用户名: 密码: 验证码:
巴颜喀拉地块东北端第四纪隆升量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原于新生代在亚洲大陆上崛起,成为地球上最雄伟的高原。青藏高原的隆升对于季风气候的形成、过去全球气候变化有着重大的影响,是造成新生代晚期全球气候变冷、北半球冰量变化、亚洲季风形成的根本原因。于是,青藏高原变形的时代,幅度,形式、机制,以及其演化过程和环境效应的研究成为国际地学界研究的热点和争论的焦点。
     巴颜喀拉块体属于青藏亚板块东北部的次级块体,北邻秦祁昆块体,南接唐古拉块体,东与扬子块体接触。巴颜喀拉块体东北端(以下简称研究区)地处三大块体交接区,是青藏高原强烈隆升和向外扩展地区,也是我国大陆新构造运动和强震活动十分活跃的地区。围绕研究区内第四纪以来隆升量的研究,不仅可以认识研究区内第四纪隆升机制,促进系统认识青藏高原隆升过程及变形机制,还对研究区内的防震减灾工作具有重要的应用价值。
     第四纪以来,在不同的内力和外力作用下,地球表面形成多种地貌。这些地貌中包括有表征地质年龄意义的层状地貌。若在研究区域内多处地点存在一系列可以对比的不同高程或年龄的这类层状地貌序列,则可以通过对它们的研究,结合成因分析,认识区域内层状地貌反映的表面隆升量(以下简称隆升量)和隆升过程。具有地质年龄意义的层状地貌中,与隆升量相关且研究程度较高的主要有夷平面、阶地等。研究区内虽然夷平面分布相对较小、然而阶地分布较为广泛,主因是区内河流纵横,强烈切割。
     本文利用活动块体划分、野外地震地质调查、层状地貌对比分析和遥感解译等研究方法以及14C、ESR、OSL测年、DGPS测量、DEM空间分析等技术手段,对包括研究区内块体的划分、获取反映隆升量的方法、不同块体内各级层状地貌的沉积特征、空间参数、形成时代等的深入研究:(1)将巴颜喀拉块体东北端划分成不同的活动块体,反映各个块体之间在新生代以来具有差异活动的特征;(2)利用DGPS方法,结合高精度影像数据,提出了层状地貌空间参数的获得方法,该方法不但可以有效的节约野外现场工作时间、精度也满足要求;(3)利用(2)提出的方法,对(1)划分的各个块体内的层状地貌面进行系统的野外调查、测量、统计和对比研究,提出各个块体的标准层状剖面,进而对比分析研究区不同块体层状地貌数据反映的第四纪差异隆升量,结合测年数据和地层对比,讨论不同块体的隆升速率;(4)探讨巴颜喀拉块体向东运移对东北缘隆升过程、形变分配的约束。
     论文主要取得以下研究结果:
     (1)巴颜喀拉地块东北端块体划分
     根据边界活动断裂带划分活动块体的方法,利用区域大地构造环境识别出边界断裂带的出露位置;利用区域地球物理场与地壳结构分析边界断裂带深部地球物理场参数特征,进而分析其深部结构;结合地震的分布、力学特征分析断裂的活动性质和强度;结合GPS、断层活动速率等资料确定活动断裂带;并以此为依据划分出为四个一级块体和三个二级断块,四个一级块体为巴颜喀拉强隆起、龙门山断隆、四川弱隆起、秦岭断隆;二级断块为若尔盖强隆起、岷山断隆、碧口过渡区。
     (2)层状地貌面数据获取方法的研究
     近年来,随着新构造定量研究的逐步深入,要求定性或定量评价新构造时期断裂活动、褶皱活动、垂直隆升运动等等问题。为了解决这些问题,一些新的方法和手段得到了尝试和应用。论文结合实例,较系统的提出了层状地貌数据的获取方法,为研究垂直隆升提供了新的方法。提出了采用DGPS方法、DGPS方法和SPOT-5异轨立体像对综合分析方法获取层状地貌DEM数据,讨论了网格统计方法中层状地貌面在大比例DEM剖面上的形态及其统计参数意义。在均匀隆升的区域,首先用传统测量方法得到多个地点阶地序列的空间参数,统计对比分析得到该区域具有代表性的阶地序列空间参数,其次结合网格统计DEM数据得到夷平面和剥夷面、阶地的级别、分布范围和高程数据,两者相互对比、补充和验证,完善层状地貌的空间参数。存在差异运动的区域,首先划分出差异运动相对较小的次级单元,然后按上述方法对次级单元进行测量,然而进一步对区域整体活动分析。
     (3)各个块体隆升量的研究
     层状地貌面空间分布和发育特征(包括成因、类型、分布、结构、级数、后期构造变形等)是青藏高原东缘层状地貌研究过程中存在的主要问题之一。论文基于研究区内黄河支流黑河、白河,长江支流白龙江、岷江、涪江等河流阶地面的结构、类型、级数和空间分布特征的野外调查和测量,结合DEM数据,得到不同块体层状地貌的空间分布及高程/拔河参数,建立不同块体第四纪隆升量。其中若尔盖强隆起可识别出8级地貌面,夷平面指示的隆升量1400~1650m;岷山断隆可识别出12级地貌面,夷平面指示的隆升量1700~1900m;碧口过渡区可识别出11级地貌面,夷平面指示的隆升量~1350m。
     (4)各个块体隆升速率的讨论
     缺乏准确的测年数据、系统的测年剖面亦是青藏高原东缘层状地貌面研究存在的主要问题之一。通过收集各条河流流域内的构造地貌年龄数据,参考沉积特征分析和地层对比,讨论各级层状地貌的形成时代,结合(3)得到的不同块体层状地貌空间参数,建立了相应的层状地貌标尺,讨论层状地貌反映隆升速率。青藏运动以来若尔盖强隆起、岷山断隆、碧口过渡区共同开始持续均匀的强烈隆升,形成多级夷平面和阶地。三个块体之间存在差异隆升,其中岷山断隆速率最快,其次为若尔盖强隆起,碧口过渡区较弱,这种差异隆升持续至今。
     (5)巴颜喀拉地块向东运移对东北缘隆升过程的影响
     巴颜喀拉地块的北边界为东昆仑断裂带,东侧以龙门山断裂带与华南块体为界。昆仑山北侧的陇西块体及其前缘弧束区在青藏运动末期隆升运动才有所响应并逐步启动,昆黄运动末期开始加速,但仍小于若尔盖强隆起、岷山断隆、碧口过渡区三个块体的隆升速率,共和运动以后趋于一致或超过三个块体的隆升速率。龙门山东侧的四川盆地青藏运动主要表现为前陆沉积,隆升运动不明显,到共和运动以来也加入到快速隆升的运动中。以东昆仑断裂带和龙门山断裂带为界,两侧块体存在着差异隆升,其差异量可能被断层吸收,因此支持大陆逃逸模型和分块隆升模型。
     (6)共和运动以来,趋于一致的加速隆升过程广泛分布,并与前期有较大的差异。因此,我们推测此阶段的活动速率不能简单的反映前期活动速率,如果这一推测是正确的话,那么现今GPS反映的青藏高原的运动状态同样不能简单的延伸到青藏运动时期,甚至于共和运动时期。
Since Cenozoic, the Tibetan Plateau has risen in the Asian continent and become the world'smost magnificent plateau. With a significant impact on the formation of monsoon climate and theforepassed global change, its uplift is the primary cause for global cooling, northern hemisphereice changes and Asian monsoon formation in the late Cenozoic. Thus, the deformation of TibetanPlateau has become a focused topic of international geology, with debates on the timing,magnitude, forms, mechanisms, evolution process of the deformation and environmental effects.
