用户名: 密码: 验证码:
公路桥梁减隔震装置力学参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁是救灾生命线上的咽喉,其抗震性能和震后应急保通能力对抗震救灾和灾后重建都起着至关重要的作用。桥梁减隔震设计利用减隔震装置通过延长周期和增加阻尼的方式将结构与地震能量集中的频段隔离并降低结构地震响应。与抗震研究先进国家相比,我国桥梁抗震规范在减隔震装置的力学模型及参数研究方面存在着较大的差距。本文以铅芯橡胶支座和液体黏滞阻尼器为对象,系统研究其力学模型及关键参数对减隔震效果的影响。
     论文首先对汶川地震中典型桥梁震害进行了简要分析。主要从断层破裂带南北两段运动方式差异性出发,分析了地震断层南北两段不同区域内典型桥梁震害的不同特征。研究发现:断层破裂带南段脆性逆冲运动显著,桥梁震害以极震区次生灾害滑坡冲击破坏和强度型破坏为主。断层破裂带北段韧性走滑运动显著,桥梁震害以梁式结构落梁、双曲拱桥垮塌等位移型震害为主。
     铅芯橡胶支座力学参数研究方面,采用纤维截面分析方法,研究不同配铅率及支座剪切应变条件下,铅芯橡胶支座力学参数的变化规律。并通过算例分析了不同配铅率和不同地震动峰值加速度条件下,考虑和不考虑支座剪切应变对结构和支座自身地震响应的差异。研究发现:
     (1)铅芯橡胶支座力学参数并不恒定,受配铅率及剪切应变的影响显著。如屈服力、屈服后刚度、屈服前后刚度比及阻尼比等参数随支座剪切应变变化显著。随着配铅率的增加,剪切应变对支座力学参数的影响愈加明显。
     (2)地震动峰值加速度较低(小于0.2g)时,对于低配铅率(小于5%),考虑和不考虑剪切应变影响的支座力学模型对梁端位移和支座剪切应变响应的影响普遍较小。但当地震动峰值加速度较高(大于0.2g)时,对于高配铅率(大于5%),考虑和不考虑剪切应变影响的力学模型对梁端位移和支座剪切应变响应的显著。在所有配铅率条件下,不考虑支座的剪切应变的支座力学参数对桥墩内力响应的影响较为显著,误差在10~25%左右。
     液体黏滞阻尼器阻尼参数研究方面,基于随机振动理论,推导了液体黏滞阻尼器的最优阻尼比及其对应的最优阻尼系数计算公式。分别利用单自由度体系和实桥算例验证了线性液体黏滞阻尼器最优阻尼系数计算公式的正确性。研究发现:
     (1)与建筑结构不同,在桥梁上安装的液体黏滞阻尼器存在理论上的最优阻尼比及其对应的最优阻尼系数,使阻尼器的效率达到最大值。该最优阻尼系数仅与主梁质量和振动频率有关,且与两者成正比。
     (2)当阻尼比在0.4~0.6之间时,液体黏滞阻尼器的减震效率与最优阻尼比基本相当。综合考虑地震动强度、伸缩装置的伸缩量及阻尼器的造价等工程因素,液体黏滞阻尼器最优阻尼系数可以在该阻尼比范围内适当调整。
Bridge is the key project on the disaster relief lifeline. The aseismic performance andserviceability of bridge during and after earthquake play a very important role in earthquakerelief and post-disaster reconstruction. Isolation design isolates the bridge from earthquake bylengthening the fundamental period of the structure and increasing the damping with the helpof anti-seismic devices. Compared with advanced countries in seismic research, Chineseguidelines for seismic of highway bridges is relatively backward in research of mechanicalmodel and parameters of anti-seismic devices. In this paper, lead rubber bearing and fluidviscous damper are taken as objects, the mechanical model and key parameters of them andthe isolation performance are systematically studied.
     Typical earthquake damages of highway bridges in Wenchuan Earthquake are analyzedin this paper. Based on the movement difference of south and north part of the fault fracturedzone, different characteristics of earthquake damages of highway bridges in south and northpart of the fault fractured zone are analyzed. It is shown that brittle thrust plays a major rolein the south part of the fault fractured zone, and the earthquake damages of bridges aremainly secondary disasters of landslide impact damages and strength failure. While in thenorth part of the fault fractured zone, the toughly slip plays a major role, and the earthquakedamages of bridges are mainly displacement failure such as unseating of beams and collapseof double curvature arch bridges.
     Fiber section method is used to study the mechanical parameters of lead rubber bearing.Change law of mechanical parameters under different lead rates and shear strains is studied.Example bridge analysis is carried out with different lead rates and different peak groundaccelerations. Difference of earthquake responses of bridge and the lead rubber bearing isanalyzed by using different mechanical parameters considering shear strain or not. The studyfound as follows:
     1. Lead rate and shear strain significantly affect the mechanical parameters of leadrubber bearing. The yield force, post-yield stiffness, rate of pre-yield and post-yield stiffnessand the damping ratio of lead rubber bearing are not constant and vary significantly withshear strain. The effect of shear strain on mechanical parameters increases with increasing of lead rate.
