用户名: 密码: 验证码:
乙酰化促进丙酮酸激酶M2通过自噬降解积累中间代谢产物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的乙酰化作为一种关键的翻译后修饰而被广泛的研究,但是此前的大量研究都集中在组蛋白和核内转录因子的乙酰化修饰上面,我们运用质谱的方法,以前列腺组织的细胞质组分为样品,鉴定了组织水平的乙酰化蛋白质组,发现了很多被乙酰化修饰的蛋白,包括很多代谢通路中的酶,这些主要的代谢通路包括糖酵解通路,糖异生通路,三羧酸循环通路,脂肪酸代谢通路。
     为了进一步确定乙酰化修饰对代谢酶的调控作用,我们选取了糖酵解中跟肿瘤生长密切相关的一个丙酮酸激酶的剪接体(PKM2)进行了深入研究。丙酮酸激酶是糖酵解的三个关键调节酶之一,催化糖酵解的最后一步反应,将磷酸烯醇式丙酮酸(PEP)和二磷酸腺苷(ADP)生成丙酮酸和三磷酸腺苷(ATP)。丙酮酸激酶有四个剪接体:PKL, PKR, PKM1和PKM2。这些剪接体只在特定的组织中表达,其中PKL在肝脏中表达,PKR在红细胞中表达,PKM1在正常成人组织中表达,而PKM2在胚胎组织和肿瘤组织中表达。
     我们通过实验确定了PKM2确实受到乙酰化的调控,确定了其中两个重要的乙酰化位点:赖氨酸305位和赖氨酸433位(正在进一步研究中),证明了K305位点的乙酰化可导致PKM2通过分子伴侣介导的自噬途径(CMA)降解,并且找到了K305位点的乙酰化酶pCAF和去乙酰化酶Sirt1。进一步的研究发现,并且该位点的乙酰化受细胞内葡萄糖浓度的调节,高葡萄糖浓度可促进PKM2的K305位点乙酰化,再通过CMA降解。通过PKM2的降解可积累糖酵解途径的中间产物和NADPH,用于细胞的合成代谢,从而促进肿瘤细胞的生长。
     本论文首次报导了乙酰化对分子伴侣介导的自噬降解的促进作用,造成糖酵解代谢中间产物和NADPH的积累,用于肿瘤细胞的生物合成,从而促进肿瘤生长。本论文的工作揭示了造成Warburg效应的分子机制,而且为肿瘤治疗提供了一个潜在的药物靶点。
As a key posttranslational modification, protein acetylation was studied comprehensively, but the majority of acetylation studies have been focused on histones and nuclear transcription regulators. We use tandem liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS) to analyse the affinity-purified acetylated peptides from cytoplasmic fraction of human prostate tissues and found that many acetylated proteins including metabolism enzymes in glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle and fatty acid metabolism.
     We selected Pyruvate kinase M2 (PKM2) which is important for tumor cell growth to elucidate the acetylation how to regulate metabolic enzymes'function. Pyruvate kinase is one of the three key regulators of glycolysis pathway, catalyzes the last step, changing phosphoenolpyruvate and ADP to pyruvate and ATP. Pyruvate kinase has four isoforms:PKL, PKR, PKM1 and PKM2 which are expressed in a tissue-specific manner. L-type is mostly present in liver; R-type is found exclusively in erythrocytes; Ml-type is mostly in normal adult tissue while M2-type is found in embryo and tumor tissue.
     We identified that PKM2 is acetylated on lysine residues, including K305 and K433 (which is undering characterization). We have demonstrated acetylation at K305 promotes PKM2 degradation through chaperone mediated autophagy (CMA). We also defined the acetyltransferase (pCAF) and deacetylase (Sirtl) are responsible for K305 acetylation and deactylation respectively. Further more, we found that K305 acetylation is upregulated by high concentration of glucose in cells, resulting in accumulation of the intermediate metabolites as well as NADPH, which are essential material for growing tumor cells to build up tumor mass.