     Being a secondary terrane, the Bayan Har block belongs to the northeast of Qinghai-Tibetsubplate, adjoining the Qinling-Qilian-Kulun block in north,Tangula block in south and Yangtzeblock in east. The northeast part of the Bayan Har block (hereinafter referred to as the study area)lies in the transition zone of three large blocks, located in the area of the Tibetan Plateau whichwas intensively uplift and outward extended, as an active area of new tectonic movement andstrong earthquake regions in China. The research of uplift amount of the study area since theQuaternary time helps to understand the mechanism of uplift in Quaternary and the uplift processand deformation mechanisms in the Tibetan Plateau, playing a great role in earthquake preventionand disaster mitigation.
     Since Quaternary, under the action of diverse internal and external forces, a variety oflandforms have been formed on the earth's surface. These geomorphic types include a certainsense of layered landform caused by earth crust uplift. If there are a series of layered landforms inthe study area, the research can recognize the formation process of the landscape in this area,which would reflect the amount of surface uplift (hereinafter referred to as uplift amount).Geomorphic surface is divided into many kinds, such as planation surface, terrace, etc. related totectonic setting, which are deeply researched. In long-time uplift movement areas, the river is oneof the main geologic forces transforming the surface appearance and the river terrace is the maintype of quaternary geomorphologic in mountains. There are two main rivers in the study area, theYangtze and Yellow river systems, forming multistage terraces under the effects of tectonics andclimate. These planation surfaces and terraces are the main objects of this thesis. Their spaceparameters (height), reflecting the uplift amount of the study area, are the main basic data in theresearch process.
     From14C, ESR, and OSL chronology of gravel beds,DGPS measurements, DEM spatialanalys is and other technical means, this work includes block division, access to uplift amountmethod, sedimentary characteristics, space parameters and formation age of the landscape:(1) Thestudy area is divided into different activity blocks, each block shows the characteristics ofactivities different from others since the Cenozoic.(2) Using DGPS methods, combined with thehigh resolution image data, a study method is proposed to acquire the layered landscape spaceparameters. This method not only effectively saves the wild field work time, but also meets theprecision requirement and increases the work efficiency.(3) The difference capacity of uplift sinceQuaternary is obtained by comparative analysis of the standard layered landscape profile indifferent blocks by the method presented in(2).Combined with dating data and strata, uplift ratesof different blocks are discussed.(4) Discuss how the eastward movement of the Bayan Har blockconstrains the uplift process and deformation distribution of the northeast edge.
     The major research results of this thesis are presented below.
     (1)Division of activity block
     According to the division method of the active blocks, for example, using regional tectonicenvironment to identify the boundary zone of the exposed position of faults; using the regionalgeophysical field and crust structure characteristics to analyze the deep geophysical fieldparameters of the boundary faults zone, and then its deep structure; based on the distribution,mechanic characteristics of earthquakes, the nature and intensity of the fault activity wereresearched. GPS data were combined with the fault slip rates to determine the active fault zone.Based on these results, the study area was divided into four primary blocks and three secondaryblocks. The four primary level blocks include the Bayan Har strong uplift, the Longmenshan faultuplift, Sichuan weak uplift and Qinling fault uplift; The three secondary fault blocks are the Zoigestrong uplift, and the Minshan break, the Bikou transition zone.
     (2) Acquisition of space parameters of layered landform
     In recent years, with the development of quantitative neotectonics, qualitative orquantitative research has been required to evaluate faulting, folding activities, vertical upliftmovement in neotectonics period, and so on. In order to solve these problems, some new methodsand means are tried and applied. Based on application examples, the system of layered landformdata acquisition method is proposed. A research method was proposed to apply the DGPS method,DGPS and SPOT-5across-track stereo images to obtain layered landform data and discuss thelayered geomorphic surfaces morphology on the large scale DEM section and geomorphicsignificance in the gridding DEM profile. In uniform uplift areas inside the block, firstlytraditional measurement methods were used to get space parameters of layered landform in mainterrace and analysis made to the space parameters of the typical layered landform. Secondly, basedon DEM data, this work analyzed planation surface and denudation surface level, distributionrange and elevation data, perfects space parameters of layered landform by contrasting,complementing and validation. In evident differential movement areas, the secondary units werefirstly divided by differential movement, and then the units were measured and analyzedaccording to the methods above.
     (3)Uplift amount of layered landform in each block in thestudy area
     Distribution and characteristics of layered landform (including the cause, type, distribution,structure, series, and the late tectonic deformation, etc.) in the Tibetan Plateau edge are one of themain problems. Based on field investigation and measurements on distribution and characteristicsof layered landform, including the area of Heihe river, Baihe river, belonging to the Yellow Rivertributaries, and Bailong river, Minjiang river, FuJiang river, belonging to the Yangtze rivertributaries, combining DEM data, space parameters of layered landform in the study area wereobtained and the uplift amount was established in different blocks since the Quaternary. The Zoigestrong uplift can be subdivided into8level layered landforms and the planation surface shows anuplift amount of1400~1650m; Minshan fault uplift12level layered landforms, with the upliftamount of1700~1900m showed by the planation surface; Bikou transition zone11level layeredlandforms, with the uplift amount of1350m.
     (4)Uplift rateof layered landform in each block in thestudy area
     Lack of accurate dating and profile of dating data is another main problem. By collectingdating data of layered landform in the study area, combined with sedimentary characteristicsanalys is and correlation of strata, the formation time of all level layered landform was discussed.Based on the space parameters of layered landform in different blocks gained in (3), relevantlayered landform scales were built for different blocks and the uplift rates were discussed. The Zoige strong uplift, Minshan fault uplift and Bikou transition zone have strongly risen since theTibetan movement. Multilevel planation surfaces and terraces have been formed. The three blocksrose at different rates, the Minshan fault block uplifts at the largest rate, followed by the Zoigestrong uplift, with Bikou transition zone the slowest. The differential uplift has continued topresent day.
     (5)TheBayan Har block eastward migration impact on northeast edge
     The Bayan Har block borders the eastern part of the Kunlun fault zone to the north, theLongmenshan fault zone and the South China block to the east. The west Gansu block, borderingthe Kunlun Mountains to the north, and its frontal arc beam area began to react and graduallyuplifted at the end of the Tibetan movement. The movement accelerated at the end of Kunhuangmovement, with a rate lower than that of the Zoige strong uplift, Minshan fault lung and Bikoutransition area, equal to or higher than the rate of the latter three blocks uplift after GongheMovement. During the period of Tibetan movement, the Sichuan basin, bordering Longmenshanto the west, presented foreland deposition as a result of an obvious uplift movement. SinceGonghe movement, the Sichuan basin has rapidly uplifted. Bounded by the East Kunlun fault zoneand Longmenshan fault zone, the blocks on both sides uplifted differently, with the differenceabsorbed by faults. The study indicates that the movement shows a feature of the escape modeland block uplift model.
     (6)Since the Gonghe movement, accelerating uplift processes converge on differentblocks that have bigger differences from early. So this study speculated that the active rate of thisphase didn't reflect the activities of the previous rate. If this speculation is correct, today's motionstate of the Tibetan Plateau reflected by GPS also cannot be simply extended to the Tibetanmovement period, and even the Gonghe movement period.
