用户名: 密码: 验证码:
电催化氧化技术处理制革综合废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入新世纪以来,我国的皮革产业得到迅猛发展,在世界上确立了皮革生产和贸易大国的地位,同时也带来了严峻的环保问题,成为皮革行业可持续发展的最大外界制约因素。事实上,制革工业只能将20%左右的原料皮转化为皮革,其余部分则成为副产品或污染物,而且在皮革的加工过程中还需加入多种化工药剂,却只有一部分被吸收利用,其余均汇入废水当中,导致制革废水的成分十分复杂,往往含有高浓度的有机物、氨氮,以及具有生物毒性的铬离子和硫离子,普通生化处理往往存在操作难度大、处理成本过高和难以稳定达标的问题,这些问题使得制革废水成为目前工业废水处理的难点之一。
     电化学法具有处理能力稳定高效和无二次污染等特点,在废水处理方面拥有巨大的发展潜力。随着近些年来对电催化氧化电极的深入研究,开发出了大量不同材质的电极材料,使电极各方面的性能得到了大幅提高,对废水的处理能力也得到了大幅加强,越来越接近甚至已经投入到废水处理的工业化运用当中。
     本文采用先进的金属铌覆盖掺硼金钢石(Nb/BDD)膜电极对制革综合废水进行电化学处理研究。在研究的准备阶段,测试了电极的性能,并对制革综合废水进行了预处理,然后通过单因子控制实验,考察了各项因素对处理效果的影响,同时分析其机理,最后通过正交实验,确定最佳的实验条件。
     实验结果表明:
     (1)碱一混凝沉淀法对制革综合废水中的Cr3+和SS具有非常好的去除效果。
     (2)金属铌覆盖掺硼金钢石膜电极(Nb/BDD)拥有优良的稳定性和电化学性能。Nb/BDD电极表面结构密实,比表面积大,稳定性好,电势窗口宽达4.1V左右,析氧电位高达2.1V,析氢电位低至-1.9V,背景电流低至-8×10-6-6×10-7A。
     (3)时间、电流密度、电解质的种类和浓度、pH值的变化都会对电化学氧化速率、ECR和ACE产生较大的影响。最后,综合考虑各项影响因素,根据正交实验结果发现,在电流密度为40mA/cm2,电解质(NaCl)浓度为3.0g/L,pH值为2.0,电催化氧化处理2h后,废水的COD去除率达到了87.1%,比能耗为47.65kW-h/kgCOD,电流效率为34.63%。
     总的来说Nb/BDD电化学氧化技术对经过预处理的制革综合废水有着良好的处理效果,但能耗相对较高,尚需进一步改进。
Get into a new century, the leather industry of our country gets a fast fierce development, is establishing leather production and trading the position of big country in the world, also brought a rigorous environmental protection problem at the same time, becoming the leather profession could keep on the biggest outside check and supervision factor of development。In fact, the rate of make raw material skin convert into leather is about20%in the leather industry, the rest part then becomes by-product or pollutant, and still needs and joins various chemical engineering medicines during the processing of leather, but only a part of absorbabilities make use of, the rest all remits among the waste water, cause the composition of making the tannery wastewater is very complicated, which usually imply a high density of organic matter, ammonia nitrogen, and chrome ion and sulphur ion that have a living creature toxicity, the common bio-chemical handles usually has several problem like:has greatly difficulty to operate, handle cost reach an unacceptable level and hard to attain the exhaust standard stably, which make tannery wastewater become one of the crux over the industrial waste water handles currently.
     The eletrocatalytic oxidation method own a huge development potential in the liquid waste processing for which has characteristics like efficient processing ability and with no two times pollute, etc. The each function of electrode got a significant exaltation along with the deep research of the electrode, this thesis describe an advanced Nb/BDD film electrode, and was used to Study on electrochemical treatment by handle the tannery effluent. At research of preparation stage, tested the function of electrode and pretreat the tannery effluent, then investigated each factor to processing the influence of effect since single factor experiment, analyze its mechanism at the same time, finally, make sure the best experiment condition since an orthogonal experiment.
     Experimental results show that:
     (1) Alkali-coagulant method is very effect to clean the Cr3+and SS of the tannery effluent.
     (2) The Nb/BDD electrode owns good stability and electrochemical performance. The Ti/BDD electrode surface structure is actually airtight, has a nice specific surface area and stability, Potential window is4.1V, The oxygen evolution potential is2.1V, Hydrogen potential is-1.9V, the background electric current is low to-8×10-6~6×10-7A.
