明显;在GPS单历元整周模糊度算法研究中用于初步定位的伪距观测值建议首选C/A码。
     3.GPS单历元双差整周模糊度快速确定算法研究:首先对现有几种典型GPS双差整周模糊度确定算法进行了分析,重点探讨了DUFCOM方法和IBC算法。考虑到目前GPS单历元观测锁定的卫星数一般可达8~10颗甚至更多,为解决DUFCOM方法因观测卫星数过多导致解算效率过低问题,顾及DC算法具有解算效率高的优点,提出对观测卫星进行筛选分级处理策略,进而提出了一种新的快速组合算法((?)FARSE)。算例结果表明,该算法可避免在应用DUFCOM方法中二级卫星对一级卫星双差整周模糊度解算效率的影响,使得GPS单历元确定双差整周模糊度的效率显著提高,达到了GPS高采样率数据实时动态解算的目的。
     4. E DUFCOM方法提出及其效能分析:在分析已有DUFCOM方法单历元解算GPS L1相位观测值整周模糊度理论的基础上,对其进行了衍生与方法扩展,进而提出了单历元直接确定GPS L2、Ln和Lw相位观测值整周模糊度的新方法,即为Intension DUFCOM方法,并统一原有IDUFCOM方法,概括为E DUFCOM方法,最后给出了(?)E_DUFCOM方法的特征值条件。算例结果表明:基于(?)E_DUFCOM方法的高精度GPS单历元差分定位中,在整周模糊度解算效率下最高的是▽△Nn,其次是▽△N1,再次是▽△Nw,最低的是▽△N2,这与误差带的约束作用息息相关:在定位解粗度上从高到低依次是Ln、L1、L2和Lw,这与其本身观测噪声密切有关;四种相位观测值用于定位的比较,不论是解算效率还是定位精度,Ln定位解具备最优特性
     5.GPS施工机械防撞预警系统与应用试验模拟设计:集成高精度GPS技术无线通讯技术和计算机网络技术,开发设计了一套高精度GPS(?)施工设备防撞预警系统(Gscrtcas),通过模拟设计三种应用试验,对Gsertcas系统的监控精度和效果进行了验证。试验结果表明:不论是模拟塔吊机与塔吊机之间的运动、塔吊机与缆机之间的运动还是缆机与缆机之间的运动,在它们相互靠近(相对运动或追赶运动)的过程中,Gsertcas系统能实时监控它们的运动轨迹,并能有效地显绘安全运行指令信息、C级告警与指令信息、B级告警与指令信息、A级告警与指令信息,便于提醒设备驾驶人员安全驾驶、谨慎驾驶、采取正常避让或紧急制动的相应操作;在保证整周模糊度成功固定的前提条件下,SeOTF计算模式的监控精度明显优于DGPS计算模式和平滑DGPS计算模式;基于E_DUFCOM+DC'快速组合算法的SeOTF计算模式时,信号微弱干扰下单历元整周模糊度解算成功率高达97%以上,信号弱干扰下单历元整周模糊度解算成功率可达91%以上,但信号有干扰下单历元整周模糊度解算成功率仅高于57%;Gsertcas系统的应用尽量避免影响GPS信号质量的干扰源;Gsertcas系统运行稳定且防碰撞预警及时可靠,对工程施工具有良好的应用价值。
In order to relieve all kinds of the energy shortage problems, it has been carrying out many large engineering projects in China. With the expansion of large engineering projects construction and the progress in science and technology, the means of safety monitoring on quality of large-scale engineering projects will go or already has gone into the development trend of modernization high-new technology of which is bound to instead the traditional technology. The research on new methods of safety monitoring on quality of large-scale engineering projects has been a focus issue of the construction sectors for a long time.
