用户名: 密码: 验证码:
潮湿状态土遗址的斥水—碳化保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土遗址是指主要由土质材料(如夯土、土坯、垛泥等)构成的遗存本体。依据土遗址所处气候类型(或800mm等降水量线)将土遗址分为北方干燥土遗址和南方潮湿土遗址2种类型。目前,对于干燥土遗址的保护研究工作相对较多,而潮湿土遗址的保护研究还处于探索阶段。潮湿土遗址处于降雨量大、地下水位浅的环境中,环境因素复杂且不可控,土遗址的消亡速度很快,迫切需要进行科学保护。
     本文针对那些虽位于北方干燥气候,但由于地下水位浅或与水相邻等原因,土遗址的自身含水量较大的现象,提出了潮湿状态土遗址的概念,并从环境结构论角度,给出了潮湿状态土遗址的“环境”物理模型和定量化分类。
     本文将土壤学中的斥水土理念引入土遗址保护,从传统材料中选取桐油和石灰作为潮湿状态土遗址的保护材料,提出了斥水-碳化相结合的保护思路。
     本文选取湿润区潮湿环境潮湿状态土遗址(南京大报恩寺遗址)为研究对象,分析了模拟地宫2009年初挖掘到2011年的破坏形态,并建立其与周围水文气候变化的关系。
     本文针对研究对象的非饱和特性、收缩病害及水稳定性要求,开展了遗址土和处理土的相关室内试验研究,包括界限含水量、土水特征曲线、非饱和渗透性、吸湿放湿性、收缩性、斥水性、浸水稳定性等,对选取材料的保护效果进行评价。
     本文建立了一维毛细吸渗模型,模拟了遗址土和3种处理土的毛细水上升特性,从上升高度,含水量分布等方面分析了处理方法对毛细水上升的阻滞特性。
     本文对比分析遗址土和处理土的微观结构,将宏观特性与微观结构相结合,对保护材料的处理机理进行了探讨。
     本文的主要研究内容和取得的研究成果包括:
     1.潮湿状态土遗址概念厘定
     土遗址所处的环境结构包括气候环境、区域环境和遗址本体环境。因此,选取潮湿系数、相对湿度和含水状态为界定参数,首先将遗址本体含水量大于20%的土遗址定义为潮湿状态土遗址土,然后依据潮湿系数和相对湿度的变化,对潮湿状态土遗址进行进一步描述,细分为湿润区潮湿环境潮湿状态土遗址、湿润区干燥环境潮湿状态土遗址、十早区潮湿环境潮湿状态土遗址、干旱区干燥环境潮湿状态土遗址。
     2.斥水-碳化理念的提出及保护材料选优选
     针对土遗址的病害,借鉴土壤学中的斥水土理念,特别是油污染引发土的斥水性方面的相关研究,提出了土遗址的斥水保护理念,并优选桐油为保护介质。于此同时,考虑桐油的防腐问题及土遗址结构稳定性,选取石灰作为另一种保护材料。选取桐油和石灰这两种传统材料为处理介质共同作用以期达到潮湿状态土遗址的斥水-碳化保护目的。
     3.遗址区的病害演变
     以模拟地宫为研究对象,分析模拟地宫开挖后(从2009年到2011年)的破坏形态、土层含水量分布变化及其所处气候环境特征,指出大气降雨及地下毛细水的上升是导致地宫失稳的关键因素。
     4.桐油和石灰处理对土遗址的吸水-失水形状的影响
     潮湿状态土遗址处于一种动态的非饱和状态,依据现场地宫土层密度分布,测定遗址土(US)、桐油处理土(TS)、石灰处理土(LS)、桐油和石灰处理土(TLS)的界限含水量、土水特征曲线特性、渗透性、收缩特性及吸湿放湿性等特性。结果如下:桐油和石灰的掺入提高了土的液限和塑限,降低了土的塑性指数;桐油处理可降低土的持水性,石灰处理土、桐油和石灰混合处理土的含水量随基质吸力的变化平缓;桐油和石灰处理降低了土的饱和渗透系数,混合处理措施,其饱和渗透系数为遗址土的0.6倍。对于非饱和渗透而言,遗址土和桐油处理土的非饱和渗透系数与含水量的关系曲线密度的增大逐渐平缓,而石灰处理土、桐油和石灰混合处理土的曲线变化随密度的增大还存在右移的趋势;桐油和石灰的处理可有效提高遗址土的吸湿放湿稳定性和收缩稳定性。
     5.斥水性和浸水稳定性研究
     为研究桐油和石灰处理土的斥水性及浸水稳定性,开展了水滴入渗试验(WDPT),酒精溶液入渗法(MED)和浸水稳定性的试验研究。遗址土具有亲水性,水滴在遗址土表面铺展并迅速渗入土中,渗入时间随密度的增大而增大。桐油和石灰处理土具有较高的斥水性,水滴在土样表面具有自聚成团,很难渗入。遗址土浸泡于水后迅速发生崩解破坏,桐油和石灰处理土样在浸水状态保持较好的完整性。采用桐油和石灰处理土遗址可提高遗址土的浸水稳定性。
     6.毛细水上升模拟研究
     建立了一维毛细吸渗模型,对遗址土(US)、桐油处理士(TS)、石灰处理土(LS)、桐油和石灰处理土(TLS)的毛细上升高度、不同高度毛细水上升的过程及含水量分布进行模拟计算,并利用改进的Washburn方程拟合回归了毛细平衡高度。结果表明桐油和石灰处理可有效减低毛细水的上升,进而减缓毛细水引发土遗址的破坏。
     7.机理分析
     结合宏观性质与微观结构,分析桐油和石灰的处理机理。桐油能在土颗粒表面均匀分散并穿入粘土颗粒的多孔表面氧化成膜,对土颗粒进行包裹。桐油氧化膜具有多孔性,在有效地阻止外界水分渗入的同时,让土颗粒内部的湿气得以散发,可避免土体因失水不均匀而引发的变形破坏。石灰的碳化及火山灰反应生成的晶体“生长”于土颗粒孔隙中,呈不规则的片状结晶成长结构,在土粒子间形成架桥结构,发挥固化强度。桐油的存在对石灰结晶具有有机调控作用,从分子水平到介观水平对碳酸钙分子尺寸、取向、晶型以及排列进行控制,形成更稳定的结构。桐油和石灰混合处理措施不仅发挥了桐油斥水性,石灰的碳化填充作用,还有效的利用了桐油的有机调控作用,石灰的杀菌作用。
     桐油和石灰混合处理不改变土遗址的原貌,可增强土遗址的收缩稳定性、浸水稳定性和结构性,并抑制毛细水的上升,满足潮湿状态土遗址的保护要求。研究成果不仅为传统材料的科学化研究提供参考,而且为潮湿状态土遗址的保护提供了一个新的思路。
Earthen monuments are composed mainly of soil (rammed earthen, adobe, mud et al.) and classified to immovable earthen heritage. Nowadays, earthen monuments are classificated into the ones in arid and in humid weather condition according to the located climate or the800mm isohyet. Studies on earthen monuments in arid weather condition have been matured, but it is still at exploring stage for earthen monuments in humid weather condition. Earthen monuments in humid weather condition are easily to extinct in that of high rainfall and shallow groundwater condition. Therefore, it is an urgent responsibility to protect scientifically these earthen monuments.
     The conception of earthen monument in moist states is firstly proposed aiming at the natural phenomena of the earthen monuments that soil body has high water content but locates in arid weather condition. Furthermore, it puts forward the "environment" physical model and quantitative classification of earthen monument in moist states in view of environment structure theory.
     Water repellency soil theroy is introduced into earthen monument protection, and materials of tung oil and lime are selected theoretically to achieve the goal of hydrophobicity and carbonation protection.
     The archeological site of Da Bao'en Temple in Nanjing, Jiangsu province, China, is chosen as the research object. The failure patterns of the simulation underground palace from unearthing are compared and the relevant around hydrology-climate change are analyzed.
     Tests of atterberg limits, soil-water characteristic curve (SWCC), unsaturated permeability, shrinkage, water absorption and dcsorption, water repellency and stability in water are carried out for unsaturated characteristic, shrinkage disease and water stability protected requirement. Furthermore, the capillary water rise characteristics of untreated and treated soil are simulated and microstructures are obtained with the help of scanning electron microscope (SEM).
     The main research contents and results are as follows:
     (1) Definition of earthen monument in moist states
     Environment structure of earthen monument includes climate environment, regional environment and underground environment, which can be characterized by damp coefficient, relative humidity (RH) and water content, respectively. Thus, earthen monument in moist states can be defined as the one has high water content. and can be further subdivided into four classfications:earthen monuments kept wet at huimd environment in humid areas, earthen monuments kept wet at humid environment but in arid areas, earthen monuments kept wet at arid environment but in humid areas, earthen monuments kept wet at arid environment in arid areas.