     2. When the peak ground acceleration and lead rate are low, there is little difference inearthquake responses of bridge and the lead rubber bearing by using different mechanicalparameters considering shear strain or not. While, When the peak ground acceleration andlead rate are high, there is considerable difference in displacement of superstructure and thebearing by using different mechanical parameters considering shear strain or not. Whether thelead rate is high or not, there is a considerable difference in earthquake response of the forcein piers of the bridge by using different mechanical parameters considering shear strain or not.The difference is about10~25%.
     The closed form expression of optimum damping ratio and the corresponding optimumdamping coefficient of linear fluid viscous damper for bridges is derived by stochasticvibration method. Single degree of freedom system and an example suspension bridge areused to verify the validity of the closed form expression of optimum damping coefficient oflinear fluid viscous damper. The study found as follows:
     1. There is a theoretical optimum damping ratio and the corresponding optimumdamping coefficient of linear fluid viscous damper for bridges. The efficiency of the fluidviscous damper reaches maximum with the optimum damping coefficient. The optimumdamping coefficient only depends on the modal participation mass and the frequency, and isin direct proportion to them.
     2. The efficiency of the fluid viscous damper is roughly equivalent to that of optimumdamping ratio when the damping ratio is0.4to0.6.Thus the practical optimum dampingcoefficient can be adjusted in this range according to some factors such as the earthquakeintensity,capacity of joints and the cost.
引文
[1]中华人民共和国交通运输部.汶川地震公路震害图集[M].北京:人民交通出版社,2009.
    [2]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [3]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [4]范立础,王志强.桥梁减隔震抗震设计[M].北京:人民交通出版社,2001.
    [5]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [6] European Committee for Standardization. Eurocode8Design of structures for earthquakeresistance Part2Bridge[s].2005
    [7] American Association of State Highway and Transportation Officials. GuideSpecifications for Seismic Isolation Design[s].2010
    [8]日本道路协会.道路桥示方书V耐震设计篇[s].东京:丸善出版社,2012.
    [9]日本道路协会.道路桥支承便览[s].东京:丸善出版社,2004.
    [10]重庆交通科研设计院.公路桥梁抗震设计细则[s].北京:人民交通出版社,2008.
    [11]李延兴,张静华,周伟等.汶川Ms8.0地震孕育发生的机制与动力学问题[J].地球物理学报,2009,52(2):519-530.
    [12]张致伟,程万正,阮祥等.汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征[J].地震学报,2009,31(2):117-127.
    [13]徐纪人,赵志新.汶川8.0级大地震震源机制与构造运动特征[J].中国地质,2010,37(4):967-977.
    [14]田勤俭,刁桂苓,郝平等.汶川8.0级地震及余震破裂的地质构造特征[J].地震,2009,29(1):141-148.
    [15]魏占玉,何宏林,董绍鹏等.从两个地表破裂点的几何学与运动学特征分析汶川地震的破裂方式[J].地震地质,2008,30(4):1023-1032.
    [16]卢海峰,张世民,马保起等.汶川Ms8.0地震断层映秀-南坝段的活动方式、形变特征及其形成机制[J].地球物理学报,2009,52(5):1376-1383.
    [17]于贵华,徐锡伟,Klinger Yann等.汶川Mw7.9级地震同震断层陡坎类型与级联破裂模型[J].地学前缘,2010,17(5):1-18.
    [18]盛书中,万永革.由构造应力场研究汶川地震断层的分段性[J].地震学报,2012,34(6):741-753.
    [19]张勇,许力生,陈运泰.2008年汶川大地震震源机制的时空变化[J].地球物理学报,2009,52(2):379-389.
    [20]朱艾斓,徐锡伟,刁桂苓等.汶川Ms8.0地震部分余震重新定位及地震构造初步分析[J].地震地质,2008,30(3):759-767.
    [21]焦青,杨选辉,许丽卿等.汶川8.0级地震前后龙门山断裂活动特征浅析[J].大地测量与地球动力学,2008,28(4):7-11,37.
    [22]吴健,吕红山,刘爱文.汶川地震烈度分布与震源过程相关性的初步研究[J].震灾防御技术,2008,3(3):224-229.
    [23]屈春燕,单新建,宋小刚等. D-InSAR技术应用于汶川地震地表位移场的空间分析[J].地震地质,2010,32(2):175-190.
    [24]徐锡伟,陈桂华,于贵华等.5·12汶川地震地表破裂基本参数的再论证及其构造内涵分析[J].地球物理学报,2010,53(10):2321-2336.
    [25]李海兵,付小方,VAN DER WOERD Jér O. Me等.汶川地震(Ms8.0)地表破裂及其同震右旋斜向逆冲作用[J].地质学报,2008,82(12):1623-1643.
    [26]徐锡伟,闻学泽,叶建青等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.
    [27]王卫民,赵连锋,李娟等.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403-1410.
    [28]董树文,张岳桥,龙长兴等.四川汶川Ms8.0地震地表破裂构造初步调查与发震背景分析[J].地球学报,2008,29(3):392-396.
    [29]高翔,何宏林,魏占玉等.汶川地震白沙河段最大地表水平位移量的成因分析[J].地震地质,2008,30(4):1004-1011.