     The large-scale construction crane group with thecrisscross-confounding in the parochial construction plants where is high-density placed, high-strength operated, arge-weight beared and wide-range movement operated. Once the construction crane group broke down, objects-lifted falled off, collisions between the mechanisms or mechanisms and buildings, all of will bring about significant casualties and serious economic losses, and then the project construction schedules would be serious impacted. At present, the safety monitoring for running status of the construction crane group is still using traditional method of manual handing on duty. This method is lack of characteristic of real-time and automation, and safety monitoring also could not be safeguarded. In order to solve the above technical issue, considering the inherited-unique advantage of GPS technology, The method of GPS real-time precision positioning applied into safety monitoring for the large-scale construction crane group is discussed based on GPS solution in the Ph.D. thesis. It has a higher theroretical significance and application value for improving the level of modernization of the management of construction crane group. The main works and innovative results are summarized as follows:
     1. The research on the technology and method of real-time exchange and parallel decoding of GPS safety monitoring signal
     Based on the analysis of the serial port communication of GPS safety monitoring terminal (recevier), real-time transmission and multi-channel receive for GPS signal and the design and implementation of signal exchange software for both of the control center server and users, the implementation approach and the specific process of real-time security-supvision signal exchange technology via multi-channel is discussed in this thesis. The experimental test and the comparison analysis of data are shown that the feasibility and effectiveness of real-time exchange for multi-channel GPS safety monitoring signal is verified. At the same time, take a brand GPS OEM board for example, after the GPS signal data structure parsed, an approach to multi-channel GPS safety monitoring signal with real-time and parallel decoding conversion for the observation data and the navigation message is put forward based on data flow and multithreading technology, which is verified by the result of experiment analysis.
     2. The research and analysis of the accuracy of safety monitoring of differential GPS technology
     The algorithm of differential GPS positioning technology using single epoch data is derived in detail, and the formula of accuracy assessment is given, and the algorithm also is implemented and verified by the accuracy analysis of static and dynamic experiments using C/A code observation. Both of the precision of pseudorange differential observations and the accuracy of safety monitoring for C/A, P1and P2code are compared respectively based on DGPS process mode. The results of numerical example are shown that the precison of C/A code differential observation is slightly better than P1and P2code, and P1and P2code are almost equal. The accuracy of safety monitoring for C/A code in DGPS positioning is slightly better than P1and P2code, and H-directionis is relatively significant. C/A code is the preferred observation which is suggested in the fast algorithm of double difference interge ambiguity resolution for initial positioning using GPS single epoch data.
     3. The research on the fast algorithm of double-difference interger ambiguity resolution using GPS single epoch data
     First of all, the existed several kinds of typical fast algorithm of GPS double difference interger ambiguity resolution are anlysized and the method both of DUFCOM and DC algorithm arc discussed in special. Given the satellite number tracked can reach8-10or ever more in current GPS single epoch data, DUFCOM method would be fall into the problem of low efficiency because of the number of satellites is too many, at the other side, DC algorithm has the advantages of high resolution efficiency, thus, the strategy of sorting the observation satellite is put forward, and then a novel fast combination algorithm named as FARSE is proposed. The results of example are shown that the fast algorithm could avoid the influence of the second-level satellites have on first-level satellites, which improve the efficiency for ambiguity resolution greatly, achieving real time high-sample rate GPS data processing.
     4. The theory and effectiveness analysis of the E_DUFCOM method and its advance
     On the basis of analyzing the theory of DUFCOM method to resolve GPS interge ambiguity resolution for Li phase observations using single epoch data, the DUFCOM method is expanded and derivated in this thesis, and then new methods, which are proposed to directly determine interger ambiguity resolution of L2, Ln and Lw phase observations, are named as the Extension DUFCOM methods. In connection with the existed method-DUFCOM method, EDUFCOM method is developed and the eigenvalue condition of E_DUFCOM method are given at last. The results of numerical example are shown that the efficiency of interger ambiguity resolution is the highest of (?)△ANn, followed by (?)△N1, next is (?)△Nw, and the lowest is (?)△N2in the GPS single epoch differential positioning based on the E_DUFCOM method, the reason lies in the fact that it is closely related to the constraint error. On the accuracy of positioning solution from high to low in turn are Ln, L1, L2and Lw, the reason lies in the fact that the observation noise is closely related to its itself. The comparison of four phase observations used to position, both the efficiency of interger ambiguity resolution and the accuracy of positioning, the result of Ln positioning is the optimal solution.