     (2) Selection of protected materials
     Tung oil is selected as one protected material draw lessons from water repellence of soil contaminated by oil. Meanwhile, lime is selected as the other protected material in view of antiseptic and structure stability. Hydrophobicity and carbonation protection is achieved by combining traditional material of tung oil and lime.
     (3) Diseases of earthen monument in humid states
     Diseases of the simulation underground palace from unearthing (2009~2011) are studied. Rainfall and capillary water rise are the key factors for the unstability based on the changes of water content at different soil layers and its climatic environment.
     (4) Water absorption and desorption characters of untreated and treated soil
     Change in soil water content due to rainfall, groundwater lever elevation and air humidity variation is responsible for the soil structure deterioration. Specimens of earthen soil (US), tung oil treated soil (TS), lime treated soil (LS), tung oil and lime treated soil (TLS) are prepared at five levels of dry densities to cover the density variation measured from site investigation.
     Tung oil and lime treatment, alone or compound, increase the liquid limit and plastic limit of soil and decrease the plasticity index. US specimen has higher water retention in that the composition of hydrophilic minerals, but it is reduced by tung oil treatment. SWCCs of TLS specimen are a little stepper than that of LS specimen, but the whole change is gentle, especially at higher density.
     Saturated permeability coefficient of four soil specimens decrease with increasing of density. Tung oil and lime treatment can decrease permeability, especially the combine treatment, where the saturated permeability coefficient of treated soil is0.6time as that of earthen soil. The unsaturated permeability coefficients of US and TS specimen present gradient descending shape with the increasing of density, but it present right moving tendency to LS and TLS specimens. Generally, tung oil and lime treatment improve the stability of shrinkage and water absorption and liberation, equally important, the secondary shrinkage.
     (5) Water repellency
     Water drop penetration time (WDPT), molarity of ethanol droplet (MED) and stability in water test are carried out to evaluate the water repellency in the long run. Water drop on tung oil and lime treated soil surface is different from earthen soil, where the formers tend to "balls up" into individual droplets and hardly infiltrate the interior and the latter spreads out and infiltrates quickly in10s. Earthen soil specimen disintegrate completely as soon as being immersed into water, Whereas, other three soil specimens can keep the original shapes, especially the TLS specimens, which are kept well the original shapes even after being immersed in water seven-days. Reduction in water absorption makes water menisci ineffective, and then prevents the destruction of soil. Therefore, decrease of wettability plays an important role on the water stability of soil.
     (6) Capillary water rise simulation
     One-dimension mathematical modeling of capillary rise is built to studies the capillary height, rise process and water distribution at different soil lays for four soil specimens. Modified washburn equation is used to fit to obtain the balance height. tung oil and lime treatment has obvious retardation on capillary rise. Lime treatment is superior to water repellency in lower density, but it will be vanish gradually in higher density. Unite treatment with tung oil and lime can control well soil seepage.
     (7) Mechanism Analysis
     Tung oil film can well adapt to the contour and coated closely on soil particles. Calcium carbonate (CaCO3) formed by the carbonation reaction of lime can fill effectively the pores of soil and then improve the compactnes. As treated with both of tung oil and quicklime, there is a regulatory action on the carbonated reaction of calcium hydroxide (Ca(OH)2). Tung oil restricts the crystallization process of calcium carbonate (CaCO3), generates fine crystals, and then forms a firmer and closer structure. The interaction between tung oil and lime can be illustrated from the perspective of biomineralization, liposome changes the microenvironment of carbonated reaction by the way of enriching locally the ion of Ca2+, CO2-3and the hydrophobic chain of liposome restricts the growing of calcium carbonate(CaCO3).
引文
[1]Salazar S D S, Marques J M. Valuing cultural heritage:the social benefits of restoring and old Arab tower [J]. Journal of Cultural Heritage,2005,6:69-77.
    [2]Avrami E, Mason R, Torre M D L. Values and heritage conservation [M]. Los Angeles: The Getty Conservation Institute,2000.
    [3]Torre M D L. Assessing the values of cultural heritage [M]. Los Angeles:The Getty Conservation Institute,2002.
    [4]《世界遗产名录》,2011年6月第35届世界遗产委员会大会。
    [5]《国家文物保护科学和技术发展“十二五”规划(2011-2015年)》.国家文物局,2011.
    [6]Moropoulou A, Bakolas A, Anagnostopoulou S, Composite materials in ancient structures [J]. Cement and Concrete Composites,2005,27:295-300.
    [7]Doat P, Hays A, Houben H, Matuk S, Vitoux F. Buliding with earthen [M]. Counsellor for Cultural, Scientific and Technical Cooperation, Embassy of France, New Delhi, India, 1985.
    [8]Agnew N, Demas M. Principles for the conservation of heritage sites in China [M].2002, Los Angels:The Getty Conservation Institute.
    [9]Li Z. Shapes and technology of traditional Chinese architecture [M]. Shanghai:Tongji University Electronic Audio and Video Press,2006.
    [10]Croci G. General methodology for the structural restoration of historic buildings:the cases of the Tower of Pisa and the Basilica of Assisi [J]. Journal of cultural heritage,2000,1: 7-18.
    [11]Houben H, Balderrama A A, Simon S. Our earthen architectural heritage:Materials research and conservation [J]. MRS Bulletin,2004,29(5):338-341.
    [12]Koo M H, Man·Cheol S. Geotechllical and hydrogrologocal approaches towards conservation of the Muryong Royal Tomb in Korea [J]. Man-Cheol Suh. Environmental Geology,2001,41(3/4):470-479.
    [13]James R Clifton, Paul W Brown, Car R Robbins. Methods for characterizing adobe building materials. NBS Technical Note 977 (Washington D.C., USDC National Bureau of Standards) 1978,12.
    [14]Edward W Smith. Adobe Bricks in New Mexico, Circular 188 (Socorro, New Mexico Bureau of Mines and Mineral Resources),1982,15,68-73.
    [15]张虎元,赵天宇,王旭东.中国古代土工建造方法[J].敦煌研究,2008,5:81-90.
    [16]Cinva. Soil cement, it use in building [M]. New York, United Nation,1964.
    [17]Erdogan T. Material Properties and Stabilization of Adobe Brick Blocks [A]. Middle East and Mediterranean Regional Conference on Earthen and Low Strength Masonry Buildings in Seismic Areas Conference Proceedings, Ankara, August 31-Septembcr 6,1986:257-263.
    [18]Liz Karen Herrera, Iletor A Videla. The importance of atmospheric effects on biodeterioration of cultural heritage constructional materials [J]. International Biodetcrioration & Biodcgradation,2004,54(2):125-134.
    [19]Akinciturk N, Kilic M. A study on the fire protection of historic Cumalikizik village [J]. Journal of Cultural Heritage,2004,5:213-219.
    [20]孙满利,李最雄,王旭东,谌文武.干旱区土遗址病害的分类研究[J].工程地质学报,2007,15(6):772-777
    [21]赵海英,李最雄,韩文峰,等.西北干旱区土遗址的主要病害及成因[J].岩石力学与工程学报,2003,22(supple 2):2875-2880.
    [22]Zhang Hu-yuan, Yan Geng-sheng, Wang Xudong. Laboratory test on moisture absorption-desorption of wall paintings at Mogao Grottoes, China [J]. J Zhejiang Univ-Sci A (Appl Phys & Eng),2012,13(3):208-218.
    [23]严耿升,张虎元,王旭东,张艳军.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究,2007,105(5):78-82.
    [24]刘佑荣,陈中行,周丽珍.中国南方大型古遗址主要环境地质病害及其防治对策研究[J].岩石力学与工程学报,2009,28(2):3795-3800.
    [25]王旭东.中国西北干早环境下石窟和土遗址保护加固研究[D].兰州:兰州大学,2003.
    [26]Delgado J. Encyclopedia of Underwater & Maritime Archaeology [M]. London,1997.
    [27]郭宏,黄槐武.文物保护中的“水害”问题[J].文物保护与考古科学,2002,14(1):56-62.
    [28]孙满利,李最雄,王旭东,王娟.交河故城的主要病害分析.敦煌研究[J],2005,93(5):92-94.
    [29]国际古迹遗址理事会中国国家委员会,《中国文物古迹保护准则》,2000.
    [30]Koo M H , Man-cheol S. Geotechnical and hydrogeological approaches towards conservation of the Muryong Royal Tomb in Korea [J]. Man-Cheol Suh. Environmental Geology,2001,41(3/4):470-479.
    [31]Mazar Amihaiin. The conservation and management of mudbrick buildings at Tell Qasile [J], Conservation and management of archaeological sites,1999,3(1,2):103-108.
    [32]Chiari G. Chemical surface treatments and capping technique of earthen structures:a long-term evaluation [A]. In:6th International Conference on the Conservation of Earthen Architecture, Las Cruces, New Mexico, U.S.A,1990,14-16:267-273.