     In the thesis, we have demonstrated that PKM2 acetylation promotes CMA for the first time, leads to accumulation of the intermediate metabolites as well as NADPH which may consequently promotes cancer development. This work has not only shed light on the molecular mechanism underlying Warburg effects but also is meaningful for the potential tumor therapy.
引文
[1]VENTER J C, ADAMS M D, MYERS E W, et al. The sequence of the human genome[J]. Science,2001,291(5507):1304-+.
    [2]SPANGE S, WAGNER T, HEINZEL T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels[J]. Int J Biochem Cell Biol,2009, 41(1):185-98.
    [3]GLOZAK M A, SENGUPTA N, ZHANG X H, et al. Acetylation and deacetylation of non-histone proteins[J]. Gene,2005,363(15-23).
    [4]KOUZARIDES T. Acetylation:a regulatory modification to rival phosphorylation? [J]. Embo J,2000,19(6):1176-9.
    [5]GEISS-FRIEDLANDER R, MELCHIOR F. Concepts in sumoylation:a decade on[J]. Nat Rev Mol Cell Biol,2007,8(12):947-56.
    [6]SHALIZI A, GAUDILLIERE B, YUAN Z Q, et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation[J]. Science,2006,311(5763): 1012-7.
    [7]KIRAN BATTA, CHANDRIMA DAS, SHRIKANTH GADAD, et al. Reversible acetylation of non histone role in cellular function and disease[M] [J]. Chromatin and Disease,,2007,193-212.
    [8]KRUSE J P, GU W. SnapShot:p53 posttranslational modifications[J]. Cell,2008, 133(5).
    [9]JEONG J W, BAE M K, AHN M Y, et al. Regulation and destabilization of HIF-1 alpha by ARD1-mediated acetylation[J]. Cell,2002,111(5):709-20.
    [10]YOO Y G, KONG G, LEE M O. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1 alpha protein by recruiting histone deacetylase 1 [J]. Embo J,2006,25(6):1231-41.
    [11]BILTON R, TROTTIER E, POUYSSEGUR J, et al. ARDent about acetylation and deacetylation in hypoxia signalling[J]. Trends Cell Biol,2006,16(12):616-21.
    [12]SHIMAZU T, KOMATSU Y, NAKAYAMA K I, et al. Regulation of SV40 large T-antigen stability by reversible acetylation[J]. Oncogene,2006,25(56):7391-400.
    [13]KRAMER O H, ZHU P, OSTENDORFF H P, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2[J]. Embo J,2003,22(13):3411-20.
    [14]KRAMER O H, MULLER S, REICHARDT S, et al. Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RAR alpha[J]. Faseb J,2008,22(5):1369-79.
    [15]SCROGGINS B T, ROBZYK K, WANG D X, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function[J]. Mol Cell,2007,25(1): 151-9.
    [16]GEORGE P, BALI P, ANNAVARAPU S, et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3[J]. Blood,2005,105(4):1768-76.
    [17]COSTANTINI C, KO M H, JONAS M C, et al. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1 [J]. Biochem J,2007,407(383-95.
    [18]Hyunkyung Jeong, Florian Then, et al. Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation[J]. Cell 137,60-72, April 3.
    [19]. Dice JF. Lysosomal pathways of protein degradation. Georgetown TX:Landes Bioscience,2000:108.
    [20]. Mukhopadhyay D, Riezman HR. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007; 315:201-5.
    [21]. Sandberg M, Borg LA. Intracellular degradation of insulin and crinophagy are maintained by nitric oxide and cyclo-oxygenase 2 activity in isolated pancreatic islets. Biol Cell 2006;98:307-15.
    [22]. Yorimitsu T, Klionsky DJ. Autophagy:Molecular machinery for self-eating. Cell Death Differ 2005; 12:1542-52.