     5. The simulation design of application experiments for construction crane group collision-avoidance and warning system based on GPS solution
     Based on high-precision GPS technology, wireless communication technology and computer network technology, a set of high-precision GPS construction crane group collision-avoidance and warning system (Gsertcas) is designed and developed. By the simulation design of three kinds of application experiments, the accuracy and effectiveness of safety monitoring of Gsertcas system are verified. The results of experiments are shown that whether the simulate movements between the crane mechanism and the crane mechanism, the crane mechanism and the cable mechanism or the cable mechnism and the cable mechanism,, their motion tail could be monitored with real-time by Gsertcas system in the process to be near each other (relative movement or tail after movement), and the instruction information of safe operation, C-level warning and corresponding to the instruction information, B-level warning and corresponding to the instructions information, A-level warning and corresponding to the instruction information could be displaied effectively in order to make it easy to remind the device drivers keeping safe driving, careful driving, and taking normal avoidance or emergency braking operation respectively. Under the prerequisite of the success of interger ambiguity resolution, the processing mode of SeOTF is obviously better than DGPS and smooth DGPS in the accuracy of safety monitoring. When the processing mode of SeOTF is used based on E_DUFCOM+DC fast combinatorial algorithms, the success rate of interger ambiguity resolution using GPS single epoch data up to above97%under the slightly weak interference for GPS signal, and the success rate up to above91%under the weak interference for GPS signal, however, the success rate only up to57%under the interference for GPS signal. Thus, the quality of GPS signal as much as possible should be avoided by the interference sources in the application of Gsertcas system. Gsertcas system runs steadily, timely and reliable in collision-aviodance and warning aspects, and it has good application value for the engineering construction.
引文
[1]Ashkenzai V., Roberts GW. Experimental monitoring of the Humber Bridge using GPS [C]. Proceedings of the Institution of Civil Engineers:Civil Engineering,1997,120(4):177-182.
    [2]Bisnath S.B. Efficient,Automated Cycle-Slip Correction of Dual-Frequency Kinematic GPS Data[C].Proceedings of ION GPS 2000, Salt Lake City, Utah,19-22 September:145-154.
    [3]Bostos L, Landau H. Fixing cycle slips in dual-frequency kinematic GPS-applications using Kalman filtering [J]. Manuscripta Geodaetica, 1998,13(4):249-256.
    [4]C. C. J. M. Tiberius, P. J. G. Teunissen, P. J. de Jonge. Kinematic GPS: Performance and quality control [C]. Porcedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation KIS97, Banff, Canada, June 3-6,1997,289-299.
    [5]Cannon M.E, Lachapelle G. Analysis of a High Performance C/A Code GPS Receiver in Kinematic Mode [J]. Journal of the Institute of Navigation,2009, Vol.39, No.3, pp.285-299.
    [6]Chai Yanju, OU Jikun, Ren Chao. Method for Detecting and Bepairing Cycle Slips in GPS Navigation [J]. Transactions of Nanjing University of Aeronautics & Astronautics,2005,22(2):119-123.
    [7]CHAI Yan-ju,OU Ji-kun, REN Chao.Method for Detecting and Repairing Cycle Slips in GPS Navigation[J].Transactions of Nanjing University of Aeronautics& Astronautics[J].2005,22(2):121-124.
    [8]Dirk Stachlc, Kenji Leibnitz, Konstantin Tsipotis. Qos of Internet Access with GPRS [J]. Wireless Networks,2003,9(3):213-222.
    [9]Donghyun Kim, Richard B.Langley. Instantaneous Real-time Cycle-slip Correction of Dual-frequency GPS Data [C].Proceedings of the International Symposium on Kinematics Systems in Geodesy. Geomatics and Navigation. Banff, Alberta, Canada,5-8 June 2001:255-264.
    [10]Euler H J, Hatch R. Comparison of several AROTF kinematic techniques [C]. In: Proceedings of ION GPS-94,1994,363-370
    [11]Gao Y., Li Z. Cycle Slip Detection and Ambiguity Resolution Algoritms for dual-frequency GPS data processing [J]. Marine Geodesy,1999,22(4):169-181.
    [12]Geoffrey Blewitt. An Automatic Editing Algorithm for GPS Data [J].Geophysical Research Letters,1990,17(3):199-202.
    [13]Hasanuddin Z. Abidin. On-the-fly ambiguity resolution [J]. GPS World,1994,5(4):40-50
    [14]Hatch R. R. Dynamic Differential GPS at the Centimeter Level [C]. Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning, Las Cruces, NM.April,1986.
    [15]Hatch R. R. The Synergism of Code and Carrier Measurements [C]. Proceedings of the Third International Symposium on Satellite Doppler Positioning, Las Cruces, NM.Feb,1982.
    [16]Hatch R.R., Sharpe T. A Computationally Efficient Ambiguity Resolution Technique [C]. Proceedings of ION GPS 2001,11-14 September 2001, Salt Lake City, UT,1558-1564.
    [17]Hemisphere GPS crescent integrator's manual [Z]. Canada:CSI Wireless Inc, 2005.
    [18]HERRING T A, KING R W, MCCLUSKY S C. GAMIT Reference Manual:GPS analysis at MIT Release 10.3[EB/OL]. [2011-01-03]. http://chandler.mit.edu/-simon/gtgk/GAMIT_Ref_10.35.pdf.