     (3) Time、current density、the type and concentration of electrolyte、pH will influenced electrochemical oxidation rate、ECR and ACE to a large extent.At the end, comprehensive to consider each impact factor, according to the date of the orthogonal experiment, the best condition find is:current density is40mA/cm, the concentration of electrolyte (NaCl) is3.0g/L, pH is2.0, electrochemical oxidation react2hours later, the COD move rate of tannery effluent is87.1%, ECR is47.65kW-h/kgCOD, ACE is34.63%.
     In general, Nb/BDD electrochemical oxidation technology for pretreated tannery wastewater with good processing effect, But which is still need to be further improved for the relatively high energy consumption。
引文
[1]朱莉·斯托弗.水危机——寻找解决淡水污染的方案[M].北京:科学出版社,2000.
    [2]金兆丰.21世纪的水处理[M].北京:化学工业出版社,2003.
    [3]许桂兰,王秀敏.我国城市污水再生利用的现状及对策[J].科技情报开发与经济.2006,16(2):92-93.
    [4]肖锦.城市污水处理及回用技术[M].北京:化学工业出版社,2002.
    [5]任世芳,牛俊杰.关于全球性水资源危机若干问题的探讨[J].世界地理研究,2006,15(2):31-35.
    [6]张林生.水的深度处理与回用技术[M].北京:化学工业出版社,2004.
    [7]苏超英.中国皮革协会第五届理事会及时年度工作总结[R].上海:中国皮革工业协会六届理事会第一次扩大会议文件汇编,2007.
    [8]俞从正,陈永芳,马兴元,刘鹏杰,李晓星.皮革工业环境污染的对策——世界皮革工业的环境状况[J].中国皮革,2004, (17):31-36.
    [9]潘君,张铭让.清洁化制革工艺技术研究——制革工业现状[J].西部皮革,2000(1):38-51.
    [10]钟安清.皮革加工业绿色发展的思考[J].中国检验检疫,2006(6)51-54.
    [11]牛艳芳,马兴元,吕凌云,余梅.制革废水处理新技术存在的问题和解决方法[J].中国制革,2009,38:37-41.
    [12]苏超英.中国皮革协会第五届理事会及时年度工作总结[R].上海:中国皮革工业协会六届理事会第一次扩大会议文件汇编,2007.
    [13]陈学群.制革废水处理技术的研究[J].中国皮革,2000,29(2):18-21.
    [14]高忠柏,苏超英,制革工业废水处理[M].北京:化学工业出版社.2001.
    [15]Carucci A, Chiavola A, Majone M, et al. Treatment of tannery wastewater in sequencing batch reactor[J]. Water Science Technology,1999,40 (1):253-259.
    [16]马莉,张新申,制革工业综合废水生物处理的研究进展[J].皮革化学与工程,2006,16(2):66-70.
    [17]魏业香,戴红,唐英.制革废水处理技术现状与展望[J].西南给排水,2010, 32:25-27.
    [18]Gao Zhongbai. Operation and management of tannery wastewater anaerobic treatment system[C]. The 6th Asian International Conference of Leather Science and Technology. October 19-21,2004, Himeji, Japan.
    [19]孙丹红,石碧,曹明蓉.含铬废革屑氧化脱铬方法的研究[J].皮革科学与工程,2002,12(3):31-36.
    [20]周黎,雷晓慧,制革废水处理工程工艺设计[J].中国皮革,2006,35(9):45-47.
    [21]Nachaiyasit S, Stuckey D C. Effect of low temperatures on the performance of an anaerobic baffled reactor(ABR) [J]. Journal Chen. Tech. Biotech.1997,69:276-284.
    [22]邵良成,吴玉华,汪洁.MBBR工艺处理制革废水中试研究[J].环境科技,2010,23(4):36-37.
    [23]陈国华.环境污染治理方法原理与工艺[M].北京:化学工业出版社,2003.
    [24]董国日,柳建设,周洪波,杨宇,徐竞.国内制革废水处理工艺研究现状[J].工业水处理,2003,(7):1-4.
    [25]吴彩霞.制革废水污染防治措施及其有效性分析[J].中国环保产业,2006,(7):34-39.
    [26]卢学强,唐运平,隋峰,张金鸿.制革废水综合处理技术研究[J].城市环境与城市生态,1999,(6):21-24.
    [27]冯玉杰,李晓岩,龙宏.电化学技术在环境工程中的应用[M].北京:化学工业出版社.2002.