引文
1. Akira Hirano, Roy Welch, Harold Lang. M apping from ASTER stereo image data: DEM validation andaccuracy assessment[J]. Photogrammetry&Remote Sensing,2003,57(5-6):356-370
    2. Antoine P, Lautridou J Pierre. Long-term fluvial archives in NW France: response to the Seine and Sommerivers to tectonic movements, climatic variations and sea-level changes[J]. Geomorphology,2000,33(3-4):183-207.
    3. Antoine P, Limondin-Lozouet N, et al. Pleistocene fluvial terraces from northern France (Seine, Yonne,Somme): synthesis and new results from interglacial deposits[J]. Quaternary Science Reviews,2007,26(22-24):2701-2723.
    4. Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia[J]. Geophys. Res. Lett.,1993,20(10):895-898.
    5. Bonforte A, Guglielmino F, Palano M, et al. A syn-eruptive ground deformation episode measured by GPS,during the2001eruption on the upper southern flank of M t Etna[J]. Bull Volcanol,2004,66(4):336–341.
    6. Bridgland D R. River terraces system in northwest Europe: an archive of environmental change, uplift andearly human occupation[J]. Quaternary Science Reviews,2000,19(13):1293-1303.
    7. Bridgland D R. The M iddle and Upper Pleistocene sequence in the Lower Thames: a record of M ilankovitchclimatic fluctuation and early human occupation of southern Britain: Henry Stopes M emorial Lecture2004[J].Proceedings of the Geologists' Association,2006,117(3):281-305.
    8. Bridgland D, M addy D, Bates M. River terrace sequences: templates for Quaternary geochronology andmarine-terrestrial correlation[J]. Journal of Quaternary Science,2004,79:203-218.
    9. Brocard G Y, van der Beek P A, Bourlès D L, et al. Long-term fluvial incision rates and post glacial riverrelaxation time in the French Western Alps from10Be dating of alluvial terraces with assessment ofinheritance, soil development and wind ablation effects[J]. Earth and Planetary Science Letters,2003,209(1-2):197-214.
    10. Chen S F, Wilson C J L, Deng Q D, et.al. Active faulting and block movement associated with large earthquakein the M in Shan and Longmen M ountains, northeastern Tibetan Plateau[J]. J. Geophys. Res.,1994,99,24,025-24,038.
    11. Chevalier M L, Ryerson F, Tapponier P, et al. Slip-rate measurements on the Karakorum Fault may implysecular variations in fault motion[J]. Science,2005,307(5708):411-414.
    12. Cowgill E. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth and Planetary ScienceLetters,2007,254(3-4):239-255.
    13. David L H, Jeff W. Applications of differential GPS in upland fluvial geomorphology. Geomorphology[J],1999,29(1-2):121-134.
    14. England P, M olnar P. Active deformation of Asia: from kinematics to dynamics[J]. Science,1997,278(5338):647-650.
    15. Formento-Trigilio M L, Burbank D W, Nicol A, et a1. River response to an active fold-and-thrust belt in aconvergent margin setting, North Island, New Zealand[J]. Geomorphology,2002,49(1-2):125-152.
    16. Gregory S. Hancock, Robert S. Anderson, Oliver A. Chadwick, et al. Dating fluvial terraces with10Be and26AI Profiles: application to the Wind River, Wyoming[J]. Geomorphology,1999,27(l-2):41-60.
    17. Guo J M, Lin A M, Sun G Q, et.al. Earthquakes and the Paleoseismicity along the Tuosuo Lake Segment of theKunlun Fault, Northern Tibet[J]. Seism Soc Am Bull,2007,97(2):474-496.
    18. Harkins N, Kirby E. Fluvial terrace riser degradation and determination of slip rates on strike-slip faults: Anexample from the Kunlun fault, China[J]. Geophys. Res. Lett.,2008,35: L05406, doi:10.1029/2007GL033073
    19. Holbrook J, Schumn S A. Geomorphic and sedimentary response of rivers to tectonic deformation: a briefreview and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings[J].Tectonophysics,1999,305:287-306.
    20. Holt W E, Chamot-Rooke N, Le Pichon X, et al. Velocity field in Asia inferred from quaternary fault slip ratesand GPS observations[J]. J. Geophys. Res.,2000,105(19):185-209.
    21. Janet E Nichol, Ahmed Shaker, M an-sing Wong. Application of high-resolution stereo satellite images todetailed land slide hazard assessment [J]. Geomorphology,2006,76(1-2,5):68-75.
    22. Jerome Korona, Etienne Berthier, M arc Bernard, et al. SPIRIT. SPOT-5stereoscopic survey of Polar Ice:reference images and topographies during the fourth international polar year (2007-2009)[J]. ISPRS Journal ofphotogrammetric and remote sensing,2009,64(2):204-212.
    23. Kidd W S F, M olnar P. Quaternary and active faulting observed on the1985Academia Sinica-Royal SocietyGeotraverse of Tibet[J]. Phil. Trans. Roy. Soc. Lond.,1988,327(1594):337-363.
    24. Kirby E, Harkins N, Wang E Q,, et.al. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics,2007,26(2): TC2010, doi:10.1029/2006TC002033.
    25. Kirby E, Whipple K X, Burchfiel B C., et al. Neotectonics of the M inshan, China: implications formechanisms driving quaternary deformation along the eastern margin of the Tibetan Plateau[J]. GSA Bulletin,2000,112(3):375-393.
    26. Kirby E, Whipple K X, Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology,2001,29(5):415-418.
    27. Kirby E, Whipple K X, Tang W, et al. Distribution of active rock uplift along the eastern margin of the TibetanPlateau: Inferences from bedrock channel longitudinal profiles [J]. J. Geophys. Res.,2003,108(B4),2217,doi:10.1029/2001JB000861.
    28. Kreemer C, Holt W E, Goes S, et al. Active deformation in eastern Indonesia and the Philippines from GPSand Seismicity data. Geophys. Res.,2000,105:663-680.
    29. Li J J, Fang X M, van der Voo R, et al. Reconnaissance late Cenozoic magnetostratigraphy (11~0M a) of theWangjiashan section in the Longzhong Basin, western China: Evidence for rapid mid-Pliocene uplift of theTibetan Plateau [J]. Geologie&M ijnbouw,1997,76:121~134.
    30. Li J J, Fang X M, Vander Voo R, et a1. M agnetostratigraphic dating of river terraces:Rapid and intermittentincision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary [J]. J.Geophys. Res.,1997,102(B5):10121-10132.
    31. Li J J, Xie S Y, Kuang M S. Geomorphic evolution of the Yangtze Gorges and time of the information [J].Geomorphology,2001,41(2-3,15):125-135.
    32. Li J J,et al. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change[M]. Lanzhou: Lanzhou UniversityPress,1995,181-207.
    33. Lin A M, Guo J M. Nonuniform slip rate and millennial recurrence interval of large earthquakes along theeastern segment of the Kunlun fault, northern Tibet[J]. Seism Soc Am Bull,2008,98(6):2866-2878.
    34. Liu Y, Song Z G. The method research of the dynamic position in gaccuracy in the GPS measures system [J].GNSS World of China,2005,2:36-40.
    35. Lothar Schulte, Ramon Julià, Francesc Burjachs, et al. Pleistocene to Holocene geochronology of the RiverAguas terrace sequence(Iberian Peninsula): Fluvial response to M editerranean environmental change.Geomorphology [J],2008,98:13-33.