    [19]Hoffmann-Wellhof, Lichtenegger, Collins. GPS Theroy and Practice (Third edition) [M]. New York:Springer-Verlag,1994:22-40.
    [20]Hu G R, K hoo H S,Goh P C, et al.Development and assessment of GPS virtual reference stations for RTK positioning [J] Journal of Geodesy,2003,77(5/6):292-302
    [21]ICD-GPS-200, Revision C [S]. USA:ARINC Research Corporation,2000.
    [22]Jukka Lempiinen, Matti Manninen. Radio Interface System Planning for GSM/GPRS/UMTS-General Packet Radio System, (GPRS) [M]. German: Springer US,2002:223-243.
    [23]Kim Donghyun, Richard B. Langley. GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues [C]. Proceedings of the 7th GNSS Workshop-International Symposium on GPS/GNSS, Seoul, Korea,30 November-2 December,2000, Tutorial/Domestic Session,213-221.
    [24]L. H. Estey, C. M. Meertens. TEQC:The Multi-Purpose Toolkit for GPS/GLONASS Data [J]. GPS Solutions,1999,3(1):42-49.
    [25]Lichtenegger H, Hofmann-Wellenhof B. GPS-data preprocessing for cycle-slip detection. Global Positioning System:an overview [C]. Bock Y and Leppard N(Eds.),International Association of Geodesy Symposia 102,Edinburgh, Scotland, 2-8 August,1989:57-68.
    [26]Liu Z K., Huang S J., GPS Dynamic Cycle Slip Detection and Correction with Baseline Constraint [J]. Journal of Systems Engineering and Electronic,2009, 20(1):60-64.
    [27]Liu Zhenkun, Huang Shunji. GPS Dynamic Cycle Slip Detection and Correction with Baseline Constraint [J|. Journal of Systems Engineering and Electronics, 2009,20,(1):60-64.
    [28]Lou Estey. TEQC (Translate/Edit/Quality Check) [EB/OL]. UNAVCO, 2002[2006-10-19]. http://facility.unavco.org/software/teqc/tutorial.html
    [29]M.Part. Burke B. Misra P. Single-epoch Integer Ambiguity Resolution with GPS-GLONASS L1-L2 Data. Proceedings ION 98. September.1998, Nashville, USA.
    [30]M.Part. Burke B. Misra, P. Single-epoch Integer Ambiguity Resolution with GPS L1-L2 Carrier Phase Measurements [C]. Proceedings of ION GPS 97.1997, 1737-1746.
    [31]M.Pratt, B.Burke, and P.Misra. Single-Epoch Interger Ambiguity Resolution with GPS-GLONASS L1-L2 Data [C]. ION GPS-98, Nashville,Tennessee, USA,1998
    [32]Mader G. L. Kinematic GPS Phase Initialization Using the Ambiguity Function [C]. Proceedings of Sixth International Geodetic Symposium on Satellite Positioning, Columbus, OH. March 17-20.1992,712-719.
    [33]Mark E. Russell, Arthur Crain, Anthony Curran et al. Millimeter-Wave Radar Sensor for Automotive Intelligent Cruise Control (ICC) [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1997, 45(12):2444-2452.
    [34]Mingduan Zhou, Jiming Guo, Qiuyun Guo et al. Research of Baseline Solution Batch Processing Algorithm for High Precision GPS Network with Massive Data [C]. RSETE2011,23-24, June,2011.
    [35]P. J. G. Teunissen. A New Method for Fast Carrier Phase Ambiguity Estimation [C]. Proceedings of IEEE PLANS94, Las Vegas, NV, April 11-15,1994,562-573.
    [36]P.J. de Jong, C.C.J.M. Tiberius, P.J.G. Teunissen. Computational Aspects of the LAMBDA Method for GPS Ambiguity Resolution[C]. ION GPS 1996,935-944
    [37]P.J.G. Teunissen, P.J.de Jonge, C.C.J.M. Tiberius. The least-squares ambiguity decorrelation adjustment:its performance on short GPS baselines and short observation spans [J]. Journal of Geodesy,1997,7(1):589-602
    138] Paul de Jong, Christian Tiberius. The LAMBDA Method for Integer Ambiguity Estimation:Implementation Aspects[M].LGR-Series, Pubilications of the Delft Geodetic Computing Centre,1996.
