用户名: 密码: 验证码:
工业综合废水深度处理与污水厂工艺升级改造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业的高速发展,工业综合废水的排放量也在日益增加,受其自身水质影响,工业综合废水具有高油、高粘渣、高悬浮物的特性,并存在着有机污染物浓度较高又极难降解的问题,给污水厂的处理增加了难度,对受纳水体环境造成了极为严重的污染。
     著名东北老工业基地沈阳市的铁西区汇集了众多的重工业企业,其排放的包括制药、焦化和啤酒在内的污水具有典型的工业综合废水特质,由于较难处理或处理不彻底,已对受纳水体浑河乃至其干流辽河造成了一定程度的污染。本研究
     以沈阳铁西区某污水处理厂进水为原水,该水厂日处理水量40万吨,进水中40%为工业综合废水,以曝气生物滤池为主要处理工艺,出水基本符合国家二级排放标准,面临着紧迫的达标排放升级改造任务。根据水厂的实际情况,如要实现达标排放,一方面要进一步去除有机物和氨氮,另一方面要增加脱氮除磷功能。针对工业综合废水的特质,为实现污水的达标排放以及再生利用,设计了工业综合废水深度处理的全流程工艺,并开展了有针对性的单元处理试验研究,以及日处理水量2吨的中试研究。在预处理方面,使用混凝-气浮的工艺对工业综合废水中的油污、粘渣和悬浮物进行有效的去除,同时还能将造成水体富营养化的总磷予以去除。试验对混凝单元中使用的混凝剂进行了筛选,气浮单元采用加压溶气气浮方式,将污水中的杂质和混凝剂形成的残渣进行去除。为了提高难降解工业综合废水的可生化性,使其有助于后续的生物处理,在预处理阶段还进行了水解酸化试验研究,将工业综合废水中的大分子有机物降解为较易进行生化处理的小分子有机物。在二级处理方面,采用占地面积较小、出水水质稳定的曝气生物滤池工艺,有效的对工业综合废水中的有机物和氨氮进行去除。此外,试验还在生物滤池前段设置厌氧段,通过硝化液的回流实现曝气生物滤池的前置反硝化深度脱氮功能,该工艺充分利用原水中的有机物作为碳源,使出水的有机物和总氮浓度达标排放。综上,针对工业综合废水不易处理的问题,提出了化学除磷+气浮除油+水解酸化+前置反硝化曝气生物滤池处理工艺流程,即工业综合废水的深度处理全流程工艺,并通过中试研究对处理流程以及各个处理单元运行参数进行了优化,使其出水达到国家一级A排放标准的要求。同时将全流程工艺应用于水厂的达标排放升级改造工程,提出了全面的升级改造实施方案,为工业综合废水处理厂的建设和升级改造工作提供了理论依据和数据支持。
     针对难降解、不易处理的工业综合废水,提出的化学除磷+气浮除油+水解酸化+前置反硝化曝气生物滤池深度处理全流程工艺,以及污水处理厂全面的升级改造实施方案,对于我国各二级污水厂面临的达标排放升级改造工程具有普遍的推广和借鉴意义,为彻底解决工业综合废水对水环境的严重污染问题提供了可行的实施方案和处理工艺。
With the rapid development of Chinese industry, the discharge amount of industrial combined wastewater is increasing, it results to serious pollution of receiving water environment. Determined by itself water quality, the features of industry combined wastewater is the high concentration of oil pollution and suspended solids. For the plant, it is difficult to treat the decomposition organic pollutants.
     There are many industry factories and enterprises in the Tiexi district of Shenyang which is the famous industry basis in northeast of China. The discharge wastewater includes pharmacy, coking and brewage ones with the features of typical industrial combined wastewater. Because of difficult and incomplete treatment, the wastewater pollutes the receiving river of Xihe and its main river of Hunhe. To achieve the standard-attainment discharge and reutilization, designs on the whole process treatment for the industrial combined wastewater with the pilot of 2 t/d flow. In the process of pretreatment, uses the coagulation-air flotation to remove the oil pollution and suspended solids from the wastewater, meanwhile remove the phosphorus which leads to the water eutrophication. In this study, the category of coagulant was determined, the pressure solution air flotation was used to remove the residue which constituted by the suspended solids and the coagulant from the wastewater. To improve the biodegradability of industrial combined wastewater quality and make it helpful to the following biochemical treatment, the hydrolysis acidification was studied in the process of pretreatment, which degraded the refractory organics to the low molecular weight ones. In the process of secondary treatment, the biological aerated filter was studied which occupies small space and the quality of effluent is stable, the BAF can remove the organics and the ammonia nitrogen from wastewater. Otherwise the anaerobic was set up before the biological aerated filter, the pre-denitrification function was achieved by the nitrogen water recirculation. This process fully uses the organics of wastewater to be the carbon source, and the outflow total nitrogen meets the discharging standard. For the difficult decomposition and biochemistry treatment of industry combined wastewater, studies on the advanced treatment process involving chemical phosphorus removal, air-floated oil removal, hydrolysis acidification and the anoxic/oxic biological aerated filter, the feasibility of the process and the optimal parameters were determined to achieve the GB code first-level of wastewater discharge.