    36. M addy D, Bridgland D R, et al. Uplift-driven river terrace development in the Thames Valley: valley incisionand climate-controlled UK [J]. Quaternary International,2001,79:23-36.
    37. M addy D, Bridgland D R. Accelerated uplift resulting from Anglian Glacioisotatic rebound in the middleThames Valley, UK?: evidence from the river terrace record [J]. Quaternary Science Reviews,2000,19(16):1581-1588.
    38. M addy D. Uplift-driven valley incision and river terrace formation in southern England [J]. Journal ofQuaternary Science,1997,12(6):539-545.
    39. M elton F A. Aerial photographs and structural geology[J]. Geomorphology,1959,67(4):351-370.
    40. M erritts D J, Vincent K R, Wohl E E, et al. Long river profiles, tectonism, and custasy: A guide to interpretingfluvial terraces[J]. J. Geophys. Res.,1994,99(B7):14031-14050.
    41. Pan B T, Burbank D, Wang Y X, et a1. A900ky. Record of strath terrace formation during glacial interglacialtransitions in northwest China[J]. Geology,2003,31(11):957-960.
    42. Pan B T, Su H, Hu Z, et al. Evaluating the role of climate and tectonics during non-steady incision of theyellow River: evidence from a1.24M a terrace record near Lanzhou, China [J]. Quaternary Science Reviews,2009,28(27/28):3281-3290.
    43. Peltzer G, Crampé F, King G. Evidence of nonlinear elasticity of the crust from the Mw7.6M anyi (Tibet)Earthquake[J]. Science,1999,286(5438):272-276.
    44. Peltzer G, Tapponnier P, Armijo R. M agnitude of late quaternary left-lateral displacements along the north edgeof Tibet[J]. Science.1989,246(4935):1285-1289.
    45. Remondi B W. Performing centimeter-level surveys in seconds with GPS carrier phase: initial results [J].Journal of the Institute of Navigation,1985,32(4):386-400.
    46. Rhea S. Evidence of uplift near Charleston, South Carolina[J]. Geology,1989,17(4):311-315.
    47. Royden L H, Burchfiel B C, King, R W, et.al. Surface deformation and lower crustal flow in eastern Tibet[J].Science.1997,276(5313):788-790.
    48. Shaekleton R M, Chang C F. Cenozoic uplift and deformation of the Tibetan Plateau: the geomorphologicevidence[J]. Phil. Trans. Roy. Soc. Lond.,1988, A:365-377.
    49. Sieh K E, Jahns R H. Holocene activity of the San Andreas Fault at Wallace Creek, California[J]. Seism SocAm Bull,1984,95(8),883–896.
    50. Small E E, Anderson R S, et al. Erosion rates of alpine bedrock summit surfaces deduced form in situ10Beand26Al[J]. Earth and Planetary Science Letters,1997,150(3-4):413-425.
    51. Starkel L. Climatically controlled terraces in uplifting mountain areas[J]. Quaternary Reviews,2003,22(20):2189-2198.
    52. Tapponnier P, Molnar P. Slip line field Theory and large-scale continental tectonics[J]. Nature,1976,264:319-324.
    53. Tapponnier P, Peltzer G, Le Dain A Y, et.al. Propagating extrusion tectonics in Asia: New insights from simpleexperiments with plasticine[J]. Geology,1982,10(12):611-616
    54. Tapponnier P, Xu Z Q, Roger F, et.al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science,2001,294(5547):1671-1677.
    55. Van Balen R T, Houthast R F, Vander Wateren F M, et a1. Sediment budget and tectonic evolution of theM euse catchment in Ardennes and Roer valley rift system[J]. Globaland Planetary Change,2000,27(1-4):113-129.
    56. Van Der Woerd J, Tapponnier P, Ryerson F J, et.al. Uniform postglacial slip-rate along the central600km ofthe Kunlun Fault (Tibet), from Al-26, Be-10, and C-14dating of riser offsets, and climatic origin of theregional morphology[J]. Geophys J Int.,2002,148(3):356-388.
    57. Vandenberghe J. Timescales, climate and river development[J]. Quaternary Science Review,1995,14(6):631-638.
    58. Veldkarnp A, J.J Van Dijke. Simulating internal and external controls on fluvial terrace stratigraphy: aqualitative comparison with the M aas record [J]. Geomorphology,2000,33:225-236.
    59. Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by GlobalPositioning System measurements [J]. Science,2001,294:574-577.
    60. Wang X L, Lu Y C, Wintle A G. Recuperated OSL dating of fine-grained quartz in Chinese loess[J]. QuatGeochronoly,2006,1(2):89-100.
    61. Wegmann K W, Pazzaglia F J. Holocene strath terraces, climate change, and active tectonics: The ClearwaterRiver basin, Olympic Peninsula, Washington State [J]. GSA Bulletin,2002,114(6):731-744.
    62. Xu X W, Yu G H, Klinger Y, et.al. Reevaluation of surface rupture parameters and faulting segmentation of the2001Kunlunshan earthquake (M w7.8), northern Tibetan Plateau, China[J]. J. Geophys. Res.,2006,111:B05316, doi:10.1029/2004JB003488.
    63. Zhang P Z, M olnar P, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault,northern margin of the Tibetan Plateau[J]. Tectonics,2007,26, TC5010, doi:10.1029/2006TC002014.
    64. Zhang P Z, Shen Z K, Wang M, et.al. Continuous deformation of the Tibetan Plateau from global positioningsystem data[J]. Geology,2004,32(9):809-812.
    65. Zhao S R. Joint inversion of observed gravity and GPS baseline changes for detection of active fault segmentat the Red River fault zone [J]. Geophys J Int.,1995,122:70-88.
    66. Zhao S, Chao D, Xu J. Determination of current active segments at the Red River fault zone by inversion ofGPS baseline changes [J]. Geodynamics,1993,17(3):145-154.
    67.安卫平,赵晋泉,闫小兵,等.岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震[J].地震地质,2008,30(4):980-988.
    68.常宏,安芷生,强小科.河流阶地的形成及其对构造与气候的意义[J].海洋地质动态,2005,21(2):8-11
    69.常隆庆.四川迭溪地震调查记[J].地质论评,1938,3(3).
    70.陈发虎,王苏民,李吉均,等.青藏高原若尔盖湖芯磁性地层研究[J].中国科学(B辑),1995,(07):772-777.
    71.陈发虎,王苏民.青藏高原若尔盖湖芯磁性地层研究[J].中国科学(B辑),1995,(07):772-777.
    72.陈桂华,徐锡伟,闻学泽,等.数字航空摄影测量学方法在活动构造中的应用[J].地球科学(中国地质大学学报),2006,31(3):405-410.
    73.陈洪凯,李吉均.白龙江流域第三纪古喀斯特地貌的发现及其意义[J].云南地理环境研究,1991,3(2):49-54.
    74.陈洪凯,李吉均.白龙江流域第四纪以来地貌发育基本模式研究[J].重庆交通学院学报,1997,16(1):15-20.
    75.陈洪凯,李吉均.白龙江流域古喀斯特地貌的基本特征及形成时代探讨[J].科学通报,1992,37(15):1405-1407.
    76.陈杰,陈宇坤,丁国瑜,等.2001年昆仑山口西M_S8.1地震地表同震位移分布特征[J].地震地质,2004,26(03):378-392.