    [39]Paul de Jong. GPS Ambiguity Resolution in Navigation, Rapid Static Surveying and Regional Networks[C]. Paper presented at the scientific assembly of the IAG, Rio de Janeiro, Brazil,3-9 September,1997,223-228.
    [40]Pciliang Xu. Truncated SVD Methods for Discrete Linear ill-posed Problems [J]. Geophysical Journal International,1998,135(2):505-514.
    [41]Peter Joosten, Christian Tiberius.LAMBDA:FAQs [J].GPS Solutions,2002, (6):109-114.
    [42]Qianxin Wang, Tianhe Xu. Combing GPS Carrier Phase and Doppler Observations for Precise Veloctiy Determination [J]. Science in China, Series G, 2011,56(6):1022-1028.
    [43]Remondi Benjamin W. Pseudo-kinematic GPS Results Using the Ambiguity Function Method [J]. Navigation:Journal of the Institute of Navigation,1991, 38(1):17-36.
    [44]Ronald Hatch, Hans-Juergen Euler. Comparison of Several AROF Kinematic Techniques [C]. ION GPS 1994, Salt Lake City, UT,20-23 September 1994, 363-370.
    [45]Rutledge David R., Meyerholtz Steven Z. Using the Global Positioning System (GPS) to monitor the performance of dams [J]. Geotechnical News,2005, 23(4):25-28.
    [46]Ryan S, Lachapelle G, Cannon M E. DGPS Kinematic Carrier Phase Signal Simulation Analysis in the Velocity Domain [C]. Proceedings of ION GPS 97, 1997.
    [47]Satoshi Kyashima, Yukikazu Yanaka, Shuichi Suzuki et al. Monitoring the Akashi Kaikyo Bridge:First Experiences [J]. Structural Engineering International.2001, (2):120-123.
    [48]Schwarz K P, Cannon M E, Wong R V C. A Comparison of GPS Kinematic Models for the Determination of Position and Velocity along a Trajectory [J]. Manuscripta Geodaetica,1989 (14):345-353.
    [49]Schwrz K P, Cannon M E, Wong A V C. A Comparison of GPS Kinematic Models for the Determination of Position and Velocity along a Trajectory [J]. Manuscripta Geldaetica,1989(14):345-353.
    [50]Shaowei Han, Chris Rizos. Improving the Computational Efficiency of the Ambiguity Function Algorithm [J]. Journal of Geodesy,1996,70(6):330-341.
    [51]Sjoberg L. E. Unbiased vs biased estimation of GPS Phase ambiguities form dual-frequency code and phase observable [J]. Journal of Geodesy,1993, 73:118-124.
    [52]Sjoberg L. E.. A new method for GPS base ambiguity resolution by combined phase and code observables [J]. Survey Review,1998.34,268:363-372.
    [53]Szarmes M, Ryan S, Lachapelle G. DGPS High Accuracy Aircraft Velocity Determination Using Doppler Measurements [C]. Proceedings of the International Symposium on Kinematic Systems (KIS), Canada,1997.
    [54]T.A. Herring, R.W. King, S.C. McClusky. GAMIT Reference Manual Release 10.4 [EB/OL]. http://www-gpsg.mit.edu/-simon/gtgk/GAMIT_Ref.pdf.
    [55]Tenuissen. The Least-squares Ambiguity Dccorrelation Adjustment:a Method for Fast GPS Integer Ambiguity Estimation [J]. Journal of Geodesy,1995,70(1-2): 65-82.
    [56]TIKHONOV A N, ARSENIN V Y. Solutions of Ill-posed Problems [M]. New York:Wiley,1977.
    [57]Trimble Navigation Limited. Trimble Geomatics office User Guide Version 1.6 [EB/OL]. http://facility.unavco.org/project_support/polar/support/TGOuserguide.pdf
    [58]Wei Wang, Jiming Guo, Baichong Chao, et al. Safety Monitoring for Dam Construction Crane System with Single Frequency GPS Receiver [C]. The Ⅵ Hotine-Marussi International Symposium on Theoretical and Computational Geodesy, Wuhan University,29 May-2 June,2006, pp.212-215.
    [59]Werner Gurtner. RINEX:The receiver independent exchange format version 3.00[Z]. Switzerland:University of Bern,2007
    [60]Y. M. Al-Haifi, S.J.Corbett, P.A. Cross. Performance Evaluation of GPS Single-epoch on-the fly Ambiguity Resolution [J]. Journal of the Institution of Navigation,1997-1998,44(4):479-488.