     The inflow of the industrial combined wastewater advanced treatment process is from a wastewater treatment plant in Tiexi district. The plant with 40 104t/d flow and GB code second-level of wastewater discharge applies the treatment process of high-density sedimentation sank and biological aerated filter, faces the urgent upgrading reconstruction. According the situation of plant, to meet the discharging standard, the existing process need to plus the ability of nitrogen and phosphorus removal, treat the suspended solids and organic pollutants advanced. The feasibility of the process and the optimal parameters were determined by the pilot, and the theoretical evidence and database can be used to the reference for the upgrading reconstruction of the industrial combined wastewater treatment plant.
     For the difficult decomposition and biochemistry treatment of industry combined wastewater, studies on the advanced treatment process involving chemical phosphorus removal, air-floated oil removal, hydrolysis acidification and the anoxic/oxic biological aerated filter, proposes the upgrading reconstruction process. Provides the signification of promotion and reference for the plant facing upgrading reconstruction. The feasible implementation program and process were proposed for the pollution of industry combined wastewater to the water environment.
引文
1张志峰,杨立峰,戴海润.从运行管理的角度谈工业废水的集中处理[J].给水排水, 2004, (12): 43-45
    2国家环保总局《水与废水监测分析方法》编委会.水与废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    3李磊光.辽河流域(辽宁段)水土流失现状及治理对策分析[J].水土保持科技情报, 2003, (01): 42-43
    4杨维,孙炳双,周玉文.辽河流域辽宁省水污染防治规划及治理措施[J].给水排水, 2001, (09): 37-40
    5严煦世等.水和废水技术研究[M].北京:中国建筑工业出版社, 1992. 84-85
    6赵雅芝等.混凝法处理含油废水研究[J].环境保护科学, 1996, 22(1): 58-60
    7许保玖.关于混凝技术术语规范化的建议[J].中国给水排水,1997, (07): 33-36
    8肖秀梅,欧军智,吴星五.混凝沉淀-水解酸化-活性污泥工艺处理印染废水[J].工业用水与废水, 2006, (03): 23-26
    9刘佩红,李明玉,李善得,张秋云.聚合双酸铁铝混凝剂的制备及在造纸废水处理中的应用研究[J] .造纸科学与技术, 2006, 25(2): 67-70
    10田永淑,王艳红.草浆木质素作混凝剂处理工业废水的试验研究[J].工业水处理, 2005, 25(4): 26-29
    11龚云华,高廷耀.混合化工废水处理的工艺试验研究[J].给水排水, 2003, 29(8): 46-51
    12魏在山,徐晓军等.气浮法处理废水的研究及其进展[J].安全与环境学报, 2001, 1(4):14-18
    13陈翼孙,胡斌.气浮净水技术,北京:中国环境科学出版社, 1991, 8-29
    14曹瑞钮.加压溶气气浮空气组成的理论研究.同济大学学报, 2001, 29(7): 826-831
    15王文海.加压溶气气浮设备理论溶气量的计算[J].环境污染治理技术与设备, 2002, 3(7): 35-38
    16初伟,朱春生.加压溶气气浮系统技术改造研究[J].工业水处理, 2001, 21(2): 30-31
    17肖昆林.气浮塔处理含油废水的研究[J].工业水处理, 2002, 22(1): 37-39
    18王殊.气浮、曝气法在鞍钢轧钢废水处理中的应用[J].鞍钢技术, 2003, 3: 44-46
    19朱文亭,颜玲.污水的水解(酸化)好氧生物处理工艺[J].城市环境与城市生态, 2000(5): 43-48.