    77.陈社发,邓起东,赵小麟,等.龙门山中段推覆构造带及相关构造的演化历史和变形机制[J].地震地质,1994,16(4):404-421,
    78.陈诗越,王苏民.青藏高原2.8M a来的环境演化及其对构造事件的响应[J].地质力学学报,2002,8(4):333-340.
    79.陈铁梅.第四纪测年的进展与问题[J].第四纪研究,1995,(2):182-191.
    80.陈学波等,龙门山构造带两侧地壳速度结构特征(中国大陆学部构造的研究与进展)[M].地质出版社,1988.
    81.陈云,童国榜,曹家栋,等.渭河宝鸡段河谷地貌的构造气候响应[J],地质力学学报,1999,5(4):49-56.
    82.陈智梁,沈凤,刘家平,等.青藏高原东部地壳运动的GPS测量[J].中国科学,1998,5:32-35.
    83.陈智梁,张选阳.中国西南地区地壳运动的GPS监测[J].科学通报,1999,44(8):851-854.
    84.崔之久,高全训,刘耕年,等.夷平面、古岩溶与青藏高原隆升[J].中国科学(D辑),1996,26:378-385.
    85.崔之久,高全洲,刘耕年,等.青藏高原夷平面与岩溶时代及其起始高度.科学通报,1996,41(15):1402-1406.
    86.崔之久,李德文,伍永秋,等.关于夷平面[J].科学通报,1997,43(17):1794-1805.
    87.崔之久,刘耕年,伍永秋.昆仑-黄河运动的发现及其性质[J].科学通报,1997,(18):1986-1989.
    88.崔之久,伍永秋,刘耕年,等.关于昆仑-黄河运动[J].中国科学(D辑),1998,28(1):53-59.
    89.邓起东,陈立春,冉勇康.活动构造定量研究与应用[J].地学前缘,2004,11(4):383-392.
    90.邓起东,陈社发,赵小麟.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,1994,16(4):389-403.
    91.邓起东,冉永康,杨晓平,等.中国活动构造图[M].北京:地震出版社,2007.
    92.邓起东.中国活动构造研究[J].地质论评,1996,42(4):295-299.
    93.邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,48(2):168-177.
    94.邓万明.青藏高原新生代岩浆活动与岩石圈演化.藏高原形成演化、环境变迁与生态系统研究学术论文年刊[M],北京:科学出版社,1994:288295.
    95.丁国瑜,田勤俭,孔凡臣,等.活断层分段原则、方法及应用[M].北京:地震出版社,1993.
    96.丁国瑜.新构造研究的几点回顾[J].地质论评,2004,50(3):252-255.
    97.丁国瑜.有关活断层分段的一些问题[J].中国地震,1992,8(2):1-10.
    98.杜方,闻学泽,张培震,等.2008汶川地震前横跨龙门山断裂带的震间形变[J].地球物理学报,2009,52(11):2729-2738.
    99.方小敏,李吉均,Rob Van der Voo,西秦岭黄土的形成时代与物源区关系探讨[J].科学通报,1999,44(7):779-782
    100.方小敏,吕连清,杨胜利,等.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学,2001,31(3):177-184
    101.冯金良,崔之久,朱立平.等.夷平面研究评述[J].山地学报,2005,23(1):1-13.
    102.付俊东,任金卫,张军龙,等.东昆仑断裂东段塔藏断裂晚第四纪古地震研究[J].第四纪研究,2012,32(3):473-483.
    103.高锐,马永生,李秋生,等.松潘地块与西秦岭造山带下地壳的性质和关系[J].地质通报.2006,25(12):1362-1367.
    104.高锐,王海燕,马永生,等.松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系--深地震反射剖面探测成果[J].地球学报,2006,27(S):411-418.
    105.高旭.若尔盖中间地块地质构造特征及其新生代隆升的研究[D].2007,
    106.宫会玲,冉勇康,陈立春.基于DEM的阶地分析方法-以安宁河断裂紫马跨地区为例[J].地震地质,2008,30(1):339-348.
    107.顾功叙.中国地震目录[M].北京:科学出版社,1983,1-894.
    108.郭勇岭.川西北地区灌县至若尔盖间构造分区之初步意见[J].地质论评,1963,21(01):6-11.
    109.国家地震局震害防御司.中国历史强震目录(公元前23世纪—公元1911年)[M].北京:地震出版社,1995,1-514.
    110.韩恒悦,黄亦斌.用考古学方法讨论为何断陷带现在构造活动[J].地震,1994,(4):74-77.
    111.韩慕康.中国夷平面研究的新进展[J].地理学报,2001,56(6):741-742.
    112.何文贵,熊振,袁道阳,等.东昆仑断裂带东段玛曲断裂古地震初步研究[J].中国地震,2006,22(2):126-134.
    113.何文贵,袁道阳,熊振,等.东昆仑断裂带东段玛曲断裂新活动特征及全新世滑动速率研究[J].地震,2006,26(4):67-75.
    114.胡小猛,杨景春.临汾盆地中更新世中晚期以来的演化历史及成因分析[J].上海师范大学学报(自然科学版),2001,30(3):72-76
    115.胡旭伟,王昌翰.利用SPOT-5卫星遥感影像更新1:10000地形图初探[J].测绘与空间地理信息,2007,30(3):82-85.
    116.计凤桔,郑荣章,李建平,等.滇东、滇西地区主要河流低阶地地貌面的年代学研究[J].地震地质,2000,22(3):265-276.
    117.贾秀鹏,焦伟利,李丹.基于SPOT5异轨立体像对提取DEM试验与精度评估[J].测绘信息与工程,2006,31(2):32-34.
    118.李保俊,杨景春.根据砾石风化圈厚度估算地貌年龄[J].地理研究,1996,15(1):11-21.
    119.李陈侠,徐锡伟,闻学泽,等.东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J].中国科学D辑:地球科学,2011,41(9):1295-1310.
    120.李陈侠.东昆仑断裂带东段(玛沁—玛曲)晚第四纪长期滑动习性研究[D].博士学位论文.北京:中国地震局地质研究所,2009,1-10
    121.李春峰,贺群禄,赵国光.东昆仑活动断裂带东段全新世滑动速率研究[J].地震地质,2004,26(4):676-687.
    122.李海龙,张岳桥,李建华.青藏高原东缘南北向河流系统及其伴生古堰塞湖研究[J].第四纪研究,2010,30(4):812-824.
    123.李汉鼎,冷雪天,白艳,等.泥炭的C年代研究[A].见:“第四纪冰川与第四纪地质论文集”编委会编,第四纪冰川与第四纪地质论文集.北京:地质出版社,1990,6-76.
    124.李汉鼎,冷雪天,白艳,等.泥炭样品C年龄可靠性初步研究[J].海洋地质与第四纪地质,l992,12(2):89-97.
    125.李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆升[J].中国科学(D辑),1996,26(4):316-322.
    126.李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391.
    127.李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43(15):1569-1574.
    128.李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学(B),1979,(6):89-95.
    129.李吉均.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,1999,19(1):1-11.
    130.李世杰,施雅风,王苏民.若尔盖盆地3万年来气候与环境变化的地质记录[A].见:青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究[C].北京:科学出版社,1990,227-235.
    131.李廷栋.青藏高原隆升的过程和机制[[J].地球学报,1995,(1):1-9.
    132.李渭娟,梁桂培,姚政生.龙门山及其邻区地球物理场与地震的关系[J].华南地震,1995,(2):34-41
    133.李勇,曹叔尤,周荣军,等.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J].地质学报,2005,79(1):28-37.