    [30]李海兵,司家亮,付小方等.2008年汶川地震同震滑移特征、最大滑移量及构造意义[J].第四纪研究,2009,29(3):387-402.
    [31]裴军令,李海兵,司家亮等.汶川地震(Ms8.0)地表建筑体变形特征及其构造意义[J].第四纪研究,2009,29(3):513-523.
    [32]王敏.基于GPS同震位移场约束反演2008年5.12汶川大地震破裂空间分布[J].地球物理学报,2009,52(10):2519-2526.
    [33]刘静,孙杰,张智慧等.汶川地震映秀-北川地表破裂带虹口乡段精细填图、位移特征和地震构造分析[J].第四纪研究,2010,30(1):1-29.
    [34]何宏林,孙昭民,王世元等.汶川MS8.0地震地表破裂带[J].地震地质,2008,30(2):359-362.
    [35]陈桂华,徐锡伟,郑荣章等.2008年汶川Ms8.0地震地表破裂变形定量分析——北川-映秀断裂地表破裂带[J].地震地质,2008,30(3):723-738.
    [36]付碧宏,时丕龙,王萍等.2008年汶川地震断层北川段的几何学与运动学特征及地震地质灾害效应[J].地球物理学报,2009,52(2):485-495.
    [37]李志才,张鹏,金双根等.基于GPS观测数据的汶川地震断层形变反演分析[J].测绘学报,2009,38(2):108-113,119.
    [38]蒋志浩,张鹏,李志才等.我国GPS跟踪站在汶川地震前后的运动特征分析[J].全球定位系统,2008,33(5):6-10.
    [39]陈九辉,刘启元,李顺成等.汶川Ms8.0地震余震序列重新定位及其地震构造研究[J].地球物理学报,2009,52(2):390-397.
    [40]程万正,阮祥,张致伟.汶川8.0级地震序列及震型判定[J].地震,2009,29(1):15-25.
    [41]易桂喜,龙锋,张致伟.汶川Ms8.0地震余震震源机制时空分布特征[J].地球物理学报,2012,55(4):1213-1227.
    [42]崔效锋,胡幸平,俞春泉等.汶川地震序列震源机制解研究[J].北京大学学报:自然科学版,2011,47(6):1063-1072.
    [43]李建民,冯际安,金大勇等."5.12"汶川地震灾区桥梁典型损毁情况与原因浅析[J].城市道桥与防洪,2008(8):26-27.
    [44]周国良,崔成臣,刘必灯等.汶川8.0级地震中几座近断层桥梁失效模式的初步探讨[J].震灾防御技术,2008,3(4):370-378.
    [45]周国良,李小军.汶川8.0级地震几座近断层桥梁失效模式的探讨[J].国际地震动态,2008(11):89.
    [46]黄勇.汶川地震中梁式桥的震害和预防震害的新方法[J].地震工程与工程振动,2008,28(5):20-26.
    [47]李曙平,曾超,阳先全等."5.12"汶川地震桥梁震害浅析[J].公路,2009(7):125-129.
    [48]王东升,郭迅,孙治国等.汶川大地震公路桥梁震害初步调查[J].地震工程与工程振动,2009,29(3):84-94.
    [49]王东升,孙治国,郭迅等.汶川地震桥梁震害经验及抗震研究若干新进展[J].公路交通科技,2011,28(10):44-53.
    [50]王东升,王吉英,孙治国等.汶川大地震简支梁桥落梁震害与设计对策[J].防灾减灾工程学报,2011,31(5):595-602.
    [51]雷涛,李碧雄,曹鹏杰等.汶川地震近断层附近桥梁震害浅析[J].重庆交通大学学报(自然科学版),2010,29(3):358-362,496.
    [52]杜修力,韩强,李忠献等.5.12汶川地震中山区公路桥梁震害及启示[J].北京工业大学学报,2008,34(12):1270-1279.
    [53]熊文林,蔡向阳.汶川大地震棉广高速桥梁震害分析[J].华中科技大学学报(城市科学版),2009,26(1):119-122.
    [54]庄卫林,刘振宇,蒋劲松."5.12"汶川地震公路桥梁震害分析及对策研究[J].公路,2009(5):129-139.
    [55]李春凤.汶川地震桥梁震害与延性抗震设计探讨[J].公路交通科技,2009,26(4):98-102.
    [56]康孝先,张迅.汶川地震对绵阳地区桥梁的损伤和应急处治[J].交通科学与工程,2009,25(4):37-43.
    [57]胡建新,唐光武,张力.汶川地震中斜交连续梁桥震害机理研究[J].公路交通技术,2012(5):62-66,72.
    [58]尹海军,徐雷,申跃奎等.汶川地震中桥梁损伤机理探讨[J].西安建筑科技大学学报(自然科学版),2008,40(5):672-677.
    [59]贡金鑫,王雪婷,张勤.从汶川地震灾害看现行国内外桥梁抗震设计方法[J].大连理工大学学报,2009,49(5):739-747.
    [60]贡金鑫,张勤,王雪婷.从汶川地震中桥梁震害看现行国内外桥梁抗震设计方法(二)——抗震设计与构造[J].公路交通科技,2010,27(10):35-46,52.
