用户名: 密码: 验证码:
软土地基狭长型深基坑性状分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基坑施工事故屡屡发生,特别是在软土地区,这种事故发生的概率更大,造成重大的生命财产损失。针对这一问题,有必要开展软土地基狭长型深基坑性状分析,只有对影响基坑开挖的因素有了充分了解,才能准确地预测基坑变形的发展,有效地防止事故的发生。杭州位于中国东部沿海地区,具有典型的软土地质条件,对该地区基坑开挖性状的研究可以为类似软土地区的基坑建设提供参考。本文通过数值反分析建立了硬化土小应变(HSS)模型的参数简便确定方法,并对杭州地区的内撑式基坑工程进行统计,归纳出典型的地质条件和设计参数,基于正交试验设计理念通过数值试验分析了各设计参数对基坑开挖的影响,本文的主要内容如下:
     (1)对杭州高承压水地基某深基坑工程做了详细介绍,对该工程建立了包括土、围护墙、水平支撑体系和竖向支撑体系共同作用的二维有限元模型。采用能考虑塑性变形、土体硬化,并具有区分加、卸载和刚度随应力变化特性的小应变模型(HSS模型)模拟基坑开挖过程中的土体特性。考虑到HSS模型参数确定的困难性,通过数值反分析建立了一套适合工程应用的HSS模型参数简便确定方法。
     (2)分有止水帷幕和坑底加固、只有坑底加固、只有止水帷幕和没有坑底加固和止水帷幕四种情况对承压水地基深基坑开挖性状进行对比分析,探讨止水帷幕和坑底加固在处理承压水地基深基坑开挖问题中的效果。通过分析指出当坑底以下至承压含水层顶面之间的土体重度不足以抵抗承压水压力时应考虑承压水的影响并对承压水进行处理,当坑底以下至承压含水层顶面之间的土体重度能够抵抗承压水压力时不需考虑承压水的影响,做常规设计即可。
     (3)结合现有研究成果中关于杭州地区内撑式基坑工程的相关资料以及杭州市勘测设计研究院和杭州浙大福世德岩土工程有限公司的内部勘察报告,搜集了杭州地区65个基坑工程的地质和相关设计参数,归纳出杭州城东和城西地区典型的地质条件。指出在城东地区进行深基坑开挖时应考虑承压含水层。城西地区砂、卵、砾石层很薄或缺失,基坑设计时可不考虑承压水的影响,城西地区基岩埋藏深度较浅。
     (4)基于正交试验设计理念对杭州城东和城西地区的两个典型基坑工程进行了较为全面的研究。选取围护墙墙顶侧移、围护墙墙底侧移、围护墙最大侧移、墙后地表最大沉降和坑底最大隆起量作为试验指标,围护墙插入比、首道支撑位置、坑底被动区加固体置换率、支撑水平间距和竖向间距作为试验因素,每个因素取5个水平进行正交试验,并对试验结果进行了极差分析和方差分析,总结了各设计参数对各指标影响的敏感性,指出首道支撑位置应设置在地面以下2m范围内,试图仅通过增加插入比和加固体置换率来控制基坑的变形是不可行的,另外城西地区基坑开挖范围内存在较厚的软土地基,在相同的设计条件下,基坑的变形较城东地区大很多,深基坑建设不能简单的套用城东地区的经验。
     (5)对杭州地铁1号线湘湖站北2基坑从勘察、开挖、滑动面、支撑、监测以及加固等方面对事故进行分析,结果表明,由于基坑土方开挖过程中,基坑超挖,钢管支撑架设不及时,垫层未及时浇筑,钢支撑体系存在薄弱环节等因素,引起局部范围地下连续墙墙底产生过大侧向位移,造成支撑轴力过大及严重偏心。同时基坑监测失效,未采取有效补救措施。以上直接因素致使部分钢管支撑失稳,钢管支撑体系整体破坏,基坑两侧地下连续墙向坑内产生严重位移,其中西侧中部墙体横向断裂并倒塌,风情大道塌陷。
     (6)为了对北2基坑破坏原因进行深入分析,采用正交试验设计思想,以连续墙最大侧移、墙后地表最大沉降、坑底最大隆起、连续墙最大弯矩和第一道支撑轴力以及第三道支撑轴力作为试验指标,对支撑刚度、不平衡堆载、坑底加固体置换率、以及超挖带来的影响进行分析,并对数值试验结果进行极差分析和方差分析,发现取消坑底加固和未设置第四道支撑开挖到底是引起这次事故的主要原因,另外第四道支撑的取消也使得第三道支撑的轴力显著加大,超出了钢支撑的承载能力。
Serious construction accidents happened in recent years, especially in soft clay ground, resulting in huge loss of lives and property. To prevent similar accidents, it is necessary to investigate the behavior of narrow-deep excavation in soft clay ground. Hangzhou is located in the east of China, facing the East China Sea, and there are thick, relatively soft to medium soft soil deposits lying in the subground. Excavation behavior studied here can help guiding excavation construction in the other region of similar geological conditions. This thesis introduces a novel approach to decide the input parameters of hardening-soil small model for engineering purpose. After collecting internally braced excavations in Hangzhou, the typical geological conditions and design parameters are concluded. In order to estimate the effectiveness of the parameters efficiently, the orthogonal array (OA) is introduced for screening the key factor in the numerical experiments. The main contributions of this thesis are described in the following:
     (1) This paper presents the performance of an excavation with confined water based on field observations and numerical analysis results in Hangzhou soft clay ground. A two dimensional finite element model considering the interactions between the soil and structures is setup to simulate the construction procedures. A small strain constitutive model called hardening-soil small model is used in the analysis. Through inverse analyses, a novel approach to determine the input parameters of hardening-soil small model for engineering purpose is introduced. These parameters can conveniently be obtained by ordinary geotechnical tests.