    [61]Yuji Sato, Hiromitsu Ishii. Study of a collision-avoidance system for ships [J]. Control Engineering Practice,1998,6(9):1141-1149.
    [62]Zhenjie Wang. A New Approach to Ill-conditioned Problems in Rapid Positioning Using Single Frequency GPS Receivers [C]. ION GPS/GNSS,2003.1229-1239.
    [63]Zhizhao Liu. A New Automated Cycle Slip Detection and Repair Method for a Single Dual-frequency GPS Receiver [J]. Journal of Geodesy,2011,85:171-183.
    [64]蔡昌盛,高井祥.GPS周跳探测及修复的小波变换法[J].武汉大学学报(信息科学版),2007,32(1):39-42.
    [65]陈豪,朱大明,杨金玲等. GPS应用于高空施工机械安全监控[J].测绘工程,2008,17(2):43-47.
    [66]陈豪.GPS长基线数据处理研究与实现[D].成都:西南交通大学,2010
    [67]陈适.GPS船舶监控系统的设计[J].武汉理工大学学报(交通科学与工程版),2002,(4):448-450.
    [68]陈小明.高精度GPS动态定位的理论与实践[D].武汉:武汉测绘科技大学,1997
    [69]陈永奇.单历元GPS变形监测数据处理方法的研究[武汉测绘科技大学学报,1998,23(4):324-328.
    [70]陈志强,吴庆鸣,夏大勇等,大坝施工设备防碰撞预警系统[J].武汉大学学报(工学版),2007,40(1):134-137.
    [71]党宏社,韩崇昭,段战胜.汽车防碰撞报警与制动距离的确定[J].长安大学学报(自然科学版),2002,(6):89-91.
    [72]邓健,王庆,潘树国,等.基于多参考站的分米级GPS伪距差分定位方法[J].东南大学学报(自然科学版),2010,40(2):316-319.
    [73]范千.GPS网络RTK定位技术算法研究与程序实现[D].武汉:武汉大学,2009.
    [74]范千.GPS网络RTK定位技术算法研究与程序实现[D].武汉:武汉大学,2009.
    [75]方荣新,施闯,魏娜,赵齐乐等.GPS数据质量控制中实时周跳探测研究[J].武汉大学学报(信息科学版),2009,34(9):1094-1097.
    [76]方荣新,施闯,魏娜,赵齐乐等.GPS数据质量控制中实时周跳探测研究[J].武汉大学学报(信息科学版),2009,34(9):1094-1097.
    [77]郭际明,罗年学,周命端等.工程控制网数据处理理论、方法与软件设计[M].武汉:武汉大学出版社,2012.
    [78]郭际明,周命端,田雪冬等.GPS-PPP水上动态测量精度分析[J].测绘通报(增刊),2009,S0:1-3.
    [79]郭际明,周命端,吴迪军,等.高精度GPS大型桥梁工程控制网数据处理与质量评估方法研究[J].测绘通报,2012,(2):18-22.
    [80]郭际明,周命端,严悦,等.气象改正对GPS水利工程控制网数据处理的影响特性研究[M].测绘通报,2010,(2):14-16.
    [81]过静珺,徐良,江见鲸.利用GPS实现大跨桥梁的实时安全监测[J].全球定位系统,2001,(4):2-8.
    [82]何海波,杨元喜,孙中苗等.GPS多普勒频移测量速度模型与误差分析[J].测绘学院学报,2003,20(2):79-82.
    [83]何海波,杨元喜,孙中苗.几种GPS测速方法的比较分析[J].测绘学报,2002,31(3):217-221.
    [84]何进,谢松巍.基于Socket的TCP/IP网络通讯模式研究[J].计算机应用研究,2001,18(8):2-3.
    [85]黄连英.基于GrafNav/GrafNet软件的GPS动态监测数据解算研究[D].洛阳理工学院学报(自然科学版),2012,22(4):63-68.
    [86]黄声享,杨保岑,游新鹏.GPS动态几何监测系统在桥梁施工中的应用研究[J].武汉大学学报(信息科学版),2009,34(9):1072-1074.
    [87]兰孝奇,张兵良,黄继红,等.GPS伪距差分定位技术的试验研究[J].河海大学学报(自然科学版),2004,32(3):300-303
    [88]李洪涛,许国昌,薛鸿印.GPS应用程序设计[M].北京:科学出版社,2000.
    [89]李建.GPS在高速铁路精密控制网复测中的应用研究——以新建兰渝铁路引入重庆枢纽工程为例[D].成都:成都理工大学,2011.