    20 Doig S D, Boam A T, Livingston A G. Mass transfer of hydrophobic solutes in solvent swollen silicone rubber membranes. Journal of Membrane Science, 1999, 1541, 154(1) :127
    21 K.Sombatsompop. Evaluation of biofouling phenomenon insuspended and attached growthmembrane biore-actor systems[J]. Desalination, 2006, 201: 138-149
    22王凯军.厌氧(水解)好氧处理工艺的理论与实践[J].中国环境科学, 1998, 18(4):337-340
    23 Stephenson T. Aerobic membrane bioreactors treating industrial wastewaters.In Membrane bioreactors for wastewater treatment[M]. London: IWA Publishing, 2000
    24魏新庆.曝气生物滤池的研究发展动态[J].环境工程, 2004, 10(4): 25-29
    25 Payaudeau M, Pearce A R. Experiment on biological Aerated upflow filter for teriary treatment from pilot to full scale test[J]. Wat.Sci.Tech, 2001, 44(-3): 63-68
    26马军,邱立平.曝气生物滤池及其研究进展[J].环境工程, 2006, 20(6): 7-12
    27张杰.曝气生物滤池的研究进展[J].中国给排水, 2002, 18: 77-78
    28章非娟.生物脱氮技术.环境科学出版社, 1992
    29 Paredes, D. Kuschk, Peter, et al. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment-A Review[J]. Engineering in Life Sciences, 2007, 7(1): 13-25
    30 Sutherson S. Inhibition of Nitrite Oxidation during Nitrification: Some Observations[J]. Wat. Poll. Res. J. Can., 1986, 21: 257-266
    31 Sinha B., Annachhatre A.P. Assessment of Partial Nitrification Reactor Performance through Microbial Population Shift Using Quinone Profile, FISH and SEM[J]. Bioresource Technology, 2007, 98(18): 3602-3610
    32 Jens Peter, Kerrn Jespersen and Mogens Henze. Biological Phosphorus Release and Uptake under Alternation Anaerobic and Anoxic Conditions in a Fixed-Film Reactor[J]. Wat. Res, 1993, 27(4): 617-624
    33 Abma W.R., Schultz C.E., Mulder J.W. et al. Full-scale Granular Sludge Anammox Process[J]. Water Science and Technology, Biofilm Systems VI, 2007, 55(8-9): 27-33
    34 Pathak, Bipin K. Kazama, Futaba, et al. Presence and Activity of Anammox and Denitrification Process in Low Ammonium-fed Bioreactors[J]. Bioresource Technology, 2007, 98(11): 2201-2206
    35 Voets J P, et al. Removal of Nitrogen from Highly Nitrogenous Wastewater[J]. JWPCF, 1975, 47: 394-398
    36 VAN L. Microbiological Conversions in Nitrogen Removal[J]. Wat Sci Tech, 1998, 38(1): 56-61
    37 Van Hulle, Stijn W.H, et al. Influence of Temperature and pH on the Kinetics of the Sharon Nitritation Process[J]. Journal of Chemical Technology and Biotechnology, 2007, 82(5): 471-480
    38 Broda E. Two Kinds of Lithotrophs Missing in Nature[J]. Z Allg Mikrobiol. 1977, 17(6): 491-493
    39吴燕等.废水除磷方法的现状与展望[J].天津工业大学学报, 2001, 20(l): 74-78
    40邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学, 2002, 24(2): 81-84
    41唐建国,林洁梅.化学除磷的设计计算[J].给水排水, 2000, 26(9): 17-21
    42徐乐中.生活污水化学除磷投药量的计算[J].苏州城建环保学院学报, 2001, 7(2):60-76
    43 Hascoet M. Florentz M. Influence of Nitrates on Biological Phosphorus Removal from Wastewater[J]. Wat. S. A, 1985, 11(1): 1-8
    44 Gerber A, Villiers R H, Mostert E S, et al. The Phenomenon of Simultaneous Phosphorus Uptake and Release and Its Importance in Biological Nutrient Removal in: Biological Phosphate Removal from Wastewaters[M]. Pergamon Press, Oxford, 1987, 123-134
    45 Comeau Y, Oldham W K, Hall K J. Dynamics of Carbon Reserves in Biological Dephosphatation of Wastewater, in: Biological Phosphate Removal from Wastewaters[M]. Pergamon Press, Oxford, 1987, 39-55
    46万亚珍,刘金盾.用复合沉淀剂从废水中除磷的理论计算[J].无机盐工业, 2000, 32(3): 9-11.