     (2) By comparing the deformations of the real case with the same case but without confined water treatment using the most appropriate input parameters introduced previously, the effectiveness of impervious curtain and ground improvement is thus evaluated. Results indicate that the deformations in this case history are substantially reduced by the installation of impervious curtain and ground improvement when the excavation depth is big, and the soil beneath the excavation bottom is insufficient to balance the confined water pressure. The difference between with and without confined water treatment appears to be insignificant when the excavation depth is small, and it is no need to take additional measurements in this situation.
     (3) After investigating the journal, thesis, conference papers and the private geological reports from Hangzhou Exploration&Surveying Design Institute and Fushide Exploration&Surveying Design Co., LTD,65internally braced excavations in Hangzhou were collected, and the typical geological conditions and design parameters is concluded. The east and west of Hangzhou shares the totally different soil conditions. Confined water should be taken into considering in the east of Hangzhou, while in the west of Hangzhou, it could be not, and the bedrock is located shallow in the underground.
     (4) Two typical narrow-deep excavations from east and west of Hangzhou are selected for analysis. In order to investigate the behavior of excavations efficiently, the orthogonal array (OA) was introduced for screening the key factor in the numerical experiments. The method took the maximum wall deflection, ground settlement, base heave and the deflection of the top and bottom of the wall as estimated indexes, and the embedded depth ratio of wall, cantilever excavation depth, replacement ratio in the passive zone, and vertical and horizontal spacing of the struts as factors. It is found that, to reduce the excavation deformation, the first level strut should be set no deeper than2m below the ground surface, and increasing the embedded depth ratio of wall and replacement ratio in the passive zone can help less in reducing excavation deformation. Deep excavation constructed in the west of Hangzhou should be paid more attention as the soft soil layer there is thicker than that in the east of Hangzhou.
     (5) An excavation collapse at the Xianghu subway station on Hangzhou metro line1was selected for this study. Through field and document investigation, the reasons of excavation collapse were considered as the misuse of the soil parameters, over excavation, incorrect installation of steel struts, invalid monitoring data, and inadequate ground improvement. With over excavation, the deflection of the west wall is much too big, which leads to an extreme axial force rise in struts, and the bending moment of the wall increased rapidly, resulting in a ruining of the retaining system.