    [61]陈力波,郑凯锋,庄卫林等.汶川地震桥梁易损性分析[J].西南交通大学学报,2012,47(4):558-566.
    [62]蒋劲松,庄卫林,刘振宇.汶川地震百花大桥震害调查分析[J].桥梁建设,2008(6):41-44,52.
    [63]雷俊卿,宋力勋.汶川百花大桥震害分析与抗震性能研究[J].北京交通大学学报,2012,36(1):1-5,11.
    [64]孙治国,王东升,郭迅等.汶川大地震绵竹市回澜立交桥震害调查[J].地震工程与工程振动,2009,29(4):132-138.
    [65]王东升,孙治国,李晓莉等.汶川大地震曲线梁桥震害及破坏机理分析[J].防灾减灾工程学报,2010,30(5):572-579.
    [66]霍燚.汶川大地震绵竹市回澜立交桥震害分析[D].大连海事大学桥梁与隧道工程,2010.
    [67]王旭阳.绵竹市回澜匝道桥抗震分析[D].西南交通大学桥梁与隧道工程,2010.
    [68]孙福维.绵竹市回澜桥非线性抗震分析[D].西南交通大学桥梁与隧道工程,2010.
    [69]孟杰.汶川地震回澜立桥震害分析及曲线梁桥抗震设计研究[D].东南大学桥梁与隧道工程,2010.
    [70]苏生瑞,李松,郝莉莉等.汶川地震中小鱼洞大桥的变形破坏特征与机理[J].灾害学,2011,26(4):19-23.
    [71]祝兵,崔圣爱,喻明秋.汶川地震跨断裂带小鱼洞大桥地震破坏分析[J].公路交通科技,2010,27(1):78-83.
    [72]王征.小鱼洞大桥地震反应分析[D].中国地震局工程力学研究所结构工程,2011.
    [73]田壮.小鱼洞大桥地震倒塌机理分析[D].西南交通大学桥梁与隧道工程,2011.
    [74]赵国辉,刘健新.汶川地震桥梁震害分析及抗震设计启示[J].震灾防御技术,2008,3(4):363-369.
    [75]刘健新,赵国辉,李加武.汶川地震及中国公路桥梁抗震设计规范的变迁[J].交通科学与工程,2009,25(1):21-25.
    [75]刘健新,赵国辉."5·12"汶川地震典型桥梁震害分析[J].建筑科学与工程学报,2009,26(2):92-97.
    [77]赵国辉,刘健新.大兴路立交匝道桥震害原因分析及修复方案[J].桥梁建设,2011(2):30-33,38.
    [78] Turkington D H, Carr A J, Cooke N, et al. DESIGN METHOD FOR BRIDGES ON LEAD-RUBBERBEARINGS[J]. Journal of Structural Engineering-Asce,1989,115(12):3017-3030.
    [79] Turkington D H, Cooke N, Moss P J, et al. DEVELOPMENT OF A DESIGN PROCEDURE FORBRIDGES ON LEAD RUBBER BEARINGS[J]. Engineering Structures,1989,11(1):2-8.
    [80] Turkington D H, Carr A J, Cooke N, et al. SEISMIC DESIGN OF BRIDGES ON LEAD-RUBBERBEARINGS[J]. Journal of Structural Engineering-Asce,1989,115(12):3000-3016.
    [81] Shimoda I, Ikenaga M, Takenaka Y, et al. DEVELOPMENT OF A LEAD RUBBER BEARINGWITH A STEPPED PLUG[M].1992.
    [82] Ghobarah A, Ali H M. SEISMIC DESIGN OF BASE-ISOLATED HIGHWAY BRIDGESUTILIZING LEAD RUBBER BEARINGS[J]. Canadian Journal of Civil Engineering,1990,17(3):413-422.
    [83] Robinson W H. LEAD RUBBER HYSTERETIC BEARINGS SUITABLE FOR PROTECTINGSTRUCTURES DURING EARTHQUAKES[J]. Earthquake Engineering&Structural Dynamics,1982,10(4):593-604.
    [84] Fujita T, Sasaki Y, Fujimoto S, et al. SEISMIC ISOLATION OF INDUSTRIAL FACILITIES USINGLEAD-RUBBER BEARING[J]. Jsme International Journal Series Iii-Vibration Control EngineeringEngineering for Industry,1990,33(3):427-434.
    [85]陈云信.铅芯橡胶支座的研究现状与展望[J].现代机械,2005(6):79-80.
    [86]徐慧莹,步启军,韩强.铅芯橡胶支座桥梁隔震试验研究现状及展望[J].路基工程,2007(1):3-5.
    [87] Mori A, Moss P J, Carr A J, et al. Behaviour of lead-rubber bearings[J]. Structural Engineering andMechanics,1998,6(1):1-15.
    [88] Kalpakidis I V, Constantinou M C, Whittaker A S. Effects of Large Cumulative Travel on theBehavior of Lead-Rubber Seismic Isolation Bearings[J]. Journal of Structural Engineering-Asce,2010,136(5):491-501.
    [89] Jiang Y, Ye Z, Nie S, et al. Experimental study of mechanical properties of square lead rubber bearingand seismic response analysis of isolated bridge[J]. Journal of Highway and Transportation Researchand Development,2007,24(10).