    47 Vlekke g.j.f.m., Comeau Yand Oldham W.K. Biological Phosphate Removal from Wastewater with Oxygen or Nitrate in Sequencing Batch Reactors[J]. Environmental Technology Letter, 1998, 9: 791-796
    48 Kuba, Van Loosdrecht M.C.M et al. Phosphorus Removal from Wastewater by Anaerobic-anoxic Sequencing Batch Reactor[J]. Wat. Sci. Tech, 1993, 27(5-6): 241-252
    49 Wachtmeister, T.Kuba, Van Loosdrecht M.C.M et al. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphrous Removing Sludge[J]. Wat. Res, 1997, 31(3): 471-478
    50 Jens Peter, Kerrn Jespersen and Mogens Henze. Biological Phosphorus Release and Uptake under Alternation Anaerobic and Anoxic Conditions in a Fixed-Film Reactor[J]. Wat. Res, 1993, 27(4): 617-624
    51化学沉淀法除磷和生物法除磷的比较[J].上海环境科学, 1997, 16(6): 33-35
    52王弘宁,扬开等.废水生物除磷技术及其研究进展[J].环境技术, 2002, 20(8): 38-42
    53 D. Bixio, C. Thoeye, J. De Koning, et al. Wastewater Reuse in Europe[J]. Desalination, 2006, 187 (1-3): 89-101
    54 Jie Zhang, Xiang-Sheng Cao and Xue-Zheng Meng. Sustainable urban sewerage system and its application in China[J]. Resources, Conservation and Recycling, 2007, 51(2): 284-293
    55 Hong Yang, Karim C. Abbaspour. Analysis of Wastewater Reuse Potential in Beijing[J]. Desalination, 2007, 212(1-3): 238-250
    56 Hascoet M. C., Florentz M. Influence of Nitrates on Biological Phosphorus Removal from Wastewater[J]. Wat. S. A, 1985, 11(1): 1-8
    57 Gerber A, Villiers R H, Mostert E S, et al. The Phenomenon of Simultaneous Phosphorus Uptake and Release and Its Importance in Biological Nutrient Removal in: Biological Phosphate Removal from Wastewaters[M]. Pergamon Press, Oxford, 1987, 123-134
    58 Comeau Y, Oldham W K, Hall K J. Dynamics of Carbon Reserves in Biological Dephosphatation of Wastewater, in: Biological Phosphate Removal from Wastewaters[M]. Pergamon Press, Oxford, 1987, 39-55
    59 Vlekke g.j.f.m., Comeau Yand Oldham W.K. Biological Phosphate Removal from Wastewater with Oxygen or Nitrate in Sequencing Batch Reactors[J]. Environmental Technology Letter, 1998, 9: 791-796
    60 Takeshita M, Soud H.FGD. Performance and Experience on Coal-fired Plants[J]. London: IEA Coal Research, 1993, 35-38
    61 Kuba, Van Loosdrecht M.C.M et al. Phosphorus Removal from Wastewater by Anaerobic-anoxic Sequencing Batch Reactor[J]. Wat. Sci. Tech, 1993, 27(5-6): 241-252
    62 Wachtmeister, T.Kuba, Van Loosdrecht M.C.M et al. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphrous Removing Sludge[J]. Wat. Res, 1997, 31(3): 471-478
    63 Hu., S.L.Ong.W.J.Ng., F.Lu, et al. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors[J]. Wat. Res, 2003, 37: 3463-3471
    64 Jens Peter, Kerrn Jespersen and Mogens Henze. Biological Phosphorus Release and Uptake under Alternation Anaerobic and Anoxic Conditions in a Fixed-Film Reactor[J]. Wat. Res, 1993, 27(4): 617-624
    65 ?orm R, Bortone G, Wanner J, et al. Behaviour of Activated Sludge from a System with Anoxic Phosphate Uptake[J]. Wat. Sci. Tech, 1998, 37(4-5): 563-566
    66 Paredes, D. Kuschk, Peter, et al. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment——A Review[J]. Engineering in Life Sciences, 2007, 7(1): 13-25
    67张杰.李捷.熊必永.城市排水系统新思维.给水排水.200228(11):24-26
    68张杰.丛广治.我国水环境恢复工程方略.中国工程科学. 2002,4(8):44-49
    69张杰.水资源、水环境与城市污水再生回用.给水排水. 1998,24(8):1
    70张杰.臧景红.城市污水深度处理在水循环、水环境和水资源可持续利用中的作用.长春工程学院学报(自然科学版). 2000,1(1):1-3
    71张杰.熊必永.李捷.杨宏.污水深度处理与水资源可持续利用.给水排水. 2003,29(6)29-32
    72張杰,熊必永,陳立学.中国における健全な水環境および水循環への歩み.日本下水道協志. 2005.42(508):41-50
    73张杰.为我国水环境恢复而努力.给水排水. 2003,29(4)1
    74 Kai Jensen, Michael Trepel. Restoration ecology of river valleys[J].Basic and Applied Ecology, 2006,7(5): 53-59.
    75张杰.我国水环境恢复与水环境学科.北京工业大学学报. 2002,2(2):178-183
    76张杰.城市排水系统的现代观.中国工程科学. 2001,3(10):33-35
    77 Morten Lauge Pedersen,Jens Moller Andersen. Restoration of Skjern River and its valley: Project description and general ecological changes in the project area[J]. Ecological Engineering,2007,30(2): 56-58.