     (6) To further investigate the reason of the collapse, the N2excavation was analyzed numerically with the program PLAXIS V8.5. In order to estimate damage efficiently, the orthogonal array (OA) was introduced for screening the key factor in the numerical experiments. Based on the previous investigation on the excavation failure, the effectiveness of the following factors is evaluated:strut stiffness, surcharge on the Fengqing Road, jet grouting improvement ratio of the subsoil under the final cutting surface, and cutting surface location of the fourth step excavation. Besides, the maximum wall deflection, ground settlement, base heave, wall bending moment and the axial force of the first and third level struts are selected as estimated indexes. The calculated results were summarized and the significance of each factor was analyzed. The primary cause of the failure was revealed. Canceling the3m thick ground improvement under the final excavation base and fourth level struts caused significant movements and internal force, respectively. When the fourth level struts canceled, the load of the third level strut increased more than the bearing capacity of the steel strut.
引文
[1]Atkinson J H, Sallfors G. Experimental determination of soil properties[C]. Proceedings of the 10th European Conference on Soil Mechanics,1991, p.915-956.
    [2]Benz T. Small-strain stiffness of soils and its numerical consequences[D]. Stuttgart:University of Stuttgart,2007.
    [3]Brinkgreve R B J. Selection of soil models and parameters for geotechnical engineering application[C]. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress, ASCE, Austin, Texas,2005, p.69-98.
    [4]Burland J B.9th Laurits Bjerrum Memorial Lecture:"small is beautiful"-the stiffness of soils at small strains[J]. Canadian Geotechnical Journal,1989,26(4):499-516.
    [5]Carder D R. Ground movements caused by different embedded retaining wall construction techniques[R]. Transport Research Laboratory Report 172, Berkshire, U.K,1995.
    [6]Clough G W, Tsui Y. Performance of tied-back walls in clay[J]. Journal of the Geotechnical Engineering Division, ASCE,1974,100(12):1259-1273.
    [7]Desai C S, Nagaraj B K. Modeling for cyclic normal and shear behavior of interfaces[J]. Journal of Engineering Mechanics, ASCE,1988,114(7):1198-1217.
    [8]Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics,1952,10(2):157-165.
    [9]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(5):1629-1653.
    [10]Fernie R, Suckling T. Simplified approach for estimating lateral movement of embedded walls in U.K. ground[C]. International Symposium on Geo Aspects of Underground Construction in Soft Ground, City University, London,1996, p.131-136.
    [11]Ferrari A A. A remedial approach to stabilize a deep excavation in Singapore[D]. Mass.: Massachusetts Institute of Technology (MIT),2007.
    [12]Finno R J, Atmatzidis D K, Perkins S B. Observed performance of a deep excavation in clay[J]. Journal of Geotechnical Engineering,1989,115(8):1045-1064.
    [13]Finno R J, Blackburn J T, Roboski J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(1):30-36.
    [14]Finno R J, Bryson S, Calvello M. Performance of a stiff support system in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(8):660-671.
    [15]Finno R J, Harahap I S, Sabatini P J. Analysis of braced excavations with coupled finite element formulations[J]. Computers and Geotechnics,1991,12(2):91-114.
    [16]Finno R J, Roboski J F. Three-dimensional responses of a tied-back excavation through clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(3):273-282.
    [17]Goodman R E, Taylor R L, Brekke T L. A model for mechanics of jointed rock[J]. Journal of Soil Mechanics and Foundation Division,1968,94(3):637-659.
    [18]Hardin B O, Drnevich V P. Shear modulus and damping in soils:design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98(7):667-692.
    [19]Hashash Y M A, Levasseur S, Osouli A, et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics,2010,37(3):323-333.
    [20]Hashash Y M A, Marulanda C, Ghaboussi J, et al. Novel approach to integration of numerical modeling and field observations for deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(8):1019-1031.
    [21]Hashash Y M A, Song H, Osouli A. Three-dimensional inverse analyses of a deep excavation in Chicago clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011,35(9):1059-1075.