    [33]Degirmenci N, Baradan B. Chemical resistance of pozzolanic plaster for earthen walls [J]. Construction and Building Materials,2005,19:536-542.
    [34]Elert K, Sebastian E, Valverde I, et al. Alkaline treatment of clay minerals from the alhambra formation:implications for the conservation of earthen architecture [J]. Applied Clay Science,2008,39:122-132.
    [35]周双林.土遗址防风化保护概况[J].中原文物,2003,6:78-83.
    [36]周双林.文物保护用有机高分子材料及要求[J].四川文物.2003,3:94-100.
    [37]Fatma M Helmi. Deterioration and conservation of some mud brick in Egypt [J]. In:6th International Conference on the Conservation of Earthen Architecture, Las Cruees, New Mexico, U.S.A,1990,277:14-16.
    [38]Philip Kirkitsos, Denis Sikiotis. Deterioration of pentelic marble, portland limestone and baumberger sandstone in laboratory exposures to gaseous nitric acid [J]. Atmospheric environment,1995,29(1):77-86.
    [39]Giacomo Chiari. Chemical treatment sand capping techniques of earthen structures: along-term evaluation [J]. In:6th International Confcrencce on the Conservation of Earthen Architecture, Las Cruces, NewMexico, U.S.A,1990,14-16:267-270.
    [40]Chiari G, Rigoni M J. Ethy silicate treatments and humidity, Confercia internacional sobre ocstudo cconservao da arauitectura de terra (7a) silvea (Portugal),24 a 29 de Outubro, Lisboa,1993,422-425.
    [41]Charola A E, Tueci A, Koestler R J. On the reversibility of treatments with acrylie/silieone resin mixtures [J]. Journal of the American Institute for Conservation,1986.25(2):83-92.
    [42]Croei G. General methodology for the structural restoration of historic buildings:the cases of the Tower of Pisa and the Basilica of Assisi [J]. Journal of Cultural Heritage,2000,1: 7-18.
    [43]Achenza M, Fenu L. On earth stabilization with natural polymers for earth masonry construction [J]. Materials and Structures,2006,39:21-27.
    [44]Houben H, Balderrama A A, Simon S. Our earthen architectural heritage:Materials research and conservation [J]. MRS Bulletin,2004,29(5):338-341.
    [45]Li Zuixiong. Conservation of Neolithic earthen site with potassium silicate [A]. In:6th International Conference on the Conservation of Earthen Conservation of Earthen Architecture, Las Cruces, New Mexico, U.S.A,1990,14-16:295-301.
    [46]周双林,原思训.有机硅改性丙烯酸树脂非水分散体的制备及在土遗址保护中的试用[J].文物保护与考古科学,2004,16(4):50-52
    [47]杨予川.应用PS材料对三门峡国墓地车马坑的加固保护[J].敦煌研究,1997,3:177-181.
    [48]李最雄,王旭东,田淋.交河古城土建筑遗址的加固实验[J].敦煌研究,1997(3):171-180.
    [49]周双林,王雪莹,胡原,等.辽宁牛河梁红山文化遗址土体加固保护材料的筛选[J].岩土工程学报,2005,27(5):567-570.
    [50]李最雄,王旭东,郝利民.室内土建筑遗址的加固试验—半坡上建筑遗址的加固试验[J].敦煌研究,1998,4:144-150.
    [51]侯卫东,王伟.唐大明宫含元殿遗址保护工程[J].文博,2005,4:52-53.
    [52]杨予川.应用PS材料对三门峡墓地车马坑的加固保护[J].敦煌研究,1997,3:177-181.
    [53]工旭东,张鲁,李最雄,等.银川西夏3号陵墓的现状及保护加固研究[J].敦煌研究,2002,4:64-74.
    [54]赵海英,王旭东,李最雄,等.PS材料模数/浓度对西北干旱区土遗址加固效果的影响[J].岩石力学与工程学报,2006,25(3):557-562.
    [55]工银梅.西北干旱区土建筑遗址加固概述[J].工程地质学报,2003,11(2):189-192.
    [56]张宗仁,刘林学,刘致和,等.古代土遗址保护的试验[J].西北大学学报,1990,(3):43-49.
    [57]周双林,原思训,杨宪伟,等.丙烯酸非水分散体等几种上遗址防风化加固剂的效果比较[J].文物保护与考古科学,2003,(5):40-47.
    [58]Huang Kezhong, Jiang Huangying, Cai Run, Feng Lijuan. The weathering charaeteristies of the rocks of Kezier grottoes and conservation [A]. In:6th International Conference on research into their the Conservation of Earthen Architecture, Las Cruces, New Mexico, U.S.A,1990,283:14-16.
    [59]单玮,张康生,刘世勋.秦俑一号坑碳化遗址的加固[M].西安:陕西人民教育出版社,1996.
    [60]日本东京国立文化财研究所.东京国立文化财研究所概要[M].东京,1993:17.
    [61]李小洁,林金辉,万涛,等.一种新型土遗址加固材料的制备及加固效果评价[J].成都理工大学学报(自然科学版),2006,33(3):321-326.
    [62]周环,张秉坚,李最雄.用潮汽固化有机硅材料保护潮湿环境土遗址[A].中国文物保护技术协会第二届学术年会论文集[C].2002,253-257.
    [63]甄广全.WD-10在石质文物表面封护中的应用[J].化工新型材料,2001,9:48-39.
    [64]Doerr S H., Shakesby R A, Walsh R P D. Soil water repellency, its characterization, causes and hydrogeomorphological significance [J]. Earth Sci. Rev.,2000,51(1),33-65.
    [65]Tschapek M. Criteria for determining the hydrophilicity hydrophobicity of soils [J]. Z. Pflanzenernahr. Bodenkd.1984,147:137-149.
    [66]Bayliss J S. Observations on Marasmius oreades and Clitocybe gigantea as parasitic fungi causing "fairy rings" [J]. J. Econ. Biol.,1911,6,111-132.
    [67]Hallett P D, Young I M. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity [J]. Eur. J. Soil Sci.,1999,50,35-40.
    [68]York C A. A questionnaire survey of dry patch on golf courses in the United Kingdom [J]. J. Sports Turf Res.,1993,69,20-26.
    [69]White N A, Hallet P D, Feeney D, Palfreyman J W, Ritz K. Changes to water repellence of soil caused by the growth of white-rot fungi:studies using a novel microcosm system [J]. FEMS Microbiol. Lett.,2000,184,73-77.
    [70]Wever G, Kipp J A. The influence of self-heating on horticultural aspects of peat [J]. Peat in Horticulture November,1997,80-86.
    [71]Jaramillo D F, Dekker L W, Ritsema C J, Hendrickx J M H. Occurrence of soil water repellency in arid and humid climates [J]. J. Hydrol.,2000,231/232:105-111.
    [72]Adams S, Strain B R, Adams M S. Water-repellent soils and annual plant cover in a desert scrub community of southeastern California [A]. In:DeBano, L.F., Letey, J. (Eds.), Proceedings of a Symposium on Water Repellent Soils, May 6-10,1968, Riverside, CA, 1969,354:289-296.
    [73]Dekker L W, Jungerius P D. Water repellency in the dunes with special reference to the Netherlands [J]. Catena Suppl.,1990,18,173-183.
    [74]Agee J K. The influence of prescribed fires on water repellency of mixed-conifer forest floor. In:Linn, R.M. (Ed.), Proceedings of the First Conference on Scientific Research in the National Parks. Volume II. New Orleans, LA. USDI National Park Service Transactions and Proceedings Series Number 5.1979,695-701.
    [75]York C A, Canaway P M. Water repellent soils as they occur on UK golf greens [J]. J. Hydrol.2000,231/232:126-133.
    [76]Moral Garcia F J. Hidrologia de los suelos arenosos del parque natural del entorno de Donana [J]. Doctoral thesis University of Cordoba, Spain,1999,334.
    [77]Apostolos K Ziogasa, Louis W Dekker, Klaas Oostindie, Coen J Ritsema. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence [J]. Australian Journal of Soil Research,2005,281-289.
    [78]Adam N K. Principles of water-repellency. In:Moillict, J.L., (Ed.), Waterproofing and Water Repellency [J]. Elsevier,1963,502:1-23.
    [79]Adam N K, Elliott G E P. Contact angles of water against saturated hydrocarbons [J]. J. Chem. Soc. (Lond.),1962,424.
    [80]Ma'Shum M, Farmer V C. Origin and assessment of water repellency of a sandy South Australian soil [J]. Aust. J. Soil Res.,1985,23:623-626.
    [81]Adhikari M, Chakrabarti G. Contribution of natural and microbial humic acids to water repellency in soil [J]. J. Indian Soil Sci.,1976,24,217-219.
    [82]Adams S, Strain B R., Adams M S. Water-repellent soils and annual plant cover in a desert scrub community of southeastern California. In:DeBano, L.F., Letey, J. (Eds.), Proceedings of a Symposium on Water Repellent Soils, May 6-10,1968, Riverside, CA,1969,354: 289-296.