    [90]李江卫,范士杰,刘经南.双频接收机C/A码与P码伪距的精度比较[J].全球定位系统,2005,(4):28-31
    [91]李明军.基于某高速铁路粘密工程控制网测量若干问题的研究[D].长春:吉林大学,2009.
    [92]李振洪,隔河岩大坝外观变形GPS自动化监测系统软件测试[J].测绘信息与工程,1999,(4):45-48.
    [93]李征航,黄劲松.GPS测量与数据处理(第二版)[M].武汉:武汉大学出版社,2010.
    [94]廖远琴.短基线GPS控制网整周模糊度的直接解算方法[D].武汉:武汉大学,2007.
    [95]刘根友,朱耀仲,韩保民.GPS单历元定位的阻尼LAMBDA算法[J].武汉大学学报(信息科学版),2004,29(3):195-197.
    [96]刘基余,李征航,王跃虎等.全球定位系统原理及应用[M].北京:测绘出版社,1993.
    [97]刘基余.GPS导航定位原理与方法[M].北京:科学出版社,2003
    [98]刘经南,陈俊勇,张燕平,等.广义差分GPS原理及方法[M].北京:测绘出版社,1999.
    [99]刘瑞华,项文杰.基于多线程技术的GPS罗盘数据采集与处理[J].计算机工程,2010,36(15):219-221.
    [100]刘庭宏,郭际明,周命端等.软件TTC在高频GPS动态数据处理中的应用[J].测绘信息与工程,2012,37(4):7-9.
    [101]罗孝文,欧吉坤.中长基线GPS网络RTK模糊度快速解算的一种新方法[J].武汉大学学报(信息科学版),2007,32(2):156-159.
    [102]吕立波.汽车防撞报警系统的研究与开发[J].公安大学学报(自然科学版),2002,(6):59-62.
    [103]孟领坡,吴杰.双频去相关单历元动态解整周模糊度研究[J].国防科技大学学报,2010,32(1):34-39.
    [104]孟祥广,郭际明.GPS接收机(OEM)二进制文件向RINEX文件的转换[J].测绘工程,2009,18(5):18-21.
    [105]欧吉坤,王振杰.单频GPS快速定位中模糊度解算的一种新方法[J].科学通报,2003,48(24):2572-2575.
    [106]欧吉坤.测量平差中不适定问题解的统一表达与选权拟合法[J].测绘学报,2004,33(4):283-288.
    [107]欧军,吴清秀,斐云等.基于socket的网络通信技术研究[J].网络安全技术与应用,2011,(7):19-21.
    [108]戚浩平,高成发.中等距离GPS相位平滑伪距差分动态定位精度的测定[J].测绘通报,2006,(8):4-5.
    [109]钱稼茹,过静珺,陈志鹏.地王大厦动力特性及大风时楼顶位移和加速度实测研究[J].土木工程学报,1998,31(6):30-29.
    [110]青虹宏,江朝元,文远荣,等.般舶防碰撞导航预警系统设计[J].计算机工程与应用,2004,(21):200-202.
    [111]邱蕾,花向红,蔡华等.GPS短基线整周模糊度的直接解法[J].武汉大学学报(信息科学版),2009,34(1):97-99.
    [112]邱卫宁,陈永奇.用载波相位宽巷组合高精度确定大数值变形[J].武汉大学学报(信息科学版),2004,29(10):889-892.
    [113]宋中华,周命端,张玉生等.GPS工程测量网数据处理与质量评估方法研究[J].测绘工程,2011,20(4):22-25.
    [114]孙红星,李德仁.使用双频相关法单历元解算GPS整周模糊值[J].测绘学报,2003,32(3):208-212.
    [115]孙红星.差分GPS/INS组合定位定姿及其在MMS中的应用[D].武汉:武汉大学,2004.
    [116]孙效功.等价观测与GPS差分法定位[J].测绘学报,1992,21(1):50-56.
    [117]田雪冬,郭际明,郭麒麟,等.GNSS定位技术在水利水电工程中的应用[M].武汉:长江出版社,2009.
    [118]汪伟,郭际明,巢佰崇,等.GPS在动态监测大坝施工吊车运行防撞中的应用[J].地理空间信息,2005,3(3):29-31.
    [119]王超,郭际明,周命端等.高精度GPS数据处理中GAMIT批处理方法与实现[J].测绘信息与工程,2012,37(2):11-12.
    [120]王德胜.GPS多天线控制系统数据传输研究与实现[D].南京:南京航空航天大学,2002.