    [22]Hashash Y M A, Whittle A J. Ground movement prediction for deep excavations in soft clay[J]. Journal of Geotechnical Engineering, ASCE,1996,122(6):474-486.
    [23]Hsiao E C L, Kung G T C, Juang C H, et al. Estimation of wall deflection in braced excavation in clays using artificial neural networks[C]. GeoCongress 2006:Geotechnical Engineering in the Information Technology Age, Atlanta, GA,2006, p.1-6.
    [24]Hsiao E C L, Schuster M, Juang C H, et al. Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(10):1448-1458.
    [25]Hsieh P G, Ou C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal,1998,35(6):1004-1017.
    [26]Hsiung B C B. A case study on the behaviour of a deep excavation in sand[J]. Computers and Geotechnics,2009,36(4):665-675.
    [27]Jardine R J. Some observations on the kinematic nature of soil stiffness[J]. Soils and Foundations, 1992,32(2):111-124.
    [28]Jardine R J, Potts D M, Fourie A B, et al. Studies of the influence of nonlinear stress-strain characteristics in soil structure interaction[J]. Geotechnique,1986,36(3):377-396.
    [29]Jebelli J, Meguid M A, Sedghinejad M K. Excavation failure during micro-tunneling in fine sands: A case study[J]. Tunnelling and Underground Space Technology,2010,25(6):811-818.
    [30]Karlsrud K. Performance monitoring in deep supported excavations in soft clay[C].4th International Geotechnical Seminar, Nanyang Technological Institute, Singapore,1986, p.187-202.
    [31]Kim S H, Koo H B, Bautista F E, et al. A case study on the geotechnical characteristics of collapsed cut-slope in Yeosu, Korea[C]. Proceedings of the GeoFlorida 2010 Conference, ASCE, Florida, USA,2010, p.862-871.
    [32]Kondner R L, Zelasko J S. A hyperbolic stress strain formulation for sands[C]. Proceeding 2nd Pan-American Conf., Sao Paulo, Brazil,1963, p.289-324.
    [33]Kung G T C, Hsiao E C L, Schuster M, et al. A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays[J]. Computers and Geotechnics,2007,34(5): 385-396.
    [34]Kung G T C, Juang C H, Hsiao E C L, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(6):731-747.
    [35]Kwon K S, Lin R M. Robust damage location in structures using Taguchi method[J]. Journal of Structural Engineering, ASCE,2005,131(4):629-642.
    [36]Lee F H, Yong K Y, Quan K, et al. Effect of corners in strutted excavations:Field monitoring and case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(4): 339-349.
    [37]Leung E H Y, Ng C W W. Wall and ground movements associated with deep excavations supported ground by cast in situ wall in mixed conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(2):129-143.
    [38]Li G Z, Zhao S A. Proportioning design and mechanical properties research of polypropylene fiber and polymer emulsion reinforced cement mortar[J]. Journal of Materials in Civil Engineering,2010,22(3):223-226.
    [39]Liu G B, Ng C, Wang Z W. Observed performance of a deep multistrutted excavation in Shanghai soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(8): 1004-1013.
    [40]Mana A I, Clough G W. Prediction of movements for braced cuts in clay[J]. Journal of the Geotechnical Engineering Division,1981,107(6):759-777.
    [41]Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Japan Society of Civil Engineers,1974,10(232):59-70.
    [42]Ng C W W. Observed performance of multipropped excavation in stiff clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):889-905.
    [43]Osaimi A E, Clough G W. Pore-pressure dissipation during excavation[J]. Journal of the Geotechnical Engineering Division, ASCE,1979,105(4):481-498.
    [44]Osouli A, Hashash Y M A, Song H. Interplay between field measurements and soil behavior for capturing supported excavation response[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1):69-84.
    [45]Ou C Y, Chiou D C, Wu T S. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, ASCE,1996,122(5):337-345.
    [46]Ou C Y, Hsieh P G, Chiou D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal,1993,30(5):758-767.