    134.李勇,徐公达,周荣军,等.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].地质通报,2005,24(12):1162-1168,2005.
    135.李勇,周荣军.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006,1-90.
    136.梁文天.秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程[D].西北大学博士论文,2009,1-190.
    137.林茂炳,吴山.龙门山推覆构造变形特征[J].成都地质学院学报,1991,18(1):46-55.
    138.刘光勋.东昆仑活动断裂带及其强震活动[J].中国地震,1996,12(02):119-126
    139.刘小凤,刘百箎.应用“构造—气候旋回”年代学方法确定河流阶地形成时代的初步研究[J].西北地震学报,2002,23(4):395-403
    140.刘兴诗.四川盆地的第四系[M].成都:四川科学技术出版社,1983,25-32.
    141.刘勇,赵志军,李才林,等.川西高原杂谷脑河阶地的形成[J].地理学报,2006,61(3):249-254.
    142.鹿化煜,安芷生,王晓勇,等.最近14M a青藏高原东北缘阶段性隆升的地貌证据[J].中国科学(D辑),2004,34(9):855-864.
    143.罗来兴,杨逸畴.川西滇北地貌形成的探讨[C].地理集刊,1963,(5):1-57.
    144.马保起,苏刚,侯治华,等.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,2005,27(2):234-242.
    145.马杏垣主编.中国岩石圈去和学图集[M].中国地图出版社,1989.
    146.马寅生,施炜,张岳桥,等.东昆仑活动断裂带玛曲段活动特征及其东延[J].地质通报,2005,24(1):30-36.
    147.马宗晋,陈鑫连,叶叔华,等.中国大陆区现今地壳运动的GPS研究[J].科学通报,2001,46(13):1118-1120.
    148.潘保田.贵德盆地地貌演化与黄河上游发育[J].干旱区地理,1994,17(3):43-50.
    149.潘保田,李吉均,朱俊杰.黄河中游阶地与构造—气候旋回[C].见:地貌环境发展,北京:中国环境科学出版社,1995,26-30.
    150.潘保田,李吉均,曹继秀,等.化隆盆地地貌演化与黄河发育研究[J].山地研究,1996,14(3):153-158
    151.潘保田,邬光剑,王义祥,等.祁连山东段沙沟阶地的年代与成因[J].科学通报,2000,45(24):2669-2675
    152.潘保田,高红山,李吉均.关于夷平面的科学问题—兼论青藏高原夷平面[J].地理科学,2002,22(5):520-526.
    153.潘保田,高红山,李炳元,等.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,24(1):50-57.
    154.潘桂棠,王立全,李兴振,等.青藏高原区域构造格局及其多岛弧盆系的空间配置[J].沉积与特提斯地质,2001,(03):1-26.
    155.裴先治.勉略—阿尼玛卿构造带的形成演化与动力学特征[D].西安:西北大学博士论文,2001.
    156.钱洪,马声浩,龚宇.关于岷江断裂若干问题的讨论[J].中国地震,1995,2(2):140-146.
    157.钱洪,周荣军,马声浩,等.岷江断裂南段与1993年叠溪地震研究[J].中国地震,1999,15(4):333-338.
    158.青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带[M].北京:地震出版社,1999,1-186.
    159.任金卫,汪一鹏,吴章明,等.青藏高原北部库玛断裂东、西大滩段全新世地震形变带及其位移特征和水平滑动速率[J].地震地质,1993,15(3):285-288
    160.任金卫,王敏.GPS观测的2001年昆仑山口西M_S8.1级地震地壳变形[J].第四纪研究,2005,25(1):34-44
    161.申重阳,李辉,孙少安,等.重力场动态变化与汶川Ms8.0地震孕育过程[J].地球物理学报,2009,52(10):2547-2557.
    162.申重阳,王琪,吴云,等.川滇菱形块体主要边界运动模型的GPS数据反演分析[J].地球物理学报,2002,45(3):352-361.
    163.沈才明,唐领余,等.若尔盖盆地RM孔孢粉记录及其年代序列[J].科学通报.2005,(03):246-254.
    164.沈玉昌.河流地貌学概述[M].北京:科学出版社,1986,61-63.
    165.盛海洋,王飞跃.黄河上游若尔盖盆地的构造特征及其演化[J].人民黄河,2008,30(7):9-11.
    166.盛海洋,王飞跃.青藏高原东北缘若尔盖盆地晚新近纪地层的多重划分与对比[J].地质科学(01),2009,44(1):281-313.
    167.盛海洋,翟秋敏,郭志永等.四川省黄河流域第四纪地层研究.人民黄河[J].2007,12:3-5.
    168.盛海洋.青藏高原东北缘若尔盖盆地晚新近纪沉积的岩石地层学[J].地质科学(03),2008,43(3):445-472
    169.盛海洋.青藏高原东北缘若尔盖盆地晚新近纪地质及其环境演化[D].成都理工大学,2007.
    170.施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-21.
    171.施雅风,刘东生.希夏邦马峰地区科学考察报告[J].科学通报,1964,(10):928-938.
    172.施雅风,郑本兴,李世杰,等.青藏高原中东部最大冰期时代高度与气候环境探讨[J].冰川冻土,1995.17(2):97-ll2.
    173.四川省地质局第二区测队.中华人民共和国区域地质调查报告(1:20万松潘幅区域地质调查报告)[R].成都:四川省地质局,1975,1-170.
    174.四川省地质局第二区测队.中华人民共和国区域地质调查报告(1:20万漳腊幅区域地质调查报告)[R].成都:四川省地质局,1978,1-9.
    175.四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991,306-455.
    176.四川省地质矿产局地质科学研究所,川西北地质大队.四川省若尔盖高原泥炭区泥炭资源远景地质调查报告[R].1987.
    177.四川省地质矿产局区域地质调查队.中华人民共和图区域地质调查报告(1:20万松潘若尔盖幅、红原幅、阿坝幅和龙日坝幅区域地质调查报告).1984.
    178.四川省地质矿产局物探队.四川省1:50万布格重力异常图[R].1985.
    179.宋鸿彪,刘树根.龙门山中北段重磁场特征与深部构造的关系[J].成都地质学院学报,1991,(01);74-82.
    180.宋鸿彪.龙门山造山带地质和地球物理资料的综合解释[J].成都理工学院学报,1994,(2),79-88.
    181.孙广友,罗新正,Turner R E.青藏东北部若尔盖高原全新世泥炭沉积年代学研究[J].沉积学报,2001,19(2):177-181+206.
    182.孙广友,张文芬.若尔盖高原黄河古河道及其古地理意义[J].地理科学,1987,7(3):266-272.
    183.汤军,赵鹏大,陈建平,等.龙门山碧口断块的形成及其空间归位研究[J].中国地质,2002,29(3):286-290..
    184.唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地震出版社,1993:1-65.
    185.唐荣昌,文德华,黄祖智,等.松潘-龙门山地区主要活动断裂带第四纪活动特征[J].中国地震,1991,7(3):64-71.
    186.唐文清,刘宇平,陈智梁,等.岷山隆起边界断裂构造活动初步研究[J].沉积与特提斯地质,2004,24(4):31-34.
    187.田代沂.若尔盖高原边缘地区的黄土观察[J].地质论评,1966,24(01):68-70.