    [23]. Uttenweiler A, Schwarz H, Neumann H, Mayer A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 2007; 18:166-75.
    [24]. Liu J, Brown CR, Chiang HL. Degradation of the gluconeogenic enzyme fructose-1, 6-bisphosphatase is dependent on the vacuolar ATPase. Autophagy 2005; 1:146-56.
    [25]. Nikonov AV, Kreibich G. Organization of translocon complexes in ER membranes. Biochem Soc Trans 2003; 31:1253-6.
    [26]. Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science 2006; 313:314-8.
    [27]. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 2004; 36:2435-44.
    [28]. Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 2006; 73:205-35.
    [29]. Massey A, Kiffin R, Cuervo AM. Pathophysiology of chaperone-mediated autophagy. Int J Biochem Cell Biol 2004; 36:2420-34.
    [30]. Sooparb S, Price SR, Shaoguang J, Franch HA. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 2004; 65:2135-44.
    [31]. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15:305-9.
    [32]. Dice JF, Chiang HL. Peptide signals for protein degradation within lysosomes. Biochem Soc Symp 1989; 55:45-55.
    [33]. Chiang HL, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 1988; 263:6797-805.
    [34], Gracy RW, Talent JM, Zvaigzne AI. Molecular wear and tear leads to terminal marking and the unstable isoforms of aging. J Exper Zool 1998; 282:18-27.
    [35]. Agarraberes FA, Dice JF. Protein translocation across membranes. Biochim Biophys Acta 2001; 1513:1-24.
    [36]. Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science 1996; 271:1519-26.
    [37]. Lazdunski CJ, Benedetti H. Insertion and translocation of proteins into and through membranes. FEBS Lett 1990; 268:408-14.
    [38]. Chirico WJ, Waters MG, Blobel G.70K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988; 332:805-10.
    [39]. Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 1988; 332:800-5.
    [40]. Terlecky SR, Chiang HL, Olson TS, Dice JF. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J Biol Chem 1992; 267:9202-9.
    [41]. Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246:382-5.
    [42]. Suh WC, Lu CZ, Gross CA. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem 1999; 274:30534-9.
    [43]. Hohfeld J, Minami Y, Hartl FU. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 1995; 83:589-98.
    [44]. Richter K, Buchner J. Hsp90:Twist and fold. Cell 2006; 127:251-3.
    [45]. Demand J, Luders J, Hohfeld J. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 1998; 18:2023-8.
    [46]. Terada K, Mori M. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J Biol Chem 2000; 275:24728-34.
    [47]. Luders J, Demand J, Papp O, Hohfeld J. Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone function. J Biol Chem 2000; 275:14817-23.
    [48]. Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 2001; 114:2491-9.
    [49]. Salvador N, Aguado C, Horst M, Knecht E. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 2000; 275:27447-56.
    [50]. Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997; 137:825-34.
    [51]. Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000; 275:31505-13.
    [52]. Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 1997; 272:5606-15.
    [53]. Cuervo AM, Knecht E, Terlecky SR, Dice JF. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol 1995; 269:C1200-8.
    [54]. McClellan AJ, Endres JB, Vogel JP, Palazzi D, Rose MD, Brodsky JL. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol Biol Cell 1998; 9:3533-45.
    [55]. Artigues A, Iriarte A, Martinez-Carrion M. Binding to chaperones allows import of a purified mitochondrial precursor into mitochondria. J Biol Chem 2002; 277:25047-55.
    [56]. Terada K, Ueda I, Ohtsuka K, Oda T, Ichiyama A, Mori M. The requirement of heat shock cognate 70 protein for mitochondrial import varies among precursor proteins and depends on precursor length. Mol Cell Biol 1996; 16:6103-9.
    [57]. Brodsky JL, Goeckeler J, Schekman R. BiP and Sec63p are required for both co-and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 1995; 92:9643-6.
    [58]. Terlecky SR, Dice JF. Polypeptide import and degradation by isolated lysosomes. J Biol Chem 1993; 268:23490-5.