    [90] Nie S, Li L. HORIZONTAL STATIC LOADING TEST FOR LEAD-RUBBER BEARINGS[M].2009.
    [91] Yoneda Y, Mita A. Nondestructive inspection of a lead rubber bearing using ultrasonic wave-art. no.61740J: Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie)[Z]. TOMIZUKAM Y C B.2006:6174, J1740.
    [92] Tan R Y, Huang M C. System identification of a bridge with lead-rubber bearings[J]. Computers&Structures,2000,74(3):267-280.
    [93] Warn G P, Whittaker A S, Constantinou M C. Vertical stiffness of elastomeric and lead-rubberseismic isolation bearings[J]. Journal of Structural Engineering-Asce,2007,133(9):1227-1236.
    [94]杜修力,韩强,刘文光等.方形多铅芯橡胶支座力学性能研究[J].地震工程与工程振动,2006(2):125-130.
    [95]江宜城,叶志雄,聂肃非等.方形铅芯橡胶支座力学性能试验研究及隔震桥梁地震响应分析[J].公路交通科技,2007(10):94-98.
    [96]吴彬,庄军生,臧晓秋.铅芯橡胶支座的非线性动态分析力学参数试验研究[J].工程力学,2004(5):144-149.
    [97]吴彬,庄军生,臧晓秋.铅芯橡胶支座等效线性分析模型参数的研究[J].中国安全科学学报,2003(8):68-71.
    [98]吴彬,庄军生.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用研究[J].中国铁道科学,2004(4):139-141.
    [99]施卫星,李振刚.铅芯橡胶阻尼器性能研究[J].四川建筑科学研究,2007(2):118-121.
    [100]赵建良.铅芯橡胶隔震支座在公路桥梁中的应用[J].城市道桥与防洪,2005(5):161-163.
    [101] Hwang J S, Chiou J M. An equivalent linear model of lead-rubber seismic isolation bearings[J].Engineering Structures,1996,18(7):528-536.
    [102] Hwang J S, Sheng L H. EQUIVALENT ELASTIC SEISMIC ANALYSIS OF BASE-ISOLATEDBRIDGES WITH LEAD-RUBBER BEARINGS[J]. Engineering Structures,1994,16(3):201-209.
    [103] Ryan K L, Kelly J M, Chopra A K. Nonlinear model for lead-rubber bearings including axial-loadeffects[J]. Journal of Engineering Mechanics-Asce,2005,131(12):1270-1278.
    [104] Wang J Q, Yao Q F. Analysis on seismic responses of base-isolated structures with lead rubberbearings under biaxial ground excitations[M].2004.
    [105] Wei D, Tong Y. Lead-rubber bearing model considering axial effect[J]. Journal of South ChinaUniversity of Technology,2008,36(10).
    [106] Kalpakidis I V, Constantinou M C, Whittaker A S. Modeling strength degradation in lead-rubberbearings under earthquake shaking[J]. Earthquake Engineering&Structural Dynamics,2010,39(13):1533-1549.
    [107] Weisman J, Warn G P. Stability of Elastomeric and Lead-Rubber Seismic Isolation Bearings[J].Journal of Structural Engineering-Asce,2012,138(2):214-222.
    [108]胡兆同,李子青,刘健新.桥梁铅销橡胶支座设计参数的研究[J].西安公路交通大学学报,1998(4):43-46.
    [109]王丽,闫维明,阎贵平.铅芯橡胶支座参数对隔震桥梁动力响应的影响[J].北京工业大学学报,2004(3):304-308.
    [110]王焕定,付伟庆,刘文光等.规则隔震结构等效简化模型的研究[J].工程力学,2006(8):138-143.
    [111]金建敏,周福霖,谭平.铅芯橡胶支座微分型恢复力模型屈服前刚度的研究[J].工程力学,2010(10):7-13.
    [112]金建敏,黄襄云,庄学真等.隔震设计中铅芯橡胶支座(LRB)屈服前刚度取值的研究[J].广州大学学报(自然科学版)2006(4):352-356..
    [113]原媛,李汝庚,石琼辉.铅芯橡胶支座的双线型模型研究[J].广州大学学报(自然科学版),2005(3):272-276.
    [114]钟铁毅,杨风利,吴彬.铅芯橡胶支座隔震铁路简支梁桥双向地震响应分析[J].中国铁道科学,2007(3):38-43.
    [115]王丽,闫贵平,闫志刚.铅芯橡胶支座桥梁减震设计与分析[C].第十届全国结构工程学术会议,中国南京,2001.
    [116]刘燕,赵胜利,李红梅等.铅芯橡胶支座的隔震效果分析[J].四川建筑科学研究,2007(4):173-176.
    [117]何文福,刘文光,霍达等.铅芯橡胶支座滞回曲线的扁环现象及其恢复力模型[J].郑州大学学报(工学版),2006(4):71-74.
    [118]熊世树,周正华,王补林.铅芯橡胶隔震支座恢复力模型的分析方法[J].华中科技大学学报(城市科学版),2003(2):28-31.
    [117]叶志雄,李黎,聂肃非等.铅芯橡胶支座非线性动态特性的显式有限元分析[J].工程抗震与加固改造,2006(6):53-56.