    188.田玉刚,史培军,刘婧.用“3S”技术在低湿地区域提取高精度水灾信息-若干问题讨论[J].自然灾害学报,2005,14(6):147-152.
    189.汪啸风,马太铨,蒋太海主编.海南岛地质(三)构造地质[M].北京:地质出版社,l991,1-36.
    190.汪一鹏.青藏高原活动构造基本特征[A].活动断裂研究(6)[C].北京:地震出版社,1998,135-144.
    191.王椿镛,韩渭宾,吴建平,等.松潘—甘孜造山带地壳速度结构[J].地震学报,2003,(03):229-241+342.
    192.王富葆,韩辉友,阎革,等.青藏高原东北部30ka以来的古植被与古气候演变序列[J].中国科学(D辑),1996,26(02):111-117.
    193.王富葆,阎革,林本海.若尔盖高原泥炭δ~(13)C的初步研究[J].科学通报,1993,(01);65-67.
    194.王广杰,何政伟,仇文侠,等.ASTER立体像对提取玛尔挡坝区DEM及精度评价[J].测绘科学,2009,34(3):94-96.
    195.王海燕,高锐,马永生,等.若尔盖与西秦岭地震反射岩石圈结构和盆山耦[J].地球物理学报,2007,50(2):472-481.
    196.王红平,刘修国,罗红霞,等.基于RPC模型的IRS-P5影像正射校正[J].地球科学(中国地质大学学报),2010,35(3):485-489.
    197.王兰生,王小群,许向宁,等.岷江上游近两万年前发生了什么事件[J].地学前缘,2007,14(4):189-196
    198.王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘,2002,9(2):415-429.
    199.王书兵,李毅,夏雄刚,等.四川茂县较场湖相沉积磁性地层初步研究[J].地质力学学报,2006,12(4):416-423.
    200.王苏民,王云飞,吉磊,等.若尔盖盆地湖泊深钻岩心记录[A].广州:广东科技出版社,1998,161-209.
    201.王苏民,薛滨.中更新世以来若尔盖盆地环境演化与黄土高原比较研究[J].中国科学(D辑),1996,(04):323-328.
    202.王小亚,朱文耀,符养,等.GPS监测的中国及其周边现时地壳形变[J].地球物理学报,2002,45(2):198-209.
    203.王晓湘.差分GPS定位精度研究[J].北京邮电大学学报,1999,22(4):25-29.
    204.王燕,赵志中,乔彦松,等.川北若尔盖高原红原泥炭剖面孢粉记录的晚冰期以来古气候古环境的演变[J].地质通报2006,(07):827-832.
    205.王云飞,王苏民,薛滨,等.黄河袭夺若尔盖古湖时代的沉积学依据[J].科学通报,1995,(08):723-725.
    206.王赞军,夏玉胜,涂德龙,等.青海湟水盆地地壳稳定性的动力学基础[J].高原地震,1997,9(3):27-32.
    207.王宗秀,许志琴,杨天南.松潘一甘孜滑脱型山链变形构造演化模式[J].地质科学,1997,32(3):327-336.
    208.闻学泽,杜方,张培震,等.巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震[J].地球物理学报,2011,54(3):706-716.
    209.吴忱,马永红,张秀清,等.华北山地地形面地文期与地貌发育史[M].石家庄:河北科学技术出版社.1999.l-285.
    210.吴忱.地貌面、地文期与地貌演化—从华北地貌演化研究看地貌学的一些基本理论[J].地理与地理信息科学,2008,24(3):75-78.
    211.吴敬禄,王苏民,潘红玺,等.青藏高原东部RM孔140ka以来湖泊碳酸盐同位素记录的古气候特征[J].中国科学(D辑),1997,(03):255-259.
    212.吴敬禄,王苏民.青藏高原东部RM孔碳酸盐氧同位素揭示的末次间冰期气候特征[J].科学通报,1996,41(17):1601-1604.
    213.吴锡浩,蒋复初,王苏民.关于黄河贯通三门峡东流人海问题[J].第四纪研究,1998,18(1):188-l92.
    214.吴小平,胡建中.岷江源地区新构造运动特征[J].现代地质,2009,23(3):430-439.
    215.伍鑫.SPOT5高分辨率立体像对几何处理[J].测绘与空间地理信息,2008,31(4):95-99.
    216.肖序常,李廷栋.青藏高原的构造演化与隆升机制.广东:广东科技出版社,2000
    217.肖振敏,刘光勋,王焕贞,等.青海花石峡地震形变带的初步研究[J].中国地震,1988,4(1):68-75.
    218.谢世杰.GPS后处理动态法[J].地矿测绘,2004,20(4):45.
    219.邢成起,丁国瑜,卢演俦,等.黄河中游河流阶地的对比及阶地系列形成中构造作用的多层次性分析[J].中国地震,2001,17(2):157-201.
    220.邢成起,尹功明,丁国瑜,等.黄河黑山峡阶地的砾石Ca膜厚度与粗碎屑沉积地貌面形成年代的测定[J],科学通报,2002,47(3):167-172.
    221.邢成起.青藏高原东北隅弧束区的地貌面与新构造演化[D].中国地震局地质研究所,2006.
    222.熊尚发,丁仲礼,刘东生.北京地区河流阶地的发育时代[C].见:中国第四纪地质与环境,北京:海洋出版社,1997,221-227.
    223.徐杰,马宗晋,陈国光,等.根据周围山地第四纪地貌特征估计渤海第四纪构造活动幕的发生时间[J].第四纪研究,2005,25(6):700-710.
    224.徐茂其.川西北若尔盖高原第四纪环境演变概要[J].西南师范大学学报(自然科学版),1988,(4):94-100.
    225.徐锡伟,Tapponnier P,Woerd J V D,等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学D辑:地球科学,2003,33(10):967-974+1024-1027.
    226.徐锡伟,陈文彬,于贵华,等.2001年11月14日昆仑山库赛湖地震(M_S8.1)地表破裂带的基本特征[J].地震地质,2002,24(1):1-13+133-136.
    227.徐锡伟,闻学泽,陈桂华,等.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J].中国科学D辑:地球科学,2008,38(5):529-542.
    228.徐锡伟,闻学泽,叶建青,等.汶川M s8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.
    229.徐锡伟,于贵华,马文涛,等.昆仑山地震(M_w7.8)破裂行为、变形局部化特征及其构造内涵讨论[J].中国科学D辑:地球科学,2008,38(07):785-796.
    230.徐岳仁,张军龙,陈长云.DGPS和SPOT-5异轨立体像对在岷江源构造地貌研究中的应用[J].北京大学学报(自然科学版),2012,48(4):574-582.
    231.许炯心,李炳元,杨小平,等.中国地貌与第四纪研究的近今进展与未来展望[J].地理学报,2009,64(11):1375-1393.
    232.许刘兵,周尚哲.川西硕曲河流阶地及其对山地抬升和气候变化的响应[J].冰川冻土,2007,29(4):603-612.
    233.许刘兵,周尚哲.青藏高原东部牙着库河流阶地研究[J].地质学报,2008,82(2):269-280.
    234.许志琴,侯立玮,王宗秀,等.中国松潘—甘孜造山带的造山过程[M].地质出版社,1992.
    235.薛滨,王苏民,吴敬禄,等.青藏高原东北部末次间冰期以来的古气候-以若尔盖盆地RM孔分析为例[J].海洋与湖沼,1999,(03):327-332.
