用户名: 密码: 验证码:
强夯地基检测的瑞雷面波与神经网络技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
福建省房地产业和高速公路建设正处在蓬勃发展阶段,但由于地处山区、河流极其发育,许多建设工程都在山地、江边等高洼不平的地带建设与施工。鉴于工程项目地基设计和施工的要求,在地基处理时,有些高凸地带需要挖平、低凹地带需要大量的填土和强夯加固处理。强夯加固是填土地基的一种地基处理手段,是使地基土体密实、承载力提高的一种地基加固方法。强夯效果的好坏直接影响上部建筑结构的稳定性。因此,该建筑地基的强夯加固效果的检测就显得非常重要。
    现有的地基加固效果的检测方法主要是采用钻孔和标准贯入、动力触探和载荷试验等原位测试方法,对于大型的(或大面积的)强夯地基来说,测点相对较少,不能全面的反映地基强夯处理的效果。因此,完善与发展一种快速的勘测与资料处理分析方法成为必要。本文对瞬态瑞雷面波勘测和人工神经网络多参数非线性预测理论进行了深入探讨,研究形成了一套对强夯地基的压实度、均匀性以及强夯地基承载力检测和预估的方法。
    在深入掌握瑞雷面波理论和人工神经网络理论及其工程应用现状的基础上,系统地推导了均匀半空间介质和层状介质的瑞雷波方程和人工神经网络BP法公式,完善了瞬态瑞雷面波正反演处理软件,编制了基于人工神经网络BP法非线性处理软件。通过实际强夯地基处理工程的大量瑞雷面波资料的采集、资料的处理,以及成果的分析,对强夯地基的压实度、均匀性进行研究和系统性探讨;收集了原位测试数据,并结合瑞雷面波波速参数,开展多参数拟合和神经网络预测地基承载力的研究。本论文的创新点:(1)在瞬态瑞雷面波资料采集前,通过试验重点讨论和选择了瞬态瑞雷面波采集的激发、接收方式和观测因素等参数;(2)多参数神经网络综合预估地基的承载力。
    研究表明:瞬态瑞雷波法是一种无损、快速、经济、连续大面积的评价强夯地基加固效果检测方法,成功地克服传统勘探方法中勘测点稀疏、耗时多、耗费大的不足,并具有无损检测的优点。BP神经网络算法通过多参数的统计和多参数神经网络的学习和识别过程模拟出场地地基承载力,是一种多种试验数据综合的非线性计算方法,克服单一测试误差的影响,具备多种测试方法综合预估的效果。研究结果有助于深入认识瑞雷波特性和人工神经网络BP算法的原理,对推动瑞雷波法和BP算法在地基处理加固效果检测上的应用具有重要的理论及实际指导意义。
Nowadays the real estate and construction of highway are flourishing in Fujian Province. A lot of projects are built on a site of the mountain area or along the rivers. In order to the foundation design and construction of the project, some high protruding area are dug up, while low concave area filled with soil are treated by dynamic compaction . Dynamic compaction is a kind of foundation treatments, which can improve the bearing capacity and compactness of soil mass. The effect of the dynamic compaction directly influences the stability of the superstructure, it is important for the foundation design to test the effect of dynamic compaction.
    The detection of foundation improvement now mainly depends on drilling hole test and standard penetration test, dynamic penetration test and plate loading test. But in the large area dynamic foundation, the relatively less measure points can't totally reflect the effect of dynamic compaction. It is necessary to develop a fast way of exploration and data processing. The thesis deals with transient R-surface wave processing and artificial neural networks and develops a way of detecting and estimating the degree of compaction, uniformity, the bearing capacity of the dynamic foundation.
    R-surface wave theory and its engineering application are discussed. The R-surface wave equation and artificial neural network BP algorithm are deduced. A direct and inverse calculation processing of transient R-surface wave is improved ,an artificial neural network processing software is designed. Using mounts of R-surface wave data sampled by practical engineering of dynamic compaction. The compaction degree and uniformity of dynamic foundation are systematically discussed in the thesis. The collected data of in situ testing ,combined with R-wave velocity parameter, was used to develop the way to estimate the bearing capacity by multi-parameter and neural network. The innovation points in this thesis are: (1) Before the collection of transient R-surface wave data, selected the parameter of impulse, receive, and observation in the experiment. (2) Estimated the bearing capacity of foundation with multi-parameter.