    [47]Ou C Y, Hsieh P G, Lin Y L. Performance of excavations with cross walls[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(1):94-104.
    [48]Ou C Y, Lai C H. Finite-element analysis of deep excavation in layered sandy and clayey soil deposits[J]. Canadian Geotechnical Journal,1994,31(2):204-214.
    [49]Ou C Y, Shiau B Y. Analysis of the corner effect on excavation behaviors[J]. Canadian Geotechnical Journal,1998,35(3):532-540.
    [50]Ou C Y, Shiau B Y, Wang I W. Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history[J]. Canadian Geotechnical Journal,2000, 37(2):438-448.
    [51]Peck R B. Deep excavation and tunneling in soft ground[C]. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico,1969, p.225-290.
    [52]Poh T Y, Goh A T C, Wong I H. Ground movements associated with wall construction:Case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(12): 1061-1069.
    [53]Potts D M. Numerical analysis:a virtual dream or practical reality?[J]. Geotechnique,2003,53(6): 535-572.
    [54]Potts D M, Fourie A B. The behavior of a propped retaining wall-results of a numerical experiment[J]. Geotechnique,1984,34(3):383-404.
    [55]Powrie W, Li E S F. Finite-element analysis of an insitu wall propped at formation level[J]. Geotechnique,1991,41(4):499-514.
    [56]Richards D J, Powrie W. Finite element analysis of construction sequences for propped retaining walls[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering,1994, 107(4):207-216.
    [57]Roscoe K H, Burland J B. On the generalized stress-strain behaviour of "wet" clay. Engineering Plasticity[M]. Cambridge:Cambridge University Press,1968.
    [58]Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in the state wetter than critical[J]. Geotechnique,1963,13(3):211-240.
    [59]Santagata M C. Factors affecting the initial stiffness and stiffness degradation of cohesive soils[D]. Mass.:Massachusetts Institute of Technology (MIT),1998.
    [60]Santos J A, Correia A G. Reference threshold shear strain of soil-Its application to obtain an unique strain-dependent shear modulus curve for soil[C]. Proceedings of the Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey, 2001,p.27-31.
    [61]Schanz T, Vermeer P A, Bonnier P G. Formulation and verification of the Hardening-Soil model[C]. Proceedings Plaxis Symposium "Beyond 2000 in Computational Geotechnics-10 Years of Plaxis", Balkema, Rotterdam,1999, p.281-290.
    [62]Schuster M, Juang C H, Roth M J S, et al. Reliability analysis of building serviceability problems caused by excavation[J]. Geotechnique,2008,58(9):743-749.
    [63]Schuster M, Kung G T C, Juang C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1823-1835.
    [64]Swanson P G, Larson T W. Sewer tunnel collapse a case history[C]. Proceedings of the Second Forensic Congress (ASCE), San Juan, Puerto Rico.,2000, p.112-122.
    [65]Tang Y G, Kung G. Investigating the effect of soil models on deformations caused by braced excavations through an inverse-analysis technique[J]. Computers and Geotechnics,2010,37(6): 769-780.
    [66]Wang H T, Jia J Q, Kang H G. Analytical approach and field monitoring for mechanical behaviors of pipe roof reinforcement[J]. Journal of Central South University of Technology, 2009,16(5):827-834.
    [67]Wang Z H, Zhou J. Three-dimensional numerical simulation and earth pressure analysis on double-row piles with consideration of spatial effects[J]. Journal of Zhejiang University-Science A,2011,12(10):758-770.
    [68]Whittle A J. A constitutive model for overconsolidated clays with application to the cyclic loading of friction pile[D]. Mass.:Massachusetts Institute of Technology (MIT), 1987.
    [69]Whittle A J. Evaluation of a constitutive model for overconsolidated clays[J]. Geotechnique,1993, 43(2):289-313.
    [70]Wong I H, Poh T Y, Chuah H L. Performance of excavations for depressed expressway in Singapore[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(7): 617-625.
    [71]Yong K Y, Lee F H, Parnploy U, et al. Elasto-plastic consolidation analysis for strutted excavation in clay[J]. Computers and Geotechnics,1989,8(4):311-328.