    [120]李冀龙,欧进萍.铅剪切阻尼器的阻尼力模型与设计[J].工程力学,2006(4):67-73.
    [121] Chen L, Jiang L, Liu P. Dynamic Properties of Lead Rubber Bearings and its Seismic IsolationApplications in High-Speed Railway Bridge: Advanced Materials Research[Z]. BU J L J Z.2011:150-151,164-167.
    [122] Yang H, Wang H, Li B, et al. Dynamic Response on Earthquake Analysis of Bridge StructureIsolated by Lead-Core Rubber Bearing: Advanced Materials Research[Z]. LI L J.2011:163-167,4251-4256.
    [123] Kim D, Yi J, Seo H, et al. Earthquake risk assessment of seismically isolated extradosed bridges withlead rubber bearings[J]. Structural Engineering and Mechanics,2008,29(6):689-707.
    [124] Zhuang W, Zhu Y, Soc. C C E, et al. Finite Element Analysis on Damping Properties of Lead-rubberBearings[J]. Ictas2009: Proceedings of Shanghai International Conference on Technology ofArchitecture and Structure, Pt I,2009:842-849.
    [125] Ahn I, Chen S S. Nonlinear model-based system identification of lead-rubber bearings[J]. Journal ofStructural Engineering-Asce,2008,134(2):318-328.
    [126] Hameed A, Koo M, Do T D, et al. Effect of Lead Rubber Bearing Characteristics on the Response ofSeismic-isolated Bridges[J]. Ksce Journal of Civil Engineering,2008,12(3):187-196.
    [127] Katsaras C P, Koumousis V K. Optimal design of lead rubber bearing seismic isolators inbuildings[J]. Proceedings of the Third International Conference on Engineering ComputationalTechnology,2002.
    [128] Jangid R S. Optimum lead-rubber isolation bearings for near-fault motions[J]. Engineering Structures,2007,29(10):2503-2513.
    [129] Jangid R S. Stochastic response of building frames isolated by lead-rubber bearings[J]. StructuralControl&Health Monitoring,2010,17(1):1-22.
    [130] Chen C, Yeh K, Liu K F. ADAPTIVE FUZZY SLIDING MODE CONTROL FOR SEISMICALLYEXCITED BRIDGES WITH LEAD RUBBER BEARING ISOLATION[J]. International Journal ofUncertainty Fuzziness and Knowledge-Based Systems,2009,17(5):705-727.
    [131]刘云贺,陈厚群.大型渡槽铅销橡胶支座减震机理的数值模拟[J].水利学报,2003(12):98-103.
    [132]朱文正,刘健新.铅销橡胶支座对桥梁抗震性能的影响[J].长安大学学报(自然科学版),2004(1):48-51.
    [133]王博,梁春雨,陈淮等.设置铅芯橡胶支座隔震的渡槽非线性地震反应分析[J].水利水电技术,2005(3):28-30.
    [134]江海波,廖蜀樵.铅芯橡胶支座隔震效果分析[J].城市轨道交通研究,2005(3):35-38.
    [135]韩学敏,钟铁毅,朱正国.铅芯橡胶支座在铁路桥梁抗震中的应用研究[J].石家庄铁道学院学报,2004(1):34-38.
    [136]刘云贺,张俊发,田洁.铅销橡胶支座应用与桥梁减震的优化配置研究[J].西安公路交通大学学报,2000(1):39-42.
    [137]田洁,张俊发,刘云贺等.铅芯橡胶支座基础隔震体系参数优化配置研究[J].世界地震工程,2003(1):158-163.
    [138]孙君,李爱群,丁幼亮.铅芯橡胶支座参数变化对大跨空间网架水平隔震效果的影响[J].防灾减灾工程学报,2008(2):208-212.
    [139]刘健新,胡兆同.公路桥梁铅销橡胶支座的标准化[J].长安大学学报(自然科学版),2003(3):56-59.
    [140]刘享,钟铁毅,杨风利等.铅芯橡胶支座隔震铁路简支梁桥参数影响研究[J].铁道建筑,2007(5):1-3.
    [141] Lee D, Taylor D P. Viscous damper development and future trends[J]. Structural Designof Tall Buildings,2001,10(5):311-320.
    [142] McNamara R J, Taylor D P. Fluid viscous dampers for high-rise buildings[J]. StructuralDesign of Tall and Special Buildings,2003,12(2):145-154.
    [143] Sorace S, Terenzi G. FLUID VISCOUS DAMPER-BASED SEISMIC RETROFIT STRATEGIES OF STEELSTRUCTURES: GENERAL CONCEPTS AND DESIGN APPLICATIONS[J]. Advanced Steel Construction,2009,5(3):325-342.
    [144]陈永祁,杜义欣.液体粘滞阻尼器在结构工程中的最新进展[J].工程抗震与加固改造,2006(3):65-72.
    [145]陈永祁.工程结构用液体黏滞阻尼器的漏油原因分析[J].钢结构,2008,23(9):53-58.
    [146]马良喆,陈永祁.对液体粘滞阻尼器动力性能及测试要求的研究及探讨[J].建筑结构,2008,38(5):65-69.