    78张杰.李碧清.李继祥.高洁.我国城市污水处理与利用对策研究.湖南科技大学学报(自然科学版). 2004,19(2):80-84
    79张杰.熊必永.创建城市水系统健康循环促进水资源可持续利用.沈阳建筑工程学院学报(自然科学版). 2004,20(3):204-206
    80 Franco A. Montalto. The hydrology of Piermont Marsh, a reference for tidal marsh restoration in the Hudson river estuary[J]. Journal of Hydrology, 2006,36(10): 82-86.
    81 P.C. Sabumon. Anaerobic Ammonia Removal in Presence of Organic Matter: A Novel Route[J]. Journal of Hazardous Materials, 2007, 149(1): 49-59
    82 VAN L. Microbiological Conversions in Nitrogen Removal[J]. Wat Sci Tech, 1998, 38(1): 56-61
    83 Pathak, Bipin K. Kazama, Futaba, et al. Presence and Activity of Anammox and Denitrification Process in Low Ammonium-fed Bioreactors[J]. Bioresource Technology, 2007, 98(11): 2201-2206
    84 Abma W.R., Schultz C.E., Mulder J.W. et al. Full-scale Granular Sludge Anammox Process[J]. Water Science and Technology, Biofilm Systems VI, 2007, 55(8-9): 27-33
    85 Sinha B., Annachhatre A.P. Assessment of Partial Nitrification Reactor Performance through Microbial Population Shift Using Quinone Profile, FISH and SEM[J]. Bioresource Technology, 2007, 98(18): 3602-3610
    86 Zheng Gong, Fenglin Yang, Sitong Liu, et al. Feasibility of a Membrane-aerated Biofilm Reactor to Achieve Single-stage Autotrophic Nitrogen Removal Based on Anammox[J]. Chemosphere, 2007, 69(5): 776-784
    87 Vlaeminck, Siegfried E. Geets, Joke, et al. Reactivation of Aerobic and Anaerobic Ammonium Oxidizers in OLAND Biomass after Long-term Storage[J]. Applied Microbiology and Biotechnology, 2007, 74(6): 1376-1384
    88 Voets J P, et al. Removal of Nitrogen from Highly Nitrogenous Wastewater[J]. JWPCF, 1975, 47: 394-398
    89 Sutherson S, Ganczarczyk J J. Inhibition of Nitrite Oxidation during Nitrification: Some Observations[J]. Wat. Poll. Res. J. Can., 1986, 21: 257-266
    90 Feng, Yu-Jou, et al. Partial Nitrification of High Ammonia Wastewater via a Novel Membrane Bioreactor[J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2007, 19(2): 323-328 (in Chinese)
    91 Van Hulle, Stijn W.H, et al. Influence of Temperature and pH on the Kinetics of the Sharon Nitritation Process[J]. Journal of Chemical Technology and Biotechnology, 2007, 82(5): 471-480
    92 Sinha B, Annachhatre A.P. Assessment of Partial Nitrification Reactor Performance through Microbial Population Shift Using Quinone profile, FISH and SEM[J]. Bioresource Technology, 2007, 98(18): 3602-3610
    93 Hcllinga C. The SHARON Process: An Innovative Method for Nitrogcn Removal from Ammonium-richwastcwater[J]. Water Science and Technology, 1998, 37( 9): 135-142
    94 Chuang Hui-Ping, Ohashi Akiyoshi, Imachi Hiroyuki. Effective Partial Nitrification to Nitrite by Down-flow Hanging Sponge Reactor under Limited Oxygen Condition[J]. Water Research, 2007, 41(2): 295-302
    95 Broda E. Two Kinds of Lithotrophs Missing in Nature[J]. Z Allg Mikrobiol. 1977, 17(6): 491-493
    96 A. Mulder, D. G. Van, A. A. Robertson et al. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor[J]. FEMS Microbiol Ecol, 1995, 16(3): 177-183
    97 A. Dapena-Mora, I. Fernández, J.L. Campos, et al. Evaluation of Activity and Inhibition Effects on Anammox Process by Batch Rests Based on the Nitrogen Gas Production[J]. Enzyme and Microbial Technology, 2007, 40(4): 859-865
    98 Tsushima Ikuo, Ogasawara Yuji, Shimokawa Masaki, et al. Development of a Super High-rate Anammox Reactor and in Situ Analysis of Biofilm Structure and Function[J]. Water Science and Technology, 2007, 55(8-9): 9-17