    [72]Yoo C. Behavior of braced and anchored walls in soils overlying rock[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(3):225-233.
    [73]Zdravkovic L, Carter J. Contributions to Geotechnique 1948-2008:Constitutive and numerical modelling[J]. Geotechnique,2008,58(5):405-412.
    [74]Zhang M, Wang X H, Yang G C, et al. Numerical investigation of the convex effect on the behavior of crossing excavations[J]. Journal of Zhejiang University-Science A,2011,12(10): 747-757.
    [75]Zhang X C, Gong X N. Observed performance of a deep multistrutted excavation in Hangzhou soft clays with high confined water[J]. Advanced Materials Research,2011,253(S1):2276-2280.
    [76]常林越,沈健,徐中华.敏感环境下深基坑的设计与三维数值分析[J].铁道工程学报,2011(11):52-57.
    [77]戴斌,王卫东,徐中华.密集建筑区域中深基坑全逆作法的设计与实践[J].地下空间与工程学报,2005,1(4):579-583.
    [78]丁晓勇.钱塘江河道形成及古河道承压水性状研究[D].杭州:浙江大学,2008.
    [79]丁勇春,王建华,徐中华,等.上海软土地区地铁车站深基坑的变形特性[J].上海交通大学学报,2008,42(11):1871-1875.
    [80]付刚.北京地铁降水方法研究与应用[D].长春:吉林大学,2005.
    [81]高俊合,赵维炳,李兴文深开挖有限元分析中释放荷载模拟-三种常用方法比较及改进的Mana法[J].河海大学学报(自然科学版).1999,27(1):47-52.
    [82]高月虹.杭州地区深基坑围护合理型式的选用[D].杭州:浙江大学,2005.
    [83]龚东庆,郑渊仁.硬化土体模型分析基坑挡土壁与地盘变形的评估[J].岩土工程学报,2010,S2(32):175-178.
    [84]贺晨,陈建宏,张志飞,等.基于Hardening-Soil模型基坑支护变形特性研究[J].矿业研究与开发,2010,30(2):44-46.
    [85]侯化国,王玉民.正交试验法[M].长春:吉林人民出版社,1985.
    [86]侯新宇,刘松玉,童立元.被动区深搅桩加固对地铁深基坑变形的影响[J].东南大学学报(自然科学版),2010,40(1):180-184.
    [87]侯新宇,刘松玉,童立元.地铁换乘站坑中坑开挖变形特性[J].东南大学学报(自然科学版),2011,41(6):1289-1294.
    [88]侯学渊,陈永福.深基坑开挖引起周围地基土沉陷的计算[J].岩土工程师,1989,1(1):1-13.
    [89]胡康虎.基坑监测及预警技术在杭州地铁建设中的应用研究[D].杭州:浙江工业大学,2010.
    [90]黄传兵.粉砂粉土地基钻孔咬合桩围护结构渗流及管涌分析[D].杭州:浙江大学,2006.
    [91]黄绍铭,高大钊.软土地基与地下工程(第二版)[M].北京:中国建筑工业出版社,2005.
    [92]黄涛.一种用标贯击数直接确定粉土,砂土压缩模量的方法[J].勘察科学技术,1997(5):11-14.
    [93]焦莹,刘玉琦,杨建民.天津站交通枢纽基坑降水工程策略[J].岩土工程学报,2008,30(S1): 299-305.
    [94]李宏伟,王国欣.某地铁站深基坑坍塌事故原因分析与建议[J].施工技术,2010(3):56-58.
    [95]林刚.不平衡基坑开挖桩撑式支护结构有限元分析[D].杭州:浙江大学,2010.
    [96]刘军,潘延平主编.轨道交通工程承压水风险控制指南[M].上海:同济大学出版社,2008.
    [97]刘兴旺,施祖元,益德清,等.软土地区基坑开挖变形性状研究[J].岩土工程学报,1999,21(4):456-460.
    [98]刘予,叶超,贾三满.北京市平原地面沉降区含水岩组和可压缩层划分[J].城市地质,2007,2(1):10-15.