    [147] Huang Z, Li A. Experimental study on a new type of viscous damper[J]. China CivilEngineering Journal,2009,42(6):61-65.
    [148] Xu Y L, Zhan S, Ko J M, et al. Experimental investigation of adjacent buildingsconnected by fluid damper[J]. Earthquake Engineering&Structural Dynamics,1999,28(6):609-631.
    [149]刘伟庆,徐秀丽,吴晓兰等.大跨度斜拉桥结构横向消能减震设计方法[J].振动工程学报,2006,19(3):426-432.
    [150]赵仁芳,常建华.液体粘滞阻尼消能减震技术的探讨[J].有色金属设计,2006(4):37-41.
    [151] Gusella V, Terenzi G. Fluid viscous device modelling by fractional derivatives[J].Structural Engineering and Mechanics,1997,5(2):177-191.
    [152] Lu L, Lin G, Shih M. An experimental study on a generalized Maxwell model for nonlinearviscoelastic dampers used in seismic isolation[J]. Engineering Structures,2012,34:111-123.
    [153] Hou C. Behavior explanation and a new model for nonlinear viscous fluid dampers witha simple annular orifice[J]. Archive of Applied Mechanics,2012,82(1):1-12.
    [154] Lin W H, Chopra A K. Asymmetric one-storey elastic systems with non-linear viscousand viscoelastic dampers: Earthquake response[J]. Earthquake Engineering&StructuralDynamics,2003,32(4):555-577.
    [155] Sorace S, Terenzi G. Non-linear dynamic modelling and design procedure of FVspring-dampers for base isolation[J]. Engineering Structures,2001,23(12):1556-1567.
    [156] Miyamoto H K, Gilani A S J, Wada A, et al. Limit states and failure mechanisms ofviscous dampers and the implications for large earthquakes[J]. Earthquake Engineering&Structural Dynamics,2010,39(11):1279-1297.
    [157] Tong M, Liebner T. Loss of energy dissipation capacity from the deadzone in linearand nonlinear viscous damping devices[J]. Earthquake Engineering and EngineeringVibration,2007,6(1):11-20.
    [158] Jia J, Du J, Wang Y, et al. Design method for fluid viscous dampers[J]. Archive ofApplied Mechanics,2008,78(9):737-746.
    [159]陈永祁.工程结构用液体黏滞阻尼器的结构构造和速度指数[J].钢结构,2008,23(9):48-52.
    [160]马良喆,陈永祁.江阴长江大桥用液体粘滞阻尼器的测试鉴定和结果初分析[J].建筑结构.2007(S1):41-45.
    [161]魏琏,郑久建,王森.单自由度粘滞阻尼减震结构计算方法及其参数相互关系[J].工程抗震,2003(2):1-6.
    [162]魏琏,郑久建,韦承基等.论粘滞阻尼减震结构及其抗震设计方法[J].建筑结构,2004(10):10-16.
    [163] Di Paola M, La Mendola L, Navarra G. Stochastic seismic analysis of structures withnonlinear viscous dampers[J]. Journal of Structural Engineering-Asce,2007,133(10):1475-1478.
    [164] Goel R K. Seismic response of linear and non-linear asymmetric systems with non-linearfluid viscous dampers[J]. Earthquake Engineering&Structural Dynamics,2005,34(7):825-846.
    [165] Lin W H, Chopra A K. Earthquake response of elastic SDF systems with non-linear fluidviscous dampers[J]. Earthquake Engineering&Structural Dynamics,2002,31(9):1623-1642.
    [166] Lin W H, Chopra A K. Earthquake response of elastic single-degree-of-freedom systemswith nonlinear viscoelastic dampers[J]. Journal of Engineering Mechanics-Asce,2003,129(6):597-606.
    [167] Makris N, Constantinou M C, Dargush G F. ANALYTICAL MODEL OF VISCOELASTIC FLUIDDAMPERS[J]. Journal of Structural Engineering-Asce,1993,119(11):3310-3325.
    [168] Bo L I, Xingwen L. Simplified method for analysis of structures with supplementaryviscous dampers[J]. World Earthquake Engineering,2009,25(1):31-36.
    [169] Lu L, Lin G, Shih M. An experimental study on a generalized Maxwell model for nonlinearviscoelastic dampers used in seismic isolation[J]. Engineering Structures,2012,34:111-123.
    [170] Krishnamoorthy A. Variable curvature pendulum isolator and viscous fluid damper forseismic isolation of structures[J]. Journal of Vibration and Control,2011,17(12):1779-1790.
    [171]汪大洋,周云,王烨华等.粘滞阻尼减震结构的研究与应用进展[J].工程抗震与加固改造,2006(4):22-31.
    [172] Agrawal A K, Yang J N, He W L. Applications of some semiactive control systems tobenchmark cable-stayed bridge[J]. Journal of Structural Engineering-Asce,2003,129(7):884-894.
    [173] Dicleli M, Mehta A. Seismic performance of chevron braced steel frames with and withoutviscous fluid dampers as a function of ground motion and damper characteristics[J].Journal of Constructional Steel Research,2007,63(8):1102-1115.