    [28]陈学群,周明,叶林生.蓝坯革生产废水综合治理技术[J].西部皮革,2004,(2):34-37.
    [29]张志杰,马建中,储云.我国皮革工业的现状及皮革科技工作者的责任[J].中国皮革,2005(1)1-6.
    [30]丁忠浩.有机废水处理技术及应用[M].北京:化学工业出版社,2002.
    [31]刘存海.铬蹂废水中铬的回收及其循环利用的研究[J].中国皮革,2004,(19):3-6.
    [32]黄振雄.絮凝沉淀—两段好氧组合工艺处理制革废水[J].给水排水,2006, 32(6):56-57.
    [33]张小庆,王文洲,王卫.含铬废水的处理方法[J].环境科学与技术,2004,(1):111-114.
    [34]孙春文,王晓娟.含铬废水处理工艺与综合利用[J].辽宁化工,1999,28(5):257-260.
    [35]MoliNari R, Noble R D, Alexander stern S, ed. Application of membrane separation techniques to the treatment of tanneries wastewater[J]. Principles and applications,1995,101 - 122.
    [36]陶映初,陶举洲.环境电化学[M].北京:化学工业出版社,2003.
    [37]魏世林.制革废水中的硫化物对环境的污染及其治理方法[J].中国皮革,2003,(1):3-6.
    [38]刘存海,王廷平.制革含硫废水处理技术的研究[J].中国皮革,2006,(15):48-51.
    [39]陈学群,周明,叶林生.蓝坯革生产废水综合治理技术[J].西部皮革,2004,(2):34-37.
    [40]吴浩汀,王大长.氧化沟工艺处理制革废水实例[J].中国皮革,2001,30(7):20-21.
    [41]马兴元,俞从正,李晓星,等.制革废水UASB处理的几个主要影响因素[J].水处理技术,2005,31(7):66-68.
    [42]W.M.WIEGANT, T.J.KALKER, V.N.SONTAKKE, R.R.ZWAAG. Full Scale Experience With Tannery Water Management:an Integrated Approach[J]. Wat.Sd.Teda. 1999,39 (7):169-176.
    [43]陈学群.Carrousel氧化沟技术处理制革废水工程实例[J].西部皮革,2002(8):34-361.
    [44]资慧琴,曾立云.混凝沉淀—生物接触氧化工艺处理制革废水试验研究[J].环境科学与管理,2006,(3):93-95.
    [45]吴浩汀.制革工业废水处理技术及工程实例[M].北京:化学工业出版社,2002.
    [46]陈学群,王琴.制革废水厌氧处理技术可行性分析—与中荷制革废水UASB/SBR课题组商榷[J].西部皮革,2004(6):39-43.
    [47]陶国华,陶举洲.环境电化学[M].北京:化学工业出版社,2003.
    [48]Li C, Xia J, Wang Y Z. Micro-electrolysis process for treating dyeing wastewater[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2004, 28(1):87-88.
    [49]朱又春,方战强,夏志新.废水微处理反应材料研究[J].膜科学与技术,2001,21(4):56-60.
    [50]王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004.
    [51]冯玉杰,等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [52]Naumczyk J, et al. Electrochemical treatment of textile wastewater. Water Science& Technology,1996,34 (11):17-24.
    [53]周明华,吴祖成.含酚模拟废水的电催化降解[J].化工学报,2002,53(1):40-44.
    [54]Manuel Carmona, Mohamed Khemis, Jean-Pierre Leclerc, et al. A simple model to predict the removal of oil suspensions from water using the electrocoagulation technique [J]. Chemical Engineering Science,2006,61(4):1237-1246.
    [55]徐文英,Wagner M.二沉池出水的电化学消毒试验研究[J].环境工程学报,2007,(7):35-39.
    [56]张永锋,许振良.络合——超滤过程中电沉积回收重金属研究[J].化工进展,2005(1):45-48.
    [57]Hunsom M, Pruksathorn K, Damronglerd S, et al. Electrochemical treatment of heavy metals (Cu2+、Cr6+ and Ni2+) from industrial effluent and modeling of copperreduction [J]. Water Research,2005,39:610-616.
    [58]余立新,郭庆丰,黄科,蒋维钧.极稀醋酸废水处理的双极性膜电渗析法[J].膜科学与技术,2000(2):31-34.
    [59]李飞,余立新,戴猷元.双极性膜电渗析法处理酚钠溶液研究[J].化工环保,2004(24):79-82.