    [83]Jamison V C. The slow reversible drying of sandy surface soils beneath citrus trees in central Florida [J]. Soil Sci. Soc. Am. Proc.,1942,7:36-41.
    [84]Dekker L W, Ritsema C J. Effect of maize canopy and water repellency on moisture patterns in a Dutch black plaggen soil [J]. Plant Soil,1997,195:339-350.
    [85]Jordan A, Zavala L M, Gonzalez F A, Barcenas-Moreno G, Mataix-Solera J. Repelencia al aguaen suelos afectados por incendios:metodos sencillos de determinacion e interpretation, 2010,147-183.
    [86]Mercer J M, Cohen R M. A review of immiscible fluids in the subsurface:properties, models, characterization, and remediation[J], Journal of Contaminant Hydrology,1990,6: 107-163.
    [87]Agbogidi O M, Eruotor P G, Akparobi S O, Nnaji G U. Evaluation of crude oil contaminated soil on the mineral nutrient element of maize (Zesa mays L.) [J]. Journal of Agronomy,2007,6(1):188-193.
    [88]Roy J L, McGill W B. Characterization of disaggregated nonwettable surface soils found at old crude oil spill sites [J]. Can. J. Soil Sci.,1998,78 (2),331-334.
    [89]Ellis R, Adams R S. Contamination of soils by petroleum hydrocarbons [J]. Adv. Agron., 1961,13:197-216.
    [90]Dibble J T, Bartha R. Effect of environmental parameters on biodegradation of oil sludge [J]. Appl. Environ. Microbiol.,1979,37:729-739.
    [91]Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons [J]. Biodegradation, 1992,3:354-368.
    [92]Graber ER, Tagger S, Wallach R. Role of divalent fatty acid salts in soil water repellency [J]. Soil Science of America Journal,2009,73:541-549.
    [93]Tschapek M. Criteria for determining the hydrophilicity-hydrophobicity of soils [J]. Z. Pflanzenernahr. Bodenk.1984,147,137-149.
    [94]Ma'Shum M, Farmer V C. Origin and assessment of water repellency of a sandy South Australian soil [J]. Aust. J. Soil Res.1985,23:623-626.
    [95]Schantz H L and Picmeisel R L. Fungus fairy rings in eastern Colorado and their effect on vegetation [J]. Agricultural Reasearch,1917,11:191-246.
    [96]Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Engng. Chem.1936, 28,988-994.
    [97]Adam N K. Principles of water-repellency [A]. In:Moilliet, J.L., (Ed.), Waterproofing and Water Repellency. Elsevier,1963,502:1-23.
    [98]Zisman W A. Relation of equilibrium contact angle to liquid and solid constitution [A]. In: Gould, R.F. (Ed.), Contact angle, wettability and adhesion. Advances in Chemistry Series, Am. Chem. Soc. Washington, DC.1964,43,1-51.
    [99]McGhie D A, Posner A M. The effect of plant top material on the water repellence of fired sands and water repellent soils [J]. Aust. J. Agric. Res.,1981,32:609-620.
    [100]Anderson W G. Wettability literature surve-Part 3. Effects of wettability on the electrical properties of porous media [J]. J. Petrol. Technol.,1986,39,1371-1378.
    [101]Skjemstad, J O, Dalal R C. Spectroscopic and chemical differences in organic matter of two vertisols subjected to long periods of cultivation [J]. Aust. J. Soil Res.,1987,25,323-335.
    [102]Ma'Shum M, Tate M E, Jones G P, Oades J M. Extraction and characterisation of water-repellent materials from Australian soils [J]. J. Soil Sci.,1988,39:99-110.
    [103]Imeson A C, Verstraten J M, van Mulligen E J, Sevink J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest [J]. Catena,1992,19, 345-361.
    [104]Bisdo E B A, Dekker L W, Schoute J F. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure [J]. Geoderma,1993,56, 105-118.
    [105]Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Ann. Bot.,1997,79,667-677.
    [106]Bautersa T W J, Steenhuisa T S, DiCarlob D A, et al. Physics of water repellent soils [J]. Journal of Hydrology,2000,231-243.
    [107]Wagner V. R, Tarnawski V, Hennings U, Muller G, Wessoleu R. Plagge Evaluation of pedotransfer functions for unsaturated soil hydraulic conductivity using an independent data set [J]. Geoderma,2001,102:275-297.
    [108]Doerr S H, Ferreira A J D, Walsh R P D, Shakesby R A, Leighton-Boyce G, Coelho C O A. Soil water repellency as a potential parameter in rainfall-runoff modelling:experimental evidence at point to catchment scales from Portugal [J]. Hydrol. Proc.,2003,17:363-377.
    [109]Taumer K, Stoffregen H, Wessolek G. Determination of add repellency distribution using soil organic matter and water content[J], Geoderma,2005,125(1-2):107-115.
    [110]Hallett P D. Soil water repellency. Proc.8th International Symposium on Adjuvants for Agrochemicals (ISAA2007), Columbus, OH, Aug.6-9,2007,13.
    [111]Demie Moore, Stanley J Kostka, Thomas J Boerth, et al. The effect of soil surfactants on soil hydrological behavior, the plant growth environment, irrigation efficiency and water conservation [J]. J. Hydrol. Hydromech.,2010,58(3):142-148.
    [112]McGill W B, Rowell M J, Westlake D W S. Biochemistry, ecology, and microbiology of petroleum components in soil [J]. Pages 229-297 in E. A. Paul and J. N. Ladd, eds. Soil biochemistry. Vol.5. Marcel Dekker, Inc., New York, NY.1981.
    [113]McLachlan, Anton, Harty, Bery. Effects of crude oil on the supralittoral meiofauna of a sandy beach [J]. Marine Environmental Research,1982,7(1):71-79.
    [114]Amund O O, Adewale A A, Ugoji E O. Occurrence and characterization of hydrocarbon utilizing bacteria in Nigerian soils contaminated with spent motor oil [J]. Indian J. Microbiol.,1987,27:63-87.
    [115]Acar Y B, Olivieri I. Pore Fluid Effects on the Fabric and Hydraulic Conductivity of Laboratory Compacted Clay. TRB#1219. Transportation Research Board, Washington, 1990,144-159.
    [116]Evgin E, Das B M. Mechanical behavior of an oil contaminated sand [J]. In:Usmen, Acar (Eds.). Environ. Geotechnology Proc, Mediterranean Conference. Balkema Publishers, Rotterdam, The Netherlands,1992,101-108.
    [117]Meegoda N J, Ratnaweera P. Compressibility of contaminated fine grained soils. Geotechnical Testing Journal,1994,17(1):101-112.
    [118]Lord D L, Demond A H. Influence of organic acid solution chemistry on subsurface transport properties 2 capillary pressure-saturation [J]. Environ. Sci. Tech.1997,31(7): 2052-2058.
    [119]Alsanad H A, Ismael N F. Aging effect on oil contaminated Kuwaiti sand [J]. Journal of Geotechnical and Environmental Engineering,1997:290-294.
    [120]Saad A Aiban. The effect of temperature on the engineering properties of oil contaminated sands. Environment International,1998,24,(1/2):153-161.
    [121]Balba M T, AI-Awadhi N, Al-Daher R. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation [J]. Journal of Microbiological Methods,1998,32:155-164.
    [122]Shin E C, Lee J B, Das B M. Bearing capacity of a model scale footing on crude oil-contaminated sand [J]. Geotechnical and Geological Engineering,1999,17(2): 123-132.
    [123]Staab Maria Cecylia. Degradation of the hydraulic oil constituents C(10)-C(34) in soil and soil slurry microcosms [J]. Digital Commons@Wayne State University.1999
    [124]ShinE C, Das B M. Beating capacity of unsaturated oil contaminated sand [J]. International Journal of offshore and Polar Engineering,2001,11(3):220-227.
    [125]Obire O, Nwaubeta O. Biodegradation of refined petroleum hydrocarbons in soil [J]. Journal of Applied Sciences and Environmental Management,2001.
    [126]Quyum A, Achari G, Goodman R H. Effect of wetting and drying and dilution orl moisture migration through oil contaminated hydrophobic soils [J]. The Science of the Total Environment,2002,296:77-87.
    [127]Roy J L, McGill W B, Lowen H A, Johnson R L. Relationship between water repellency and native and petroleum-derived organic carbon in soils [J]. J Environ Qual.,2003,32(2): 583-590.
    [128]Zheng J, Powers S E. Identifying the effect of polar constituents in coal-derived NAPLs oil interfacial tension [J]. Environ. Sci. Technal.2003,37(14):3090-3094.
    [129]Sanjay J Shah, Shroff A V, Jignesh V Patel, Tiwari K C, Ramakrishnan D. Stabilization of fuel oil contaminated soil-A case study [J]. Geotechnical and Geological Engineering,2003, 21(4):415-427.