    [174] Guneyisi E M, Altay G. Seismic fragility assessment of effectiveness of viscousdampers in R/C buildings under scenario earthquakes[J]. Structural Safety,2008,30(5):461-480.
    [175]王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
    [176]包立新,李小珍,卫星等.宜宾长江公路大桥斜拉桥抗震性能评价[J].工程力学,2008(2):174-182.
    [177]高永,刘慈军,彭天波等.阻尼器和弹性索组合使用对大跨斜拉桥地震反应的影响[J].结构工程师,2008(5):71-76.
    [178] Zhi F, Fei W, Zhitian Z, et al. Effects of Viscous Damper Parameters on Anti-seismicPerformance of Long-span Bridge[J]. Journal of Highway and Transportation Researchand Development,2009,26(2):73-78.
    [179]焦常科,李爱群,王浩.三塔悬索桥地震响应控制[J].振动测试与诊断,2011(02):45-49.
    [180]梁鹏,吴向男,李万恒等.三塔悬索桥纵向约束体系优化[J].中国公路学报,2011(1):59-67.
    [181]卢桂臣,胡雷挺.西堠门大桥液体粘滞阻尼器参数分析[J].世界桥梁,2005(2):43-45.
    [182]张长青,耿波,曾嵩等.云南普立悬索桥粘滞阻尼器参数研究[J].中外公路,2011(3):191-194.
    [183]李海鹰,耿波,奉龙成.重庆石忠高速公路忠县长江大桥粘滞阻尼器参数分析[J].公路交通技术,2007(03):24-29.
    [184]宋旭明,戴公连,曾庆元.自锚式悬索桥地震响应及减震控制分析[J].中南大学学报(自然科学版),2009(04):55-60.
    [185]蒋建军,蒋劲松.广西南宁大桥液体粘滞阻尼器设计[J].世界桥梁,2007(4):8-10.
    [186]刘振宇,李乔,蒋劲松等.南宁大桥粘滞阻尼器参数分析[J].桥梁建设,2007(04).
    [187]吴斌暄,王磊,王歧峰.使用非线性粘滞阻尼器的桥梁在地震反应中的响应分析[J].公路交通科技,2007(10):76-80.
    [188]焦驰宇,李建中,彭天波.塔梁连接方式对大跨斜拉桥地震反应的影响[J].振动与冲击,2009(10).
    [189]周友权.粘滞阻尼器在金水沟特大桥中的应用研究[J].铁道标准设计,2012(02).
    [190]黄建文,朱晞,张静.隔震桥梁结构的简化反应分析及设计参数研究[J].北方交通大学学报,2004(1):17-22.
    [191] Fallah N, Bagheri M. A STUDY ON THE APPLICATION OF GENETIC ALGORITHM FOR FINDING THEOPTIMIZED PERFORMANCE OF FLUID VISCOUS DAMPERS IN EARTHQUAKE INDUCED VIBRATION CONTROLOF BUILDING STRUCTURES[M].2010.
    [192] Reigles D G, Symans M D. Supervisory fuzzy control of a base-isolated benchmarkbuilding utilizing a neuro-fuzzy model of controllable fluid viscous dampers[J].Structural Control&Health Monitoring,2006,13(2-3):724-747.
    [193] Ahmadizadeh M. On equivalent passive structural control systems for semi-activecontrol using viscous fluid dampers[J]. Structural Control&Health Monitoring,2007,14(6):858-875.
    [194] Wong, Kevin K F. Seismic energy analysis of structures with nonlinear fluid viscousdampers-algorithm and numerical verification[J]. Structural Design of Tall andSpecial Buildings,2011,20(4):482-496.
    [195]王浩,李爱群,郭彤.超大跨悬索桥地震响应的综合最优控制研究[J].湖南大学学报:自然科学版,2006,33(3):6-10.
    [196]李爱群,王浩.大跨悬索桥地震响应控制的阻尼器最优布置方法[J].东南大学学报(自然科学版),2009(02):.
    [197]刘龙源,李硕娇,聂利英.中小跨度悬索桥非线性液体黏滞阻尼器反应谱迭代方法[J].河海大学学报(自然科学版),2010(5):550-554.
    [198]孙广俊,李爱群.安装粘滞阻尼消能支撑结构随机地震反应分析[J].振动与冲击,2009(10):117-121.
    [199] Soneji B B, Jangid R S. Passive hybrid systems for earthquake protection ofcable-stayed bridge[J]. Engineering Structures,2007,29(1):57-70.
    [200] Jian J, Xi-lin L U, Da-gen W. Performance-based Seismic Design Method for Structureswith Supplemental Viscous Dampers[J]. Chinese quarterly of mechanics,2009,30(4):577-586.
    [201]叶正强,李爱群,娄宇.粘滞流体阻尼器用于建筑结构的减震设计原理与方法[J].建筑结构,2008(8):87-90.
    [202]成世峰,曹铁柱,陈永祁.粘滞阻尼减震结构近似高阻尼反应谱计算方法的研究[J].建筑科学,2008(5):50-55.
    [203]方海,刘伟庆,李升玉等.自锚式悬索桥横向粘滞阻尼参数的理论确定方法[J].防灾减灾工程学报,2007,27(2):165-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700