    The results show that the R-surface wave method is non-destructive, fast detecting method, and can be used in large area dynamic foundation compaction detecting. It gets advantage of non-destructive detection, successfully handles the problems in the early exploration method, such as sparseness of measure points, high cost of money and time. BP neural network
    
    algorithm contains kinds of non-linear calculation method. It avoids the interference of single testing and acquires the effect of the combined testing data. By the statistic of multi-parameter and the recognition of multi-parameter, the treated foundation bearing capacity can be stimulated. It is helpful for us to reveal the characteristic of R-surface wave and the principle of artificial neural networks, and improve the application of R-surface wave and BP algorithm in the theory and practice.
引文
[1] 杨成林.瑞雷波勘探.北京:地质出版社,1993.
    [2] 杨成林.瑞雷波勘探方法原理及其应用.物探与化探,1989,13(6):465-468
    [3] 严寿明.瞬态瑞雷波勘探方法.物探与化探,1992,16(2):113-119
    [4] 喻明,兰从庆.获得表面波频散曲线的新方法.物探化探计算技术,1994,16(3):262-264
    [5] 肖柏勋,柴亚萍,石波.基于扩充Prony法的瞬态瑞雷面波的相速度提取。水利水电快报,1999(20):73-77
    [6] 李锦飞.TRES-I型多分量瑞雷波勘探仪器的研究及应用.物探与化探,1998,22(2):129-133
    [7] E.P.Chang.Anautomated rayleigh wave detection Algrithm,Bull.Seis.Soc.Am.
    1997,87(1):157-163
    [8] 时福荣.互相关分析计算瑞雷波传播速度的原理和方法.物探化探计算技术,1990,12(4):357-360
    [9] 包军强,张学强,刘江平,周洪秋.浅层多波的分离、识别与提取.物探与化探,1998,22(5):336-376
    [10] 朱裕林.瑞雷波勘探在工程勘察中的应用.工程勘察,1991(1):60-67
    [11] 李哲生.瞬态多道瑞雷波勘探技术在岩土工程中的应用.工程勘察,1996(3):66-68
    [12] Thomson.W.T.Transmission of elastic waves through a stratified solid medium J.Appl.phys,1950,(21):89-93
    [13] Haskell.N.A.The dispersion of surface waves on multilayered media. Bull. Seism. Soc. Am, 1953(43):17-34
    [14] L.Knopoff.A matrix method for elastic wave problem.Bull.Seis.Soc.Am, 1964(54):431-438
    [15] Dunkln.J.W.Computation of model solutions in layered elastic media at high frequencies. Bull.Seis.Soc.Am,1965(55):335-358
    [16] E.N.Thrower.The computation of elastic waves in layered media.J.Sound Vib., 1965(2):210-226
    [17] F.Schwab and L.Knopoff.Fast surface waves and free mode computations.In methods in computational physics,1972(2):87-180
    [18]F.SchwabandL.Knopoff.Surfacewavesdispersioncomputations.Bull.Seis.Soc.Am.,1970(60):321-344
    [19] Willialm Menke.Comment on "Dispersion function computations for unlimited frequency values"by Anas Abo-Zena.Geophys.J.R.Astr.Soc.,1979(59):315-323
    [20] 张恒山,王庆海.瑞雷波勘探的波长解释法新探.物探与化探,1995,19(3):178-185
    
    
    