    99 Isaka Kazuichi, Date Yasuhiro, Sumino Tatsuo, et al. Ammonium Removal Performance of Anaerobic Ammonium-oxidizing Bacteria Immobilized in Polyethylene Glycol Gel Carrier: Anammox Bacteria Immobilized in Gel Carrier[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1457-1465
    100 Ikuo Tsushima, Yuji Ogasawara, Tomonori Kindaichi, et al. Development of High-rate Anaerobic Ammonium-oxidizing (Anammox) Biofilm Reactors[J]. Water Research, 2007, 41(8): 1623-1634
    101李捷,熊必永,张杰.生活污水脱氮新技术[J].哈尔滨工业大学学报, 2007, (04): 561-565
    102 Liao De-Xiang, Wu Yong-Ming, Li, Xiao-Ming, et al. Nitritation-ANAMMOX Process for Treatment of Ammonium Rich Wastewater[J]. Huanjing Kexue/Environmental Science, 2006, 27(9): 1776-1780
    103 Ganigue R, Lopez H, Balaguer M.D, et al. Partial Ammonium Oxidation to Nitrite of High Ammonium Content Urban Landfill Leachates[J]. Water Research, 2007, 41(15): 3317-3326
    104 Szatkowska Beata, Cema Grzegorz, Plaza Ela, et al. A One-stage System with Partial Nitritation and Anammox Processes in the Moving-bed Biofilm Reactor[J]. Water Science and Technology, Biofilm Systems VI, 2007, 55(8-9): 19-26
    105 Hippen A, Helmer C, Kunst S, et al. Six Year’s Practical Experience with Aerobic/Anoxic Deammonification in Biofilm Systems[J]. Water Sci.Technol, 2001, 44: 39-48
    106 Kuai L, Verstraete W. Ammonium Removal by the Oxygen-limited Autotrophic Nitrification-denitrification System[J]. Applied & Environmental Microbiology, 1998, (11): 4500-4506
    107 VAN L. Microbiological Conversions in Nitrogen Removal[J].Wat Sci Tech, 1998, 38(1): 56-61
    108 Hcllinga C. The SHARON Process:An Innovative Method for Nitrogcn Removal from Ammonium-richwastcwater[J]. Water Science and Technology, 1998, 37(9): 135-142
    109张波,高廷耀.倒置A2/O工艺的原理与特点研究[J].中国给水排水, 2000, 16(7): 11-15
    110许玫英,方卫,张丽娟等.生物脱氮新技术在垃圾渗滤液工程化处理中的应用[J].环境科学, 2007, (03): 607-612
    111 Gali A, Dosta J, van Loosdrecht M.C.M, et al. Two Ways to Achieve an Anammox Influent from Real Reject Water Treatment at Lab-scale: Partial SBR Nitrification and SHARON Process[J]. Process Biochemistry, 2007, 42(4): 715-720
    112 Waki Miyoko, Tokutomi Takaaki, Yokoyama Hiroshi, et al. Nitrogen Removal from Animal Waste Treatment Water by Anammox Enrichment[J]. Bioresource Technology, 2007, 98(14): 2775-2780
    113 Isaka Kazuichi, Sumino Tatsuo, Tsuneda Satoshi, et al. High Nitrogen Removal Performance at Moderately Low Temperature Utilizing Anaerobic Ammonium Oxidation Reactions[J]. Journal of Bioscience and Bioengineering, 2007, 103(5): 486-490
    114 L Gut, E Plaza, J Trela, et al. Combined Partial Nitritation/Aanmmox System for Treatment of Digester Supernatant[J]. Wat.Sci.Tech, 2006, 53(12): 149-159
    115张杰.熊必永.城市水系统健康循环的实施策略.北京工业大学学报. 2004,30(2):185-189
    116张杰.丛广治.水环境恢复与城市下水道.苏州科技学院学报(工程技术版). 2003,16(2)1-3
    117张杰.熊必永.水环境恢复方略与水资源可持续利用.中国水利A. 2003,11:13-15
    118 Kim Nam-choon. Ecological restoration and revegetation works in Korea [J]. Landscape and Ecological Engineering,2005,5(1):40-45.
    119王淑梅,王宝贞,等.对我国城市排水体制的探讨[J].中国给水排水, 2007,16(1):16-21.
    120周刚炎.莱茵河流域管理的经验和启示[J].水利水电快报,2007,28(5): 28-32.
    121缪荪.引进先进技术加强水环境保护和治理[J].中国水利,2004, (23): 58-59.
    122彭静,李翀,等.论河流保护与修复的生态目标[J].长江流域资源与环境,2007,16(1):67-73.
    123郑琴.德国污水处理概况[J].中国市政工程,1998,(04):81-84.
    124张杰,丛广治.我国水环境恢复工程方略[J].中国工程科学,2002,4(8):44-49.
    125孙东亚,董哲仁,等.河流生态修复技术和实践[J].水利水电技术,2006,37(12):4-8.
    126 Kim Nam-choon. Ecological restoration and revegetation works in Korea [J]. Landscape and Ecological Engineering,2005,5(1):40-45.