    236.薛滨,王苏民,吴艳宏,等.若尔盖盆地RM孔揭示的过去14万年古环境[J].湖泊科学,1999,(03):206-212.
    237.薛滨,王苏民,夏威岚,等.若尔盖RM孔揭示的青藏高原900kaBP以来的隆升与环境变化[J].中国科学(D辑),1997,(06):543-547.
    238.严钦尚,曾昭旋,地貌学[M].北京:高等教育出版社,1985.5-21.
    239.杨达源,吴胜光,王云飞.黄河上游的阶地与水系变迁[J].地理科学,1996,16(2):137-143.
    240.杨景春,邓天岗,王元海,等.岷江上游地区第四纪构造应力状态及其与地震的关系[J].地震地质,1979,1(3):68-75.
    241.杨景春,李有利.地貌学原理[M].北京:北京大学出版社,2001.
    242.杨景春.地貌学教程[M].北京:高等教育出版社,1985,1-242.
    243.杨农,张岳桥,孟辉,等.川西高原岷江上游河流阶地初步研究[J].地质力学学报,2003,9(4):363-371
    244.杨文光,朱利东,郑洪波,等.岷江上游第四纪叠溪古堰塞湖的演化[J].地质通报,2008,27(5):605-610.
    245.杨逸畴,李炳元,王富葆,等.西藏地貌[M].北京:科学出版社,1983.
    246.杨永平,兰孝奇,夏开旺,等.GPS相位平滑伪距差分定位技术的试验研究[J].工程勘察,2006,2:52-56,45.
    247.曾永年,马海洲,李珍,等.西宁地区湟水阶地的形成与发育研究[J].地理科学,1995,15(3):253-258.
    248.张国伟,郭安林,姚安平.中国大陆构造中的西秦岭--松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    249.张国伟,孟庆仁,刘少峰,等.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    250.张会平,杨农,刘少峰,等.数字高程模型(DEM)在构造地貌研究中的应用新进展[J].地质通报,2006,25(6):660-669.
    251.张会平,杨农,张岳桥,等.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006,26(1):126-135.
    252.张军龙,陈长云,胡朝忠,等.玉树M_S7.1地震地表破裂带及其同震位移分布[J].地震,2010,30(3):1-12.
    253.张军龙,任金卫,付俊东,等.东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义[J].地震,2012,32(1):1-16.
    254.张军龙,申旭辉,徐岳仁,等.汶川8级大地震的地表破裂特征及分段[J].地震,2009,29(1):149-154.
    255.张军龙,田勤俭,李峰,等.海南岛北西部新构造特征及其演化研究[J].地震,2008,28(3):85-94.
    256.张军龙,田勤俭,李智敏,等.差分gps方法在城市活断层探测中的应用探讨[J].地震,2007,27(3):74-82.
    257.张军龙,田勤俭,李智敏,等.西宁盆地浅层滑脱面与地震关系探讨[J].地震,2008,28(1).
    258.张军龙,田勤俭,张小龙,等.DGPS方法在新构造研究中的应用探讨[J].地学前缘,2008,15(4):290-297.
    259.张军龙.汶川M_s8级地震形成的擦痕形迹及其意义探讨[J].地学前缘,2009,16(3):294-305.
    260.张力,张继贤,陈向阳,等.基于有理多项式模型RFM的稀少控制SPOT-5卫星影像区域网平差[J].测绘学报,2009,38(4):302-310.
    261.张培震,邓起东,张国民,等.中国大陆强震活动与活动地块[J].中国科学,2003b,33(增刊):12-20.
    262.张培震,王敏,甘卫军,等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003a,10(suppl):81-92.
    263.张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场[J].地学前缘,2002,9(2):442-450.
    264.张培震,闻学泽,徐锡伟,等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J].科学通报,2009,54(7):944-953.
    265.张培震,徐锡伟,闻学泽,等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(04):1066-1073.
    266.张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学D辑:2008,38(9):1041~1056.
    267.张平中,王先彬,陈践发,等.青藏高原若尔盖盆地RH孔沉积有机质的δ~(13)C值和氢指数记录[J].中国科学(B辑),1995,(06):631-638.
    268.张婷,刘军,骆慧琴.1:1万DEM的生成及SPOT-5卫星数据正射校正[J],遥感技术与应用,2004,19(5):420-423.
    269.张信宝,吴积善,汪阳春,等.川西北高原的地貌垂直地带性与寒冻夷平面[J].山地学报,2006,24(5):607-611.
    270.张岳桥,杨农,陈文,等.中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究[J].地学前缘,2003,10(4):599-612.
    271.张岳桥,杨农,孟晖.岷江上游深切河谷及其对川西高原隆升的响应[J].成都理工大学学报(自然科学版),2005,32(4):331-338.
    272.赵国光.青藏高原北部的第四纪断层运动[J].中国地震,1996,12(2):109–118.
    273.赵小麟,邓起东,陈社发.龙门山断裂带中段的构造地貌学研究[J].地震地质,1994,16(4):422-428.
    274.赵小麟,邓起东,陈社发.岷山隆起的构造地貌学研究[J].地震地质,1994,16(4):429-439.
    275.赵亚博,刘林静,王赛昕,等.龙门山及其邻区航磁与卫星磁测资料处理解释[J].工程地球物理学报,2011,(5):560-565.
    276.赵志军,史正涛,方小敏.祁连山北缘早中更新世新构造运动的地层记录[J].兰州大学学报(自然科学版),2001,37(6):92-98
    277.赵珠,范军,郑斯华,等.龙门山断裂带地壳速度结构和震源位置的精确修定[J].地震学报,1997,(06):58-65.
    278.郑本兴.青藏高原隆起的时代、幅度和形式问题[M].北京:科学出版社,1981,52-63.
    279.郑国忠.论SA对GPS测量的影响及其对策[J].测绘科技通讯,1992,15(1):15-21.
    280.郑荣章,徐锡伟,马文涛,等.阿尔金断裂带西段莫勒切河河口阶地的构造及气候意义[J].地震地质,2011,33(2):323-335.
    281.郑荣章,徐锡伟,王峰,等.阿尔金北缘断裂雁丹图-长草沟河流阶地与构造抬升[J].地震地质,2004,26(2):189-198.
    282.中国地震局震害防御司.中国近代地震目录(公元前1912—公元1990年,Ms≥4.7)[M].北京:中国科学技术出版社,1999,1-637.
    283.周满贵.论差分GPS(DGPS)方法[J].地矿测绘,1999,3:15-17.
    284.周荣军,李勇,Densmore A L,等.青藏高原东缘活动构造[J].矿物岩石.2006.26(2):40-51.
    285.周荣军,蒲晓虹,何玉林,等.四川岷江断裂北段的新活动、岷山断块的隆起及其与地震活动的关系[J].地震地质,2000,22(3):285-294
    286.周卫建,卢雪峰,武振坤,等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年[J].科学通报,2001(12):1040-1044.
    287.周忠谟,易杰军,周琪,等.GPS卫星测量原理与应用[M].北京:测绘出版社,1997.
    288.朱允铸,李争艳,吴必豪.从新构造运动看察尔汗盐湖的形成[J].地质学报,1990,64(1):13-21.
    289.朱照宇,黄河中游河流阶地的形成与水系演化[J].地理学报,1989,44(4):429-440.
    290.宗冠福,徐钦琦,陈万勇.阿坝藏族自治州若尔盖晚更新世地层及哺乳类化石[J].古脊椎动物学报,1985,23(2):161-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700