    [21] Chang F K.Ballard R F.Rayleigh wave dispersion technique for rapid subsurface exploration.第43届国际地球物理年会,1973
    [22] 左藤长范.用GR-810激振系统进行地基勘查.日本VIC株式会社,1986
    [23] Stokoe II K H,Nazarian S.Effectiveness of ground improvement from spectral analysis of surface waves.In Proc.8th Euro.Conf.On Soil Mech and Found.Eng.,1983
    [24] 陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性.岩土工程学报,1998,20(3):6-9
    [25] 朱裕林.瑞利波勘探在工程勘察中的应用.工程勘察,1991(1):67-70
    [26] 赵竹占,李华.表面波谱分析法在评价地基处理效果中的应用.物探与化探,1994,18(5):326-330
    [27] 赵明.瑞利波法在工程勘察中的应用.勘察科学技术,1996,(5):54-57
    [28] 刘云祯,王振东.瞬态表面波法的数据采集处理系统及其应用实例.物探与化探,1996,20(1):28-33
    [29] 肖柏勋.高模式瑞雷波及其正反演研究:[博士学位论文].长沙:中南大学,2000
    [30] 孙进忠,祁生文,郭铁栓等.漳州后石电厂工程地基强夯效果的瞬态面波检测.建筑工程检测论文集.北京:冶金工业出版社,1999:153-161
    [31] 郭晶,杨章玉.MATLAB6.5辅助神经网络分析与设计.北京:电子工业出版社,2003
    [32] A.R.Simpson,S.D.Priest.The Applcation of Genetic Algorithms to Optimisation Problems in Geotechnics.Computer and Geotechnics,15,1993
    [33] Yi-cherng Yeh Yau-Hwaug Kuo,DEH-Shiu.Building KBES for Diagnosing PC Pile with Artificial Neural Network.J.of Comput.In Civil Eng.,7(1),1993
    [34] J.Ghabonss.D.E.Sidasta,P.V.Lade.Neural Networks in Civil Engineering:Principles and of Computer Methods and Advances in Geothchnics,Sirimavdane & Zaman,USA,1994
    [35] 张清,宋家蓉.利用神经元网络预测岩石或岩土工程的力学性态.岩石力学与工程学报,1992,11(1),35-43
    [36] 王建华.神经网络法预估水泥搅拌单桩沉降.土木工程学报,1996,29(1),55-61
    [37] 夏元友,李新平等.基于人工神经网络的边坡稳定性工程地质评价方法.岩土力学,1996,17(3),27-33
    [38] 袁金荣,池蔚,刘学增.深基坑墙体位移的神经网络动态预测.同济大学学报,2000,28(3)
    [39] 聂伟荣.基于改进BP网络的地震动信号目标识别.南京理工大学学报,2000,24(1)
    [40] 张晓辉等.利用模糊神经网络进行砂土液化势评判.工程地质学报,2001,9(2)
    [41] 苏怀智等.基于模糊神经网络和遗传算法的大坝安全监测.大坝监测与土工测试,2001,25(1)
    [42] 贝戈亚.人工神经网络在地震预报中的初步应用研究:[硕士学位论文].北京:北京地质大学,2001
    
    
    [43] 孙钧.城市地下工程活动的环境土工问题及其施工变形预测与控制的智能方法.21世纪的岩土力学与岩土工程,2003,
    [44] 吴世明.土介质中的波.北京:科学出版社,1997
    [45] 袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999
    [46] 李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998
    [47] 李红.手写体数字识别的研究-传统方法+神经元网络:[硕士学位论文].北京:北京大学,1990
    [48] 张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1992
    [49] 邱忠文.玻璃器皿模具号的计算机视觉识别:[硕士学位论文].南宁:广西师范大学,2000
    [50] 王伟.人工神经网络原理--入门与应用.北京:北京航空航天大学出版社,1995
    [51] 王兴泰.工程与环境物探方法新技术.北京:地质出版社,1996
    [52] 龚晓南.地基处理新技术.西安:陕西科学技术出版社,1997
    [53] 中华人民共和国建设部.GB50021-2001.中华人民共和国国家标准-岩土工程勘察规范.中国建筑工业出版社,2002-01-10
    [54] 中华人民共和国建设部.GB50007-2002.中华人民共和国国家标准-建筑地基基础设计规范.中国建筑工业出版社,2002-02-20
    [55] 揭金良.FORTRAN语言程序设计.北京:机械工业出版社,1999
    [56] 彭国伦.FORTRAN95程序设计.北京:中国电力出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700