    [130]Rafael Rodriguez Ochoa. Influence of oil contamination on geotechnical properties of silty sand [D]. Edmonoton, Alberta, university of Alberta Canada,2005.
    [131]Mashalah Khamchchiyan, Amir Hossein Charkhabi, Majid Tajik. Effects of crude oil contaminmion on geotechnical properties of clayey and sandy soils [J]. Engineering Geology,2007,89:220-229.
    [132]Eman A Diab. Phytoremediation of oil contaminated desert soil using the Rhizosphere Effects [J]. Global Journalof Environmental Research,2008,2(2):66-73.
    [133]Hossein Nikakhtaria, Pardeep Kumara, Mehdi Nematia, Gordon A Hilla. Physical and biological treatment of oil-contaminated soil in a baffled roller bioreactor [J]. Bioremediation Journal,2009,13(3):130-140.
    [134]Lai Chinchi, Huang Yichien, Wei Yuhong, Chang Joshu. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil [J]. Journal of Hazardous Materials, 2009,167(1-3):609-614.
    [135]Yoshihisa Takei. Current state and future prospects of action for soil contamination [J]. Quarterlyre View,2010,36:55-67.
    [136]Dana B Al-Duwaisan, Ahmad A Al-Naseem. Characterization of oil contaminated soil Kuwait Oil Lakes [A].2011 2nd International Conference on Environmental Science and Technology, V2-439-440.
    [137]Salam L B, Obayori O S, Akashoro O S, Okogie G O. Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil [J]. Int. J. Agric. Biol.,2011.13:245-250.
    [138]King P M. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement [J]. Aus. J. Soil Res.,1981, 19 (3):275-285.
    [139]Tschapek M. Criteria for determining the hydrophilicity hydrophobicity of soils [J]. Z. Pflanzenernahr. Bodenkd.1984,147:137-149.
    [140]Adams S, Strain B R, Adams M S. Water-repellent soils and annual plant cover in a desert scrub community of southeastern California [A]. In:DeBano, L.F., Letey, J. (Eds.), Proceedings of a Symposium on Water Repellent Soils, May 6-10,1968, Riverside, CA, 1969,354,289-296.
    [141]Roberts F J, Carbon B A. Water repellence in sandy soils of southwestern Australia:Ⅰ. some studies related to field occurrence [J]. Field Station Record Division Plant Industry CSIRO (Australia) 1971,10:13-20.
    [142]McGhie D A, Posner A M. The effect of plant top material on the water repellence of fired sands and water repellent soils [J]. Aust. J. Agric. Res.1981,32,609-620.
    [143]Roy J L, McGill W B. Assessing soil water repellency using the molarity of ethanol droplet test [J]. Soil Sci.,2002,167(2):83-97.
    [144]Ma'shum M, Farmer V C. Origin and assessment of water repellency of a sandy south Australian soil [J]. Aust. J. Soil Res.1985,23:623-626.
    [145]Bisdom E B A, Dekker L W, Schoute J F. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure [J]. Geoderma,1993,56: 105-118.
    [146]Doerr S H, Shakesby R A, Walsh R P D. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in Agucda Basin [J]. Portugal. Catena.1996.27:25-47.
    [147]Doerr S H, Walsh R P D, Shakesby R A. Water repellency of soils:its occurrence, characteristics and potential importance in hydrological modeling [J]. Geophys. Res. Abstr. 2002,3-2001.
    [148]Crockford H, Topalidis S, Richardson D P. Water repellency in a dry sclerophyll eucalypt forest-measurements and processes [J]. Hydrol. Process,1991,5,405-420.
    [149]Dekker L W, Ritsema C J. Uneven moisture patterns in water repellent soils [J]. Geoderma, 1996,70:87-99.
    [150]Harper R J, Gilkes R J. Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence [J]. Aust. J. Soil Res.1994,32,1109-1124.
    [151]Buczko U, Bens O, Huttl R F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica) [J]. Geoderma,2005,126(3-4):317-336.
    [152]Dexter A R. Advances in characterization of soil structure [J]. Soil Till. Res.1988,11: 199-238.
    [153]Hillel D. Environmental soil physics [M]. Academic Press, San Diego.,1998.
    [154]Lal R. Soil structure and sustainability [J]. J. Sustain. Agric.1991,1:67-92.
    [155]Kay B D. Rates of change of soil structure under different cropping systems [J]. Adv. Soil Sci.1990,12,1-52.
    [156]Horn R H, Taubner M Wuttke, Baumgartl T. Soil physical properties related to soil structure [J]. Soil Till. Res.1994,30:187-216.
    [157]Pagliai M, Vignozzi N, Pellegrini S. Soil structure and the effect of management practices [M]. Soil Till. Res.2004.79:131-143.
    [158]Gollany H T, Schumacher T E, Evenson P D, Lindstrom M J, Lemme G D. Aggregate stability of an eroded and desurfaced typic Argiustoll [J]. Soil Sci. Soc. Am. J.1991,55: 811-816.
    [159]Carter R, Stewart B A. Structure and organic matter storage in agricultural soils [M]. Advances in Soil Science. Lewis Publishers, CRC Press, Inc., Boca Raton, FL.1996.
    [160]Emerson W W. A classification of soil aggregates based on their coherence in water [J]. Aust. J. Soil Res.,1967,5:47-57.
    [161]Levy G J, Eisenberg H, Shainberg I. Clay dispersion as related to soil properties and water permeability [J]. Soil Sci.,1993,155:15-22.
    [162]Chenu C. Clay-or-sand-polysaccharide associations as models for the interface between micro-organisms and soil:water related properties and microstructure [J]. Geoderma 1993, 56:143-156.
    [163]Ojeniyi S O, Dexter A R.. Effect of soil structure on soil water status [J]. Soil Till, Res. 1984,4:371-379.
    [164]Or D, Wraith J M. Soil water content and water potential relationships,49-84. In A. W. Warrick. (ed.) Soil Physics Companion, CRC Press, Inc. Boca Raton FL. Or, D., F. J. Leij, V. Snyder, and T. A. Ghezzehei.2000. Stochastic model for posttillage soil pore space evolution. Water Resourc. Res.2002,36,1641-1652.
    [165]Radcliffe D E, Rasmussen T C. Chapter four:Soil water movement [M]. In A. Warrick (ed.) Soil Physics Companion. CRC Press, Inc. Boca Raton FL.,2002,85-126.
    [166]Warkentin B P. The changing concept of soil quality [J]. J. Soil Water Conserv.1995,50: 226-228.
    [167]Nadler A, Levy G J, Keren R, Eisenberg H. Sodic calcareous soil reclamation as affected by water chemical composition and flow rate [J]. Soil Sci. Soc. Am. J.1996,60:252-257.
    [168]Kemper W D, Rosenau R C. Soil cohesion as affected by time and water content [J]. Soil Sci. Soc. Am. J.1984,48:1001-1006.
    [169]Jarvis N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality [J]. Eur. J. Soil Sci.2007, 58,523-546.
    [170]Shingo L, Toshio J. Soil-Water Interactions Mechanisms and Applications [M]. Oxford: Oxford Publishing Co.,1988.
    [171]Vachan H, Jan S. Groundwater Hydraulics. Brno:Publishing House of the Czech Slovak Academy of Sciences,1979,91-116.
    [172]Martinez-Mena M, Williams A G, Ternan J L, Fitzjohn C. Role of antecedent soil water content on aggregates stability in a semi-arid environment [J]. Soil Till. Res.,1998,48: 71-80.
    [173]Moret D, Arrue J L. Characterizing soil water-conducting macro- and mesoporosity as influenced by tillage using tension of infiltrometry [J]. Soil Sci. Soc. Am. J.2007,71, 500-506.
    [174]Ojeniyi S O, Dexter A R. Effect of soil structure on soil water status [J]. Soil Till, Res. 1984,4,371-379.
    [175]Radcliffe D E, Rasmussen T C. Chapter four:Soil water movement [M]. In A. Warrick (ed.) Soil Physics Companion. CRC Press, Inc. Boca Raton FL.,2002.85-126.
    [176]Warkentin B P. The changing concept of soil quality [J]. J. Soil Water Conserv.1995.50, 226-228.
    [177]Cannell R Q, Hawes J D. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates [J]. Soil Till. Res.1994,30, 245-282.
    [178]Tebrugge F, During R A. Reducing tillage intensity:A review of results from a long-term study in Germany [J]. Soil Till. Res.,1999,53,15-28.
    [179]Franzluebbers A J, Arshad M A. Soil microbial biomass and mineralizable of water-stable aggregates [J]. Soil Sci. Soc. Am. J.,1997,61,1090-1097.
    [180]Horn R, Smucker A. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils [J]. Soil Till. Res.2005,82,5-14.