    127 Kilber DF. Urban Stormwater Hydrology[M].American Geophysical Union’s Water Resources Monograph, 1982.
    128张凌娜,李翔,钱宗琴.竖向流曝气生物滤池工艺在污水处理中的应用[J].山西建筑, 2009,(05) .
    129马迎霞,刘转年,张威.曝气生物滤池在中水回用中的应用[J].安全与环境工程,2009,(03) .
    130熊志斌,邵林广.曝气生物滤池技术研究进展[J].当代化工, 2009,(01) .
    131于德淼,马军,马维超.空气曝气与纯氧曝气生物滤池应用于污水深度处理的研究[J].给水排水, 2009,(12) .
    132张怡然,吴立波,付丽霞,翟利芳.曝气生物滤池在中水回用中的应用现状[J].科技信息, 2010,(07) .
    133白慧玲,杨云龙.前置反硝化曝气生物滤池处理生活污水的研究[J].山西建筑, 2010,(16) .
    134朱倩倩,成小娟,黄凤,何先勇,徐宏.组合工艺在有机废水处理中的应用[J].化学与生物工程, 2010,(06) .
    135赵彦峰,高亮,王岩.铜川市污水再生利用工程工艺的确定[J].山西建筑, 2010,(28) .
    136管建刚,张斌,吴锦红. UBAF与IBAC结合工艺应用于化工污水回用的试验研究[J].北方环境, 2005,(01) .
    137张薇,史开武,孔惠.曝气生物滤池(BAF)的发展与现状[J].北京石油化工学院学报, 2005,(03) .
    138王俊,肖波,魏群.中水回用现状及研究进展[J].广东化工, 2006,(08) .
    139丛广治,白宇,张杰,白春学,李泳.生物膜过滤技术处理污水厂二级出水[J].中国给水排水, 2002,(12) .
    140乔晓时,许云闳,全燮. BIOFOR曝气生物滤池用于城市污水处理[J].中国给水排水, 2004,(07) .
    141尤隽,任洪强,严永红. BAF/UF/RO联合工艺深度处理印染废水中试[J].中国给水排水, 2006,(21) .
    142兰善红,陈锡强,梁谋会,张炽辉.新型填料曝气生物滤池处理生活污水的研究[J].中国给水排水, 2007,(09) .
    143谢春生,黄瑞敏,肖继波,周媛媛,卿海波.曝气生物滤池—纳滤深度处理印染废水的研究[J].中国给水排水, 2007,(15) .
    144何强,段秀举.曝气生物滤池处理城市污水试验及效能研究[J].资源环境与工程, 2006,(02) .
    145张东曙,高廷耀.石化废水深度处理回用作循环冷却水[J].中国给水排水, 2003,(03)
    146邹茂荣,彭永臻,荣宏伟. HOBAF工艺处理石化废水生产性试验研究[J].哈尔滨商业大学学报(自然科学版), 2004,(02)
    147郭天鹏,汪诚文,陈吕军,胡纪萃,靳志军,刘旭,周洪江,陈玉才,李强利.升流式曝气生物滤池深度处理城市污水的工艺特性[J].环境科学, 2002,(01)
    148武江津,孙长虹,马健驹,秦永生. BAF-BAC工艺在炼油厂二级出水深度处理中的应用[J].环境科学, 2003,(06)
    149胡保安,连立国,倪福功,纪轩,顾平.曝气生物滤池深度处理石化废水的试验研究[J].中国给水排水, 2007,(07)
    150朱正齐,姜佩华,陈季华.曝气生物滤池(BAF)的研究进展[J].净水技术, 2005,(01)
    151姚宏,马放,田盛,李圭白.臭氧-固定化生物活性炭滤池深度处理石化废水的试验研究[J].环境污染治理技术与设备, 2005,(05)
    152刘景明,吕世海,陈立颖,王希,王静芳,刘伟.活性炭曝气生物滤池深度处理化工废水的研究[J].东北电力大学学报(自然科学版), 2007,(04)
    153乔晓时,许云闳,全燮. BIOFOR曝气生物滤池用于城市污水处理[J].中国给水排水, 2004,(07)
    154王星卜,关继海,樊东莹,王森.安徽阜阳市污水处理厂设计[J].中国给水排水, 2002,(12)
    155陆天友.清镇朱家河污水处理厂CASS工艺设计[J].贵州工业大学学报(自然科学版), 2002,(01)
    156李嘉颖.关于某污水处理厂设计中的几点体会[J].建材与装饰(下旬刊), 2008,(04)
    157沈光范.关于城市污水处理厂设计的若干问题[J].中国给水排水, 2000,(03)
    158刘雪辉.试论城市污水处理厂的规划设计-对长沙市污水处理厂调查的感悟[J].中外建筑, 2005,(04)
    159刘向荣,简德武.洛阳市涧西污水处理厂设计[J].中国给水排水, 2003,(02)
    160罗惠云.重庆三峡库区污水处理工程设计体会[J].中国给水排水, 2003,(S1)
    161朱正齐,姜佩华,陈季华.曝气生物滤池(BAF)的研究进展[J].净水技术, 2005,(01)
    162郭海娟,马放,沈耀良. C/N比对反硝化除磷效果的影响[J].环境科学学报, 2005,(03)
    163高小平,吉芳英,丁彩娟,左宁,张斌.好氧段对反硝化除磷系统的影响[J].重庆大学学报(自然科学版), 2005,(03)
    164崔高峰. COD/SO_4~(2-)比值对硫酸盐去除率影响的研究[J].工业水处理, 2000,(02)
    165杨殿海,宋拥好,谭巧国,杨企星.低碳源、低能耗型改良A~2/O工艺的脱氮除磷研究[J].中国给水排水, 2006,(23)
    166尤作亮,蒋展鹏,师绍琪,祝万鹏.强化去除率在强化一级处理效果评价中的应用[J].中国给水排水, 1999,(08)
    167张杰,李相昆,黄荣新,鲍林林,邵纯红,姜安玺.连续流双污泥系统反硝化除磷实验研究[J].现代化工, 2005,(S1)
    168顾伟民.电解-气浮法处理毛纺染色污水工程试验研究[J].环境污染治理技术与设备, 1985,(09)