    [59]. Cuervo AM, Gomes AV, Barnes JA, Dice JF. Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 2000; 275:33329-35.
    [60]. Cuervo AM, Hildebrand H, Bomhard EM, Dice JF. Direct lysosomal uptake of alpha 2-microglobulin contributes to chemically induced nephropathy. Kidney Int 1999; 55:529-45.
    [61]. Cuervo AM, Terlecky SR, Dice JF, Knecht E. Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J Biol Chem 1994; 269:26374-80.
    [62]. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501-3.
    [63]. Eskelinen EL, Cuervo AM, Taylor MR, Nishino I, Blum JS, Dice JF, Sandoval IV, Lippincott-Schwartz J, August JT, Saftig P. Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. Traffic 2005; 6:1058-61.
    [64]. Cuervo AM, Dice JF. Unique properties of Iamp2a compared to other Iamp2 isoforms. J Cell Sci 2000; 113:4441-50.
    [65]. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000; 406:902-6.
    [66]. Cuervo AM, Dice JF. Regulation of Iamp2a levels in the lysosomal membrane. Traffic 2000; 1:570-83
    [67]. Jadot M, Dubois F, Wattiaux-De Coninck S, Wattiaux R. Supramolecular assemblies from lysosomal matrix proteins and complex lipids. Eur J Biochem 1997; 249:862-9.
    [68]. Cuervo AM, Mann L, Bonten EJ, d'Azzo A, Dice JF. Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 2003; 22:47-59.
    [69]. Terman A, Gustafsson B, Brunk UT. Autophagy, organelles and ageing. J Pathol 2007; 211:134-43.
    [70]. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM. Degradation of alpha-synuclein by proteasome. J Biol Chem 1999; 274:33855-8.
    [71]. Lee HJ, Khoshaghideh F, Patel S, Lee SJ. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 2004; 24:1888-96.
    [72]. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004; 305:1292-5.
    [73]. Susan PP, Dunn Jr WA. Starvation-induced lysosomal degradation of aldolase B requires glutamine Ⅲin a signal sequence for chaperone-mediated transport. J Cell Physiol 2001; 187:48-58.
    [74]. Proud CG. Regulation of mammalian translation factors by nutrients. Eur J Biochem 2002; 269:5338-49.
    [75]. Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004; 15:4829-40.
    [76]. Finn PF, Dice JF. Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem 2005; 280:25864-70.
    [77]. Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation. Nutrition 2006; 22:830-44.
    [78]. Finn PF, Mesires NT, Vine M, Dice JF. Effects of small molecules on chaperone-mediated autophagy. Autophagy 2005; 1:141-5.
    [79]. Taute A, Watzig K, Simons B, Lohaus C, Meyer H, Hasilik A. Presence of detergent-resistant microdomains in lysosomal membranes. Biochem Biophys Res Commun 2002; 298:5-9.
    [80]. Chamberlain L. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 2004; 559:1-5.
    [81]. Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid microdomains:Novel regulators of chaperone-mediated autophagy. EMBO J 2006; 25:3921-33.
    [82]. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 2006; 103:5805-10.
    [83]. Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, Martinez-Vicente M, Cuervo AM. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 2007; 120:782-91.
    [84]. Warburg, O. On the origin of cancer cells. Science 123,309-314 (1956).
    [85]Mazurek, S., Boschek, C. B., Hugo, F.& Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol.15,300-308 (2005).
    [86]. Fantin, V. R., St-Pierre, J.& Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9,425—434 (2006).
    [87]. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med.10,594—601 (2004).
    [88]. Altenberg, B.& Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84,1014-1020 (2004).
    [89]. Jurica, M. S. et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6,195-210 (1998).
    [90]. Dombrauckas, J. D., Santarsiero, B. D.& Mesecar, A. D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44,9417-9429 (2005).
    [91]. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, doi:10.1038/nature06734 (2008)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700