    [181]Horn R. H, Taubner M Wuttke, Baumgartl T. Soil physical properties related to soil structure [J]. Soil Till. Res.1994.30:187-216.
    [182]Jarvis N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality [J]. Eur. J. Soil Sci.2007, 58:523-546.
    [183]Amezketa E. Soil Aggregate Stability:A Review. Journal of Sustainable Agriculture [J]. Journal of Sustainable Agriculture.1999.14:2-3,83-151.
    [184]Diaz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure [J]. Soil Till. Res.2002,64,3-22.
    [185]De Boodt M. West-European Methods for Soil Structure Determinations. University of Gent, Belgium,1967, pp. VI-24-78; VII-55-60.
    [186]Walczak R, Witkowska-Walczak B. Methods of investigations and description of soil aggregation [J]. Problemy Agrofizyki,1976,19,5-52.
    [187]Gollany H T, Schumacher T E, Evenson P D, Lindstrom M J, Lemme G D. Aggregate stability of an eroded and desurfaced typic Argiustoll [J]. Soil Sci. Soc. Am. J.1991,55: 811-816.
    [188]Falsone G, Bonifacio E. Destabilization of aggregates in some Typic Fragiudalfs [J]. Soil Sci.2006,171,272-281.
    [189]Gerard C J. Laboratory experiments on the effects of antecedent moisture and residue application on aggregation of different soils [J]. Soil & Till. Res.1987,9:21-32.
    [190]Coote D R, Malcolm-Mcgovern C A, Wall G J, Dickinson W T, Rudra R P. Seasonal variation of erodibility indices based on shear strength and aggregate stability in some Ontario soils [J]. Can. J. Soil Sci.1988,68:405-416.
    [191]Perfect E, Kay B D. Relations between aggregate stability and organic components for a silt loam soil [J]. Can. J. Soil Sci.1990,70:731-735.
    [192]Rasiah V. Equations to predict measures of structural stability at minimum strength [J]. Soil Sci.,1994,158:170-173.
    [193]Caron J, Kay B D, Stone J A. Improvement of structural stability of a clay loam with drying [J]. Soil Sci. Soc. Am. J.1992,56:1583-1590.
    [194]Chan K Y, Heenan D P, Ashley R. Seasonal changes in surface aggregate stability under different tillage and crops [J]. Soil & Till Res.1994,28:301-314.
    [195]Rasiah V, Kay B D, Marin T. Variation of structural stability with water content:Influence of selected soil properties [J]. Soil Sci. Soc. Am. J.1992,56:1604-1609.
    [196]Watts C W, Dexter A R, Dumitru E, Arvidsson J. An assessment of the vulnerability of soil structure to destabilization during tillage. Part I. A laboratory test [J]. Soil & Till. Res.1996, 37:161-174.
    [197]Pojasok T, Kay B D. Assessment of a combination of wet sieving and turbidimetry to characterize the structural stability of moist aggregates [J]. Can. J. Soil Sci.1990,70: 33-42.
    [198]Dickson E L, Rasiah V, Groenevelt P H. Comparison of four prewetting techniques in wet aggregate stability determination [J]. Can. J. Soil Sci.,1991,71:67-72.
    [199]Amezketa E, Singer M J, Le Bissonnais Y. Testing a procedure for measuring water-stable aggregation [J]. Soil Sci. Soc. Am. J.,1996,60:888-894.
    [200]Dickson E L, Rasiah V, Groenevelt P H. Comparison of four prewetting techniques in wet aggregate stability determination [J]. Can. J. Soil Sci.,1991,71:67-72.
    [201]Rohoskova M, Valla M. Comparison of two methods for aggregate stability measurement-A review [J]. Plant Soil Env.,2004,50,379-382.
    [202]Schjonning P, Elmholt S, Munkholm L J, Debosz K. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management [J]. Agriculture, Ecosystems & Environment,2002,88(3):195-214.
    [203]Kemper W D, Rosenau R C.1986. Aggregate stability and size distribution, pp.425-442. In A. Klute (ed.). Methods of soil analysis. Part 1. Physical and mineralogical methods.2nd ed. Agron.Monogr.9. ASA and SSSA, Madison, WI. Agric. Ecosyst. Environ.88,195-214.
    [204]Monroe C D, Kladivko E J. Aggregate stability of a silt loam soil as affected by roots of corn, soybeans and wheat [J]. Commun. Soil Sci. Plant Anal.1987,18:1077-1087.
    [205]Angers D A. Changes in soil aggregation and organic carbon under corn and alfalfa[J]. Soil Sci. Soc. Am. J.1992,56:1244-1249.
    [206]Caron J, Espindola C R, Angers D A. Soil structural stability during rapid wetting: Influence of land use on some aggregate properties [J]. Soil Sci. Soc. Am. J.1996,60: 901-908.
    [207]Emerson W W. A classification of soil aggregates based on their coherence in water [J]. Aust. J. Soil Res.1967,5:47-57.
    [208]Kay B D, Dexter A R. Influence of aggregate diameter, surface area and antecedent water content on the dispersibility of clay [J]. Can. J. Soil Sci.1990,70:655-671.
    [209]Rasiah, V. Equations to predict measures of structural stability at minimum strength [J]. Soil Sci.1994,158:170-173.
    [210]Shainberg Ⅰ, Levy G J, Rengasamy P, Frenkel H. Aggregate stability andseal formation as affected by drops'impact energy and soil amendments [J]. Soil Sci.1992,154:113-119.
    [211]Reichert J M, Norton L D. Aggregate stability and rain-impacted sheet erosion of air-dried and prewetted clayey surface soils under intense rain [J]. Soil Sci.1994,158:159-169.
    [212]Le Bissonnais Y, Arrouays D, Aggregate stability and assessment of soil crustability and erodibility. II. Applications to humic loamy soils with various organic carbon contents [J]. Eur. J. Soil Sci.1997,48,39-48.
    [213]Herrick J E, Whitford W G. Field soil aggregate stability kit for soil quality and rangeland health evaluations [J]. Catena,2001,44:27-35.
    [214]Seybold C A, Herrick J E. Aggregate stability kit for soil quality assessments [J]. Catena, 2001,44:37-45.
    [215]Niewczas J. The soil aggregates stability index (ASI) and its extreme values [J]. Soil Till. Res.2005,80:69-78.
    [216]Shaviv A, Ravina I, Zaslavsky D. Application of soil conditioner solutions to soil columns to increase water-stability of aggregates [J]. Soil Sci. Soc. Am. J.,1987,51(2):431-436.
    [217]Gu B, Doner H E. Dispersion and aggregation of soils as influenced by organic and inorganic polymers [J]. Soil Sci. Soc. Am. J.,1993,57:709-716.
    [218]Nadler A, Perfect E, Kay B D. Effect of polyacrylamide application on the stability of dry and wet aggregates [J]. Soil Sci. Soc. Am. J.,1996,60:555-561.
    [219]Levy G J, Miller W P. Polyacrylamide adsorption and aggregate stability [J]. Soil Till. Res., 1999,51,121-128.
    [220]Inyang H I, Bae S. Polyacrylamide sorption opportunity on interlayer and external pore surfaces of contaminant barrier clays [J]. Chemosphere.2005,58:19-31.
    [221]Kostopoulou S K, Panayiotopoulos K. P. The influence of organic matter, cation bridges and Fe-and Al-oxides and hydroxides on the aggregation of three Alfisols [J]. Z. Pflanz. Boden. 1993,156:435-440.
    [222]Oades J M. Soil organic matter and structural stability:Mechanisms and implications for management [J]. Plant Soil,1984,76:319-337.
    [223]Bae S, Inyang H I, Galvao T C B, Mbamalu G E. Soil desiccation rate integration into empirical dust emission models for polymer suppressant evaluation [J]. J. Hazard. Mater. 2006,132:111-117.
    [224]Kukal S S, Kaur M, Bawa S S, Gupta N. Water-drop stability of PVA-treated natural soil aggregates from different land uses [J]. Catena,2007.70:475-479.
    [225]Liu Jin, Shi Bin, Jiang Hongtao, Ba Sunyoung, Huang He. Improvement of water-stability of clay aggregates admixed with aqueous polymer soil stabilizers [J]. Catena,2009,77(3): 175-179.
    [226]Alperovitch N, Shainberg I, Keren R. Specific effect of magnesium on the hydraulic conductivity of sodic soils [J]. Journal Soil Sci.,1981,32:543-554.
    [227]Shainberg I, Rhoades J D, Prather R J. Effect of low electrolyte concentration on clay dispersion and hydraulic conductivity of a sodic soils [J]. Soil Sci. Soc. Am. J.1981,45: 273-277.
    [228]Yadav J S P, Girdhar I K. The effect of different magnesium-calcium ratios and sodium adsorption values of leaching water on the properties of calcareous soils versus non-calcareous soils [J]. Soil Sci.,1981,131:194-198.