    169 A Dapena-Mora, J L Campos, A Mosequera-Corral, et al. Anammox Process for Nitrogen Removal from Anaerobically Digested Fish Canning Effluents[J]. Wat.Sci.Tech, 2006, 53(12): 265-274
    170 Chamchoi Nutchanat, Nitisoravut Suwanchai. Anammox Enrichment from Different Conventional Sludges[J]. Chemosphere, 2007, 66(11): 2225-2232
    171赵志宏,廖德祥,李小明等.厌氧氨氧化微生物颗粒化及其脱氮性能的研究[J].环境科学, 2007, (04): 800-804
    172 Jung J.Y, Kang S.H, Chung Y.C, et al. Factors Affecting the Activity of Anammox Bacteria during Start up in the Continuous Culture Reactor[J]. Water Science and Technology,Wastewater Reclamation and Reuse for Sustainability, 2007, 55(1-2): 459-468
    173 Wouter R.L. van der Star, Wiebe R. Abma, Dennis Blommers, et al. Startup of Reactors for Anoxic Ammonium Oxidation: Experiences from the First Full-scale Anammox Reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163
    174徐丽华,李亚新.一种好氧生物处理有机废水的新工艺设备—生物曝气滤池[J].给水排水,1999,25 (11) :1-4
    175 Mulder A,Van de Graaf A A,Robertson LA,et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995,16(3):177-183.
    176 Sechmidt I, Bock E.Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha[J].Areh.Mierobiol. 1997,167: 106-11.
    177 Hanaki K,HongZ,Matsuo. Produetion of nitrous oxide gas during denitrifieation of wastewater[J].WaterSci. Technol. 1992,26: 1027 -36.
    178张卫东,谢庆胜.巢湖流域水污染控制决策GIS支持系统的建设.安徽农业科学,2002,30(4):493-495
    179 B. Adenso-D, J. Tuya, M. Goitia. EDSS for the evaluation of alternatives in waste water collecting systems design. Environmental Modelling & Software 2005,20:639-649
    180 D. Koutsoyiannis, G. Karavokiros, A. Efstratiadis. A decision support system for the management of the water resource system of Athens. Physics and Chemistry of the Earth.2003,28:599–609
    181 HT Wang. Two-domain flow model for flow analysis in a fracture rock mass and its application, IHP-V Technical Doc. in Hydrol. No 27, UNESCO, Paris, 2000:191-194
    182 Hongtao Wang, Enzhi Wang, Fusheng Zhou. A model coupling discrete and continuum fracture domains for ground water flow in fractured media, Proceedings of the International Groundwater Symposium, Berkeley, USA, 2002:334-338,
    183 HT Wang,YX Li,EZ Wang. Strategic ground water control for the reduction of karst land collapse hazard in Tangshan, China,Engineering Geology, 1997,l48:135-148
    184 HT Wang,YF Nie. Remedial strategies for municipal solid waste management in China, J Air & Waste Manag.Association,2001,51:264-272
    185 Zhang jie ,Xiong biyong. Innovative Modern Urban Drainage: from Pollution Control to Resource Recycling. IWA International Conference 2005.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700