    [99]娄奕红,罗旗帜.基坑开挖地表沉陷分析方法[J].公路,2002(12):51-54.
    [100]陆新征,宋二祥,吉林,等.某特深基坑考虑支护结构与土体共同作用的三维有限元分析[J].岩土工程学报,2003,25(4):488-491.
    [101]欧章煜.深开挖工程[M].台湾:科技图书,2002.
    [102]彭易华.武汉地区深基坑施工中地下水的处理[R].武汉:冶金工业部武汉勘察研究院,1996.
    [103]钱天平.坑中坑对基坑性状影响分析[D].杭州:浙江大学,2012.
    [104]沈西华.大型铁路客站基坑围护技术研究[D].杭州:浙江大学,2011.
    [105]宋龙喜,叶锋,周训.北京地铁施工中若干地下水处理方法[J].工程勘察,2006(5):19-22.
    [106]谭跃虎,吉同筠.软土深挖基坑中挡墙侧向变形分析与计算[J].岩土工程学报,1995,17(4):71-76.
    [107]唐传政,彭晓秋.武汉轨道交通二号线一期车站基坑支护方案探讨[J].岩土工程学报,2008,30(S1):597-602.
    [108]汪中卫,王海飙,戚科骏,等.土体小应变试验研究综述与评价[J].岩土力学,2007,28(7):1518-1524.
    [109]王海波,宋二祥,徐明.地下工程开挖土体硬化模型[J].清华大学学报:自然科学版,2010,50(3):351-354.
    [110]王浩然,王卫东,徐中华.基坑开挖对邻近建筑物影响的三维有限元分析[J].地下空间与工程学报,2009,5(z2):1512-1517.
    [111]王浩然,徐中华.复杂环境条件下的基坑工程设计与实测分析[J].地下空间与工程学报,2011,7(5):968-976.
    [112]王卫东,王建华.深基坑支护结构与主体结构相结合的设计、分析与实例[M].北京:中国建筑工业出版社,2007.
    [113]翁其平,王卫东.深基坑承压水控制的设计方法与工程应用[J].岩土工程学报,2008,30(S1):343-348.
    [114]翁其平,王卫东,徐中华.软土中超大面积深基坑逆作法设计与实践[J].地下空间与工程学报,2005,1(4):587-590,645.
    [115]吴怀忠,王汝恒,张桂富,等.土与结构接触面的本构关系与数值模拟[J].四川建筑科学研究,2007,33(5):88-90.
    [116]吴剑锋.不平衡基坑开挖桩-撑式支护结构二维有限元分析[D].杭州:浙江大学,2008.
    [117]吴孟杰.浙江省杭州市区域水文地质调查报告[R].杭州:浙江省地质环境监测总站,1999.
    [118]肖晓春,袁金荣,朱雁飞.新加坡地铁环线C824标段失事原因分析(一)——工程总体情况及事故发生过程[J].现代隧道技术,2009(5):66-72.
    [119]肖晓春,袁金荣,朱雁飞.新加坡地铁环线C824标段失事原因分析(二)——围护体系设计中的错误[J].现代隧道技术,2009(6):28-34.
    [120]肖晓春,袁金荣,朱雁飞.新加坡地铁环线C824标段失事原因分析(三)——反分析的瑕疵与施工监测不力[J].现代隧道技术,2010(1):22-28.
    [121]肖晓春,袁金荣,朱雁飞.新加坡地铁环线C824标段失事后的修复重建(一)——修复方案的比选与确定[J].现代隧道技术,2010(4):62-67.
    [122]肖晓春,袁金荣,朱雁飞.新加坡地铁环线C824标段失事后的修复重建(二)——修复重建方案的实施[J].现代隧道技术,2010(5):71-78.
    [123]谢雄耀.逆作法施工关键技术分析与施工过程中位移场计算机仿真理论及工程应用的研究[D].上海:同济大学,2001.
    [124]熊健.两种模型在偏压基坑有限元分析中的应用与对比[J].建筑结构,2012,42(1):124-127.