    [229]Ben-Hur M, Shainberg I, Bakker D, Keren R. Effect of soil texture and CaCO3 content on water infiltration in crusted soil as related to water salinity [J]. Irrig. Sci.1985:6:281-294.
    [230]Minhas P S, Sharma D R. Hydraulic conductivity and clay dispersion as affected by application sequence of saline and simulated rain water [J]. Irrig. Sci.,1986,7(3):159-167.
    [231]Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology [J]. Europ. J. Soil Sci.1996,47:425-437.
    [232]Inskeep W P, Bloom P R. Calcium carbonate supersaturation in soil solutions of calciaquolls [J]. Soil Sci. Soc. Am. J.1986,50:1431-1437.
    [233]Agnew N, Demas M. Principles for the conservation of heritage sites in China [M]. Los Angels:The Getty Conservation Institute,2002.
    [234]孙满利.土遗址保护研究现状与发展[J].文物保护与考占科学,2007,19(4):64-70.
    [235]周淑贞.气象学与气候学(第三版)[M].高等教育出版社,2005.
    [236]《岩土工程勘察规范》(GB50021-2001).北京:中国建筑工业出版社,2002年.
    [237]交通部公路规划设计院,公路自然区划标准[S].JTJ003-86.重庆:重庆大学出版社,1987.
    [238]交通部公路科学研究院,公路土工试验规程[S],JTG E40-2007,中华人民共和国交通部,2007.
    [239]张景科,谌文武,和法国,等.南京报恩寺遗址模拟地宫开挖中及成型后的井体特征[J].敦煌研究,2010,6:41-45.
    [240]Rhodes F H, Ling T T. The oxidation of Chinese wood oil [J]. Ind. Eng. Chem.,1925,17 (5): 508-512.
    [241]Blackmon G H. Tung Oil--A Gift of China [J]. Economic Botany,1937,161-175.
    [242]Fuller C S. Oxidation of solid films of tung oil mechanism of the reaction at elevated temperatures [J]. Ind. Eng. Chem.,1931.23(12):1458-1462.
    [243]Morrell R S, Wood H R. The chemistry of drying oils [D]. Ernest Benn Limited, London, 1925.
    [244]A.S.T.M. Specification for raw tung oil, D12-48.
    [245]中国科学院自然科学史研究所.中国古代建筑技术史[M].北京:科学出版社.1985.
    [246]甄广全,李婵娟.古建维修中砖地面改性桐油钻生试验研究(一)[J].文物保护与考古科学,2005,17(1):27-31.
    [247]Davey N. A History of Building Materials [D]. Phoenix House:London,1961,97-98.
    [248]唐晓武,林廷松,罗雪,应丰,李振泽.利用桐油和糯米汁改善私土的强度及环境土工特性[J].岩土工程学报,2007,29(9):1324-1329.
    [249]Little D L. Evaluation of structural properties of lime stabilized soils and aggregates, mixture design and testing protocol for lime stabilized soils (Vol.3). National Lime Association report,2000.
    [250]Eades J L, Grim R E. Reactions of hydrated lime with pure clay minerals in soil stabilization [J]. Highway Research Bulletin,1960,262.
    [251]Holtz W G. Volume change in expansive clay soils and control by lime treatment [A]. In: the Second International Research and Engineering Conference on Expansive Clay Soils, Texas A&M University,1969.
    [252]Thompson M R, Robnett Q L. Effect of lime treatment on the resilient behavior of fine-grained soils [J]. Transportation Research Record,1976,560:11-20.
    [253]Little D N. Stabilization of pavement subgrades and base courses with lime. Kendall/Hunt Publishing Company, Dubuque, Iowa,1995.
    [254]Thompson M R. Engineering properties of lime-soil mixtures [J] Journal of Materials,1969, 4(4):968-969
    [255]Dempsey B J, Thompson M R. Durability Properties of Lime-Soil Mixtures [J]. Highway Research Record 235, National Research Council, Washington, D. C.,1968,61-75.
    [256]Neubauer C H, Thompson M R. Stability Properties of Uncured Lime-Treated Fine Grained Soils [J]. In Highway Research Record 381, HRB, National Research Council, Washington, D.C.,1972,20-26.
    [257]Basma A A, Tuncer E R. Effect of lime on volume change and compressibility of expansive clays. Transportation Research Record No.1295,1991.
    [258]Eades J E, Nichols F P, Grim R E. Formation of new minerals with lime stabilization as proven by field experiments in Virginia. Highway Research Bulletin 335,1963.
    [259]Miller S P, Kennedy T W, Hudson W R. Evaluation of factors affecting the tensile properties of lime-treated materials, Research Report 98-4, Center for Highway Research, The University of Texas at Austin,1970.
    [260]Tulloch W S, Hudson W R, Kennedy T W. Evaluation and prediction of the tensile properties of lime-treated materials. Research Report 98-5, Center for Highway Research, University of Texas at Austin,1970.
    [261]Doty R, Alexander M L. Determination of strength equivalency for design of lime-stabilized roadways. Report No. FHWA-CA-TL-78-37,1968.
    [262]Little D N, Scullion T, Kota P, Bhuiyan J. Identification of the Structural Benefits of Base and Subgrade Stabilization. Report 1287-2, Texas Transportation Institute,1994.
    [263]Little D N. Unpublished analysis of deflection data from FWD measurements on selected pavements containing lime stabilized subgrades in Mississippi,1998.
    [264]Dunlop R J. Draft Manual on Pavement Design with Lime and Cement Stabilized Pavement Layers. Transit New Zealand, Wellington, New Zealand,1995.
    [265]Holt C C, Freer-Hewish R J. Lime Treatment of Capping Layers Under the Current DOT Specification for Highway Work. Lime Stabilization, Thomas Telford,1996.
    [266]Thompson M R. Lime Reactivity of Illinois Soils [J]. Journal of the Soil Mechanics and Foundations Division,1966,92(5):67-92.
    [267]Perry J, MacNeil D J, Wilson P E. The Uses of Lime in Ground Engineering:A Review of Recent Work Undertaken at the Transportation Research Laboratory, Lime Stabilization, Thomas Telford Publisher,1996.
    [268]Evans P. Lime Stabilization of Black Clay Soils in Queensland, Australia. Presentation to the National Lime Association Convention, San Diego, California,1998.
    [269]Thompson M R. State-of-the-Art:Unbound Base Performance.6th Symposium of the International Center for Aggregates Research, St. Louis, Missouri,1998.
    [270]Puatti D. Personal communication on reactions between lime and the loess soils of Normandy in France in Poland, Czech Republic and northern Europe,1998.
    [271]Thompson M R. Suggested Method of Mixture Design Procedures for Lime-Treated Soils, ASTM Special Technical Publication 479,1970.
    [272]Dumbleton M J. Investigations to Assess the Potentialities of Lime for Soil Stabilization in the United Kingdom, Technical Paper 64, Road Research Laboratory, England,1962.
    [273]Thompson M R, Dempsey B J. Autogenous Healing of Lime-Soil Mixtures, Highway Research Record 263,1969.
    [274]McDonald E B. Lime Research Study-South Dakota Interstate Routes (Sixteen Projects). South Dakota Department of Highways,1969.
    [275]Robnett Q L, Thompson M R. Interim Report-Resilient Properties of Subgrade Soils-Phase I-Development of Testing Procedures, Civil Engineering Studies Transportation Engineering Series No.5, University of Illinois, Champaign-Urbana,1973.
    [276]Yang Fuwei, Zhang Bingjian, Pan Changchu, Zeng Yuyao, Traditional mortar represented by sticky rice lime mortar-One of the great inventions in ancient China [J]. Sci China Ser E-Tech Sci),2009,52(6):1-7.
    [277]Yang Fuqwei, Zhang Bingjian, Ma Qinglin. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction [J]. Accounts of Chemical Research,2010, 43(6):936-944.
    [278]Annan A, Munfakh G A. Lime Stabilization of Organic Soils [J]. Transportation Research Board, Washington, DC.,1972,381:37-45.
    [279]Bell F G. Lime stabilization of clay minerals and soils [J]. Engineering Geology,1996, 42(4):223-237.
    [280]Eades J L, Grim R E, Reaction of hydra ted lime with pure clay minerals in soil stabilization [J]. Highway Research Record, Highway Research Board, Bulletin 262,1960,51-63.
    [281]Wolfgang Reichardt, Richard Y Morita. Temperature Characteristics of Psychrotrophic and Psychrophilic Bacteria [J]. Journal of General Microbiology,1982,128:565-568.
    [282]Baker J H. The use of a temperature-gradient incubator to investigate the temperature characteristics of some bacteria from Antarctic peat [J]. British Antarctic Survey Bulletin, 1974,39:49-59.
    [283]Philip W Mohr, Steven Krawiec. Temperature characteristics and arrhenius plots for nominal psychrophiles, mesophiles and thermophiles [J] Journal of General Microbiology 1980,121:311-317.