    [121]王贵文,王泽民,殷海涛.基于三差观测量的实时动态GPS周跳修复方法研究[J].武汉大学学报(信息科学版),2007,32(8):711-714.
    [122]王华,基于Internet实现GPS实时定位数据传输方法的研究[D].北京:中国测绘科学研究院,2006.
    [123]王华.基于Internet实现GPS实时定位数据传输方法的研究[D].北京:中国测绘科学研究院,2006.
    [124]王苓,苏维均.基于多线程技术的多串口通信[J].微计算机信息,2006,22(3-1):253-255.
    [125]王琦,胡修林.基于OEM板的GPS定位接收机的研究与实现[J].电子工程师,2004,30(11):4-6.
    [126]王潜心.机载GPS动态定位定速与定姿理论研究及软件开发[D].长沙:中南大学,2011.
    [127]王新洲,花向红,邱蕾.GPS变形监测中整周模糊度解算的新方法[J].武汉大学学报(信息科学版),2007,32(1):24-26.
    [128]王泽民,邱蕾,孙伟等.GPS现代化后L2载波的定位精度研究[J].武汉大学学报(信息科学版),2008,33(8):779-782
    [129]王振杰,欧吉坤,柳林涛.一种解算病态问题的方法——两步解法[J].武汉大学学报(信息科学版),2005,30(9):821-824.
    [130]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998.
    [131]吴晓铭.隔河岩大坝外观变形GPS自动化监测系统的研究与应用[J].湖北水力发电,2000(2):31-32.
    [132]伍岳,李海军,邱蕾等.实时修复双频原始载波相位观测位周跳的虚拟值探测法[J].武汉大学学报(信息科学版),2012,37(3):257-260.
    [133]肖云,孙中苗,私广义.利用GPS多普勒观测值精确确定运动载体的速度[J].武汉测绘科技大学学报,2000,25(2): 113-118.
    [134]肖云,夏哲仕.利用相位率和多普勒确定载体速度的比较[J].武汉大学学报(信息科学版),2003,28(5):581-584.
    [135]谢翔,郭际明,周命端.基于三差法的GPS周跳探测效果分析与实现[J].工程勘察,2013,(3):63-66.
    [136]阳仕贵,欧吉坤,任超.GPS单历元载波相位整周模糊度的解算方法研究[J].长江科学院院报,2005,22(1):32-34.
    [137]杨汀.网络RTK定位精度影响因子与GNSS数据网络传输研究[D].北京:中国矿业大学,2010.
    [138]杨永平.GPS相位平滑伪距差分定位计数的研究及应用[D].南京:河海大学,2005.
    [139]哀洪,万卫星,宁百齐等.基于双差观测序列曲线拟合实现GPS静态定位基线实时解算[J].测绘学报,1998,27(2):145-152.
    [140]张超,郑勇.利用GPS OEM(?)版进行精确授时的研究[J].信息工程大学学报,2001,2(4):50-53.
    [141]张成军,杨力,郑航行.基准站坐标偏处对伪距差分定位的影响研究[J].海洋测绘,2004,24(4):11-12.
    [142]张恒,郭际明,周命端等.基于Google Map的GPS定位跟踪系统研究与实现[C].CSNC2012,广州,2012.5.16-19.
    [143]张静,朱炎,金志华.自建基准站进行GPS伪距差分定位的试验研究[J].船舶工程,2003,25(4):68-71
    [144]张绍成.基于GPS/GLONASS集成的CORS网络大气建模与RTK算法实现[D].武汉:武汉大学,2010
    [145]张世保,刘星,杨帆.三峡工程施工机械联合作业防撞测控系统研究[J].中国三峡建设,2002,(6):17-18.
    [146]张学军,张岳峰.基于毫米波雷达的汽车防撞模糊控制研究[J].兰州交通大学学报,2008,27(1):103-106.
    [147]郑袆,王解光.GPS卫星预报星历的解码及卫星预报[J].工程勘察,2000,3:52-55.
    [148]周命端,郭际明,许映林,等.水电站GPS变形监测网的数据处理及稳定性分析[J].测绘通报,2011,(7):30-33.
    [149]周扬眉.GPS精密定位的数学模型、数值算法及可靠性理论[D].武汉:武汉大学,2003.
    [150]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,1999.
    [151]周忠谟,易杰军,周琪.GPS测量原理与应用[M].北京:测绘出版社,1995.
    [152]朱国辉.差分GPS技术在编组站监测系统的应用研究[D].北京:北京交通大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700