    [60]刘丽丽,温青,矫彩山,杨秀石.电催化氧化处理难降解有机废水的研究进 展[J].2005(9):33-36.
    [61]Zaroual Z, Azzi M, Saib N, Zertoubi M. Contribution to the Study of Electrocoagulation Mechanism in Basic Textile Effluent[J]. Journal of Hazardous Materials, 2006,131:73-78.
    [62]Nihal Bektas, Hilal Akbulut, Hatice Inan, et al. Removal of phosphate from aqueous solutions by electro-coagulation[J]. Journal of Hazardous Materials,2004,101 -105.
    [63]林海波,刘小波,孙智权,等.Ti/PbO2和Ti/Ru-Ti-Sn氧化物涂层电极上苯酚的电化学氧化和降解[J].高等学校化学学报,2005,26(8):1531-1533.
    [64]INIESTA J, MICHAUD P A, CERISOLA G. Electrochemical oxidation of phenol at boron-doped diamond electrode[J]. Electrochimica Acta,2001,46(23):3573-3578.
    [65]王村.电化学氧化与纳滤法耦合处理染料废水[D].天津:天津大学,2009:30-42.
    [66]王静,冯玉杰,刘正乾.稀土Gd掺杂对Sn02电催化电极性能影响的研究[J].功能材料,2005,6(36):877-891.
    [67]赵国华,胡惠康,李楹,高廷耀.氧化物修饰电极降解有机污染物的电催化特性[J].环境科学,2003,23(4):385-389.
    [68]庞雅宁,赵国华,刘磊,高俊侠.金刚石膜电极电化学氧化提高废水可生化性的研究[J].环境科学,2009,29(12):1255-1259.
    [69]熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状与方向[J].工业水处理,1998,18(1):5-8.
    [70]Apostolos G, Vlyssedes. Detoxification of tannery water liquors with an electrolysis system[J]. Environmental Pollution,1997,1(2) 147-152.
    [71]Trabelsi F, Ait-Lyazidi H, Ratsimba B, et al. Oxidation of phenol in wastewater by sonoelectrochemistry[J]. Chemical Engineering Science,1996,51 (10):1857-1865.
    [72]陈卫国,熊亚,彭玉凡,朱锡海.声电催化氧化降解有机污染物的基础研究水处理技术[J].2001,3(27)152-156.
    [73]Pelegrini R T, Freire R S, Duran N, et al. Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode:process test for a phenol synthetic solution and its application for the E1 bleach kraft mill effluent[J]. Environ. Sci.Technol,2001,35:2849-2853.
    [74]安太成,顾浩飞,陈卫国,朱锡海.三维电极电助光催化降解直接染料的可行性研究[J].中山大学学报(自然科学版)2000:6(39)131-134.
    [75]Paramasivam Manisankar, Anandhan Gomathi. Electrocatalysis of Oxygen Reduction at Polyrrole Modified Glassy Carbon Electrode in Anthraquinone Solutions[J]. Journal of Molecular Catalysis A:Chemical,2005,232:45-52.
    [76]宋卫锋,倪亚明,何德文.电解法水处理技术的研究进展[J].化工环保,2001,21(1):11-15.
    [77]Murugananthan M, Bhaskar Raju G, Prabhakar S. Removal of sulfide, sulfate and sulfite ions by electrocoagulation[J]. Journal of Hazardous Materials,2004,109 (1-3): 37-44.
    [78]张招贤.钛电极工学(第二版)[M].北京:冶金工业出版社,2003.
    [79]WEI Jun-jun, HE Qi, GAO Xu-hui, LV Fan-xiu, CHEN Guang-chao, ZHU Xiu-ping, NI Jin-ren. Synthesis of Boron Doped Diamond Films by MPCVD and Anodic Oxidation of p-nitrophenol on Ti /BDD Electrode [J]. JOURNAL OF SYNTHETIC CRYSTALS,2009,38 (2):422-424.
    [80]卢小泉,薛中华,刘秀辉.电化学分析仪器[M].北京:化学工业出版社,2010.
    [81]Huang B R, Chia C T, Chang M C, et all. Biaseffects on large area polycrystalline diamond films synthesized by the bias enhanced grown technique[J]. Diamond and Related Materials,2003,12:26-321.
    [82]Troster, Fryda M, Herrmann D, et al. Electrochemical advanced oxidation process for water treatment using BDD electrodes [J]. Diamond and related materials,2002,22: 640-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700