    [125]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D].上海:上海交通大学,2007.
    [126]徐中华,王建华,王卫东.主体地下结构与支护结构相结合的复杂深基坑分析[J].岩土工程学报,2006,28(S1):1355-1359.
    [127]徐中华,王卫东.敏感环境下基坑数值分析中土体本构模型的选择[J].岩土力学,2010,31(1):258-264,326.
    [128]许桂生.基于正交试验和复合单元法的排水孔优化设计[J].岩土力学,2007,28(7):1435-1438.
    [129]杨建民.基于水文地质的天津市区基坑降水设计及地面沉降分析[D].天津:天津大学,2006.
    [130]杨敏,卢俊义.基坑开挖引起的地面沉降估算[J].岩土工程学报,2010,32(12):1821-1828.
    [131]杨雪强,朱志政,何世秀,等.对Lade—Duncan, Matsuoka-Nakai和Ottosen等破坏准则的认识[J].岩土工程学报,2006,28(3):337-342.
    [132]杨毅秋.微承压水作用下深基坑稳定的有限元分析[D].天津:天津大学,2005.
    [133]尹骥.小应变硬化土模型在上海地区深基坑工程中的应用[J].岩土工程学报,2010,32(S1):166-172.
    [134]应宏伟,谢康和,潘秋元,等.软粘土深基坑开挖时间效应的有限元分析[J].计算力学学报,2000,17(3):349-354.
    [135]俞建霖.基坑性状的三维数值分析研究[J].建筑结构学报,2002,23(4):65-70.
    [136]俞建霖,李坚卿,吕文志,等.柔性基础下复合地基工作性状的正交法分析[J].中南大学学报(自然科学版),2011,42(11):3478-3485.
    [137]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报,1988,10(3):13-22.
    [138]张斗斗.天津基坑工程的研究[D].天津:天津大学,2002.
    [139]张杰.杭州承压水地基深基坑降压关键技术及环境效应研究[D].杭州:浙江大学,2012.
    [140]张旷成,李继民.杭州地铁湘湖站"08.11.15”基坑坍塌事故分析[J].岩土工程学报,2010,32(S1):338-342.
    [141]张雪婵,龚晓南,尹序源,等.杭州庆春路过江隧道江南工作井监测分析[J].岩土力学,2011,32(S1):488-494.
    [142]张雪婵,张杰,龚晓南,等.典型城市承压含水层区域性特性[J].浙江大学学报:工学版,2010,44(10):1998-2004.
    [143]张瑛颖.杭州地区粉砂土中基坑降水面的数值模拟[D].杭州:浙江大学,2006.
    [144]张志林,何运晏.国家大剧院深基坑地下水控制设计及施工技术[J].水文地质工程地质,2005,32(3):113-116.
    [145]浙江省建设厅.DB 33/T 1008-2000建筑基坑工程技术规程[S].杭州:浙江省标准设计站,2000.
    [146]中华人民共和国冶金工业部.YB 9258-97建筑基坑工程技术规范[S].北京:冶金工业出版社,1998.
    [147]中华人民共和国住房和城乡建设部.JGJ 120-99建筑基坑支护技术规程[S].北京:中国建筑工业出版社,1999.
    [148]中华人民共和国住房和城乡建设部.GB 50017-2003钢结构设计规范[S].北京:中国计划出版社,2003.
    [149]中华人民共和国住房和城乡建设部.GB 50497-2009建筑基坑工程监测技术规范[S].北京:中国计划出版社,2009.
    [150]中华人民共和国住房和城乡建设部.GB 50021-2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2009.
    [151]周恩平.考虑小应变的硬化土本构模型在基坑变形分析中的应用[D].哈尔滨:哈尔滨工业大学,2010.
    [152]周中,傅鹤林,刘宝琛,等.土石混合体渗透性能的正交试验研究[J].岩土工程学报,2006,28(9):1134-1138.
    [153]朱川鄂.天津地铁基坑支护结构研究[D].成都:西南交通大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700