    [284]Hanus F J, Morita Y. Significance of the temperature characteristic of growth [J]. Journal of Bacteriology,1968,95:736-737.
    [285]Shaw M K. Effect of abrupt temperature shift on the growth of mesophilic and psychrophilic yeasts [J]. Journal of Bacteriology,1967,93:1332-1336.
    [286]Ernest Frederick Gale. Factors influencing the enzymic activities of bacteria [J]. Bacteriol Rev.1943,7(3):139-173.
    [287]Booth I R. Regulation of cytoplasmic pH in bacteria [J]. Microbiol Rev.1985,49(4): 359-378.
    [288]Russell J B, Sharp W M. Baldwin R L. The effect of PH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen [J]. Journal of Animal Science,1979,48:251-255.
    [289]Sanjay J Shah, A V Shroff, Jignesh V Patel, Tiwari K C, Ramakrishnan D. Stabilization of fuel oil contaminated soil-A case study [J]. Geotechnical and Geological Engineering,2003, 21(4):415-427.
    [290]Barbour S L. Nineteenth Canadian geothnical colloqium:the soil-water characteristic curve: a historical perspective [J]. Can. Geotech. J,1998,35:873-894.
    [291]Cho B G, Santamarina J C. Unsaturated particulate materials-particle level studies [J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(1):84-96.
    [292]Emerson W W. A classification of soil aggregates based on their coherence in water [J]. Aust. J. Soil Res.1967,5:47-57
    [293]Brooks R H, Corey A T. Hydraulic properties of porous media [J]. Hydrol. Paper No.3, Colorado State Univ., Fort Collins, CO,1964.
    [294]Van Genuchten M. On the accuracy and efficiency of several numerical schemes for solving the convective-dispersive equation, in Finite Elements in Water Resources, edited by W. G. Gray et al., Pentech Press, London,1976,171-190.
    [295]Dumer W. Hydraulic conductivity estimation for soils with heterogeneous pore structure [J]. Water Resour. Res.,1994,32(9):211-223.
    [296]Dumer W, Priesack E, Vogel H J, Zurmuhl T. Determination of parameters for flexible hydraulic functions by inverse modeling [J]. In:M.Th. van Genuchten, F.J. Leij, L. Wu (Editors), Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. University of California, Riverside, CA,1999.817-829,
    [297]Washburn E W. The dynamics of capillary flow [J]. Phys. Rev.1921,17(3):273-283.
    [298]Chibowski E. Solid surface tree energy components determination by the thin-layer wicking technique [J] Journal of Adhesion Science and Technology,1992,6(2):1069-1090.
    [299]Chibowski E, Holysz L. Surface free energy components of alumina from thin 2 layer wicking [J]. Langmuir.1992,8:710-716.
    [300]Pezron I, Bourgain G, Quere D. Imbition of a fabric [J]. J. Colloid Interface Sci.,1995,173: 319-327.
    [301]Grattoni C A, Chiotis E D, Dawe R A. Determination of relative wettability of porous sandstones by imbibition studies [J]. J.Chem. Tech. Biotechnol,1995,64(1):17-24.
    [302]Kilau H W, Pahlman J E. Coal wetting ability of surfactant solutions and the effect of multivalent anion additions [J]. Colloids Surf. B,1987,26,217-242.
    [303]Ramesh Varadaraj, Jan Bock, Paul Valint Jr., Stephen Zushma, Neil Brons. Relationship between fundamental interfacial properties and foaming in linear and branched sulfate, ethoxysulfate, and ethoxylate surfactants [J]. Journal of Colloid and Interface Science,1990, 140(1):31-34.
    [304]Lavi B, Marmur A, Bachmann J. Porous media characterization by the two-liquid method: effect of dynamic contact angle and inertia, Langmuir,2008 24:1918-1923.
    [305]Studebaker M L, Snow C W. The influence of ultimate composition upon the wettability of carbon blacks [J]. J. Phys. Chem.,1955,59:973-976.
    [306]Crowl V T., Wooldridge W D S. A Method for the Measurement of Adhesion Tension of Liquids in Contact with Powders [J]. Wetting Soc. Chem. Industry, London,1967,200-212.
    [307]Bruil H G, Van Aartsen J J. The determination of contact angles of aqueous surfactant solutions on powders [J]. Colloid Polym. Sci.,1974,252:32-38.
    [308]Thomas Delker, David B. Pengra, Po-zen Wong. Interface Pinning and the Dynamics of Capillary Rise in Porous Media [J]. Phys. Rev.Lett.,1996,76:2902.
    [309]Marcelo Lago, Mariela Araujo. Capillary rise in porous media [J]. Physica A,2001, 289(1-2):1-17.
    [310]Thomas Delker, David B. Pengra and Po-zen Wong. Interface Pinning and the Dynamics of Capillary Rise in Porous Media [J]. Phys. Rev. Lett.,1996,76:2902.
    [311]Joachim Schoelkopf, Patrick A C Gane, Cathy J Ridgway, Matthews Peter G. Practical observation of deviation from Lucas-Washburn scaling in porous media [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206:445-454.
    [312]Lockington D A, Parlange J Y. A new equation for macroscopic description of capillary rise in porous media [J]. Journal of Colloid and Interface Science 2004,278:404-409.
    [313]Lu N, Likos W J. Rate of Capillary Rise in Soil [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130:6-646.
    [314]Poiseuille J L. Reserches experimentales sur le mouvement des liquides dans le tubes detres petits diameters [J]. Comptes Rendus 1841,11:961.
    [315]Marcelo Lago, Mariela Araujo. Capillary rise in porous media [J]. Physica A,2001, 289(1-2):1-17.
    [316]Delage P, Audiguier M, Cui Y J, et al. Microstructure of a compacted silt [J].Canadian Geotechnical Journal,1996,33(1):150-158.
    [317]Saiyouri N, Hicher P Y, Tessier D. Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays [J]. Mechanics of Cohesive and Frictional Materials,2000,5:41-60.
    [318]Fuller C S. Oxidation of Solid Films of Tung Oill Mechanism of the Reaction at Elevated Temperatures [J]. Ind. Eng. Chem.,1931,23 (12):1458-1462.
    [319]Isaia G C, Gastaldini A L G, Moraes R. Physical and pozzolanic action of mineral additions on the mechanical strength ofhigh-performance concrete [J]. Cem. Concr. Comp,2003, 25(1):69-76.
    [320]Feldman R F, Ramachandran V S, Sereda P.J. Influence of CaCO3 on the hydration of 3CaO·Al2O3 [J]. J.Am.Ceram. Soc,1965,48(1):25-30.
    [321]Mann S. Biomineralization principles and concepts in bioinorganic materials chemistry [J]. New York:Oxford University Press,2001.
    [322]Grassann O, Neder R. Biomimetic control of crystal assembly by growth in an organic hydrogel network [J]. Am Mineral,2003,88:647.
    [323]Alias J L, Fernandez M S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization [J]. Chemical Reviews,2008,108,4475-4482.
    [324]Belcher A M, Wu X H, Christensen R J, Hansma P K, Stucky G D, Morse D E. Control of crystal Phase switching and orientation by soluble mollusk-shell Proteins [J]. Nature,1996, 381,56-58.
    [325]Addadi L, weiner S. Interactions between acidic proteins and crystals-stereoehemical requirements in biomineralization [J]. Proceedings of the National Academy of Sciences of the United States of America,1985,82,4110-4114.
    [326]Sommerdijk N A J M, de With G. Biomimetic CaCO3 Mineralization using Designer Moleeules and Interfaces [J]. Chemical Reviews,2008,108,4499-4550.
    [327]Fricke M, Volkmer D. Crystallization of calcium carbonate beneath insoluble monolayers: Suitable models of mineral-matrix interactions in biomineralization [J]. Biomineralization 1: Crystallization and Self-Organization Process,2007,270:1-41.
    [328]Letellier S R, Lochhead M J, Campbell A A, Vogel V. Oriented growth of calcium oxalate monohydrate crystals beneath phospholipids monolayers [J]. Biochimica Et Biophysica Acta-General Subjects,1998,1380,31-45.
    [329]Dalbeck P, England J, Cusack M, Lee M R, Fallick A E. Crystallography and chemistry of the calcium carbonate polymorph switch in M. edulis shells [J]. European Journal of Mineralogy,2006,18,601-609.
    [330]Miles A Crenshaw. Mineral Induction by Matrix from Mineralized Biological Tissues [J]. MRS Proceedings,1990,218:185-193.
    [331]Wang T X, Colfen H, Antonietti M. Nonclassical crystallization:Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive [J]. Journal of the American Chemical Society,2005,127,3246-3247.
    [332]Gehrke N, Colfen H, Pinna N, Antonietti M, Nassif N. Superstructures of calcium carbonate crystals by oriented attachment [J]. Crystal Growth & Design,2005,5:1317-1319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700