用户名: 密码: 验证码:
诱导结晶法回收和去除氟化盐工业废水中的氟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国是世界上最大的氟化盐生产国,氟化盐生产过程产生的大量高浓度含氟废水,对动植物和人体造成了严重的危害。目前,含氟废水主要采用传统的化学沉淀法处理,但沉淀过程产生的污泥含水率高、回收价值低、处理处置困难。与此同时,作为宝贵的非金属矿产品,萤石资源面临严重的紧缺危机。从资源循环和可持续发展的角度考虑,实现含氟废水中氟的回收具有重要的经济和环境意义。
     本论文以湖南某氟化盐公司工业含氟废水为研究对象,以实现废水中氟的资源化及出水达标排放为目标,提出了采用晶种诱导结晶法从废水中分步回收砂状冰晶石和砂状氟化钙的新思路,分别设计了新型沉淀反应与固液分离一体化装置和流化床结晶反应器,开展了砂状冰晶石结晶及砂状氟化钙结晶技术的系统研究,解决了传统工艺回收得到的冰晶石、氟化钙污泥含水率高、粒径小、不能回用的问题。主要研究结果如下:
     分别对冰晶石和氟化钙沉淀体系的固液平衡热力学进行了研究。(1)通过分析Al3+-Na+-F--H+-H2O体系中不同形态化合物的分布以及Na3AlF6、NaAlF4、Al(OH)3等固相稳定存在的条件,得出体系中稳定存在的固相应为Na3AlF6与NaAlF4[或Al(OH)3]的混合物,不能从废水中直接沉淀得到Na/Al分子比为3的冰晶石产品;溶液平衡总氟浓度越大,越有利于Na3AlF6的析出,有利于提高冰晶石Na/Al分子比。(2)通过分析Ca2+-F--H+-Al3+-H2O体系中CaF2沉淀溶解度与粒径的关系以及CaF2沉淀的介稳区,得出CaF2粒径越大,其活度积常数越小,溶解度越小,平衡总氟浓度越低,增大CaF2沉淀粒径是提高含氟废水处理效果的有效途径。氟化钙的溶解度曲线和过饱和溶解度曲线将溶液分成了不饱和区、介稳区和浑浊区,介稳区图可以对不同pH、不同Ca/F下氟化钙的成核过程进行预测。
     分别对砂状冰晶石和砂状氟化钙的回收工艺条件进行了研究。(1)研究了影响冰晶石砂状化及分子比的因素,得出延长晶种停留时间可以提高促进冰晶石沉淀砂状化,降低其含水率;提高沉淀剂铝酸钠溶液的Na/Al苛性比,可以将冰晶石分子比控制在2.4-3.O。(2)在流化床中开展了石英砂流态化实验,得出石英砂粒径越大,对应的流态化速度和带出速度都越大,有利于流化床操作流量的控制;流化床的床层压差可以作为控制流化床运行状态和排晶条件的重要指标。(3)研究了高过饱和度下流化床中氟化钙的结晶动力学,确定了氟化钙生长速率的动力学方程,得出在高过饱和度下,氟化钙颗粒与晶种之间通过吸附的方式团聚长大,并保持了较高的线性生长速率。(4)研究了高过饱和度下流化床中氟化钙的沉淀脱氟效果,以氢氧化钙悬浊液为沉淀剂对1000mg/L的HF废水进行了处理,控制废水流量为15L/h、Ca/F=1、pH=6.0-11.0时,出水总氟浓度为20-80mg/L。(5)研究了絮凝沉淀法处理低浓度含氟废水的工艺条件,控制反应pH=6.5-8.0、聚铝用量为100mg/L-400mg/L时,出水总氟浓度低于10mg/L。
     设计并使用诱导结晶反应器对氟化盐工业废水进行了分步回收和处理。(1)创新性设计了沉淀反应与固液分离一体化装置,采用该装置可以有效延长晶种停留时间,强化晶种诱导结晶过程。采用中试规模(处理能力80L/h)的沉淀反应与固液分离一体化装置对工业含氟废水进行了处理,控制反应pH=4.0-7.0、搅拌反应时间=14min、反应温度为35-50℃时,冰晶石产品回收率高于70%,冰晶石产品含水率低于20%、产品质量符合冰晶石国家标准(GB/T4291-2007)的要求。(2)设计并使用处理能力为0.49m3/h的流化床结晶反应器对总氟浓度为300-1000mg/L的工业综合废水进行了处理,以氢氧化钙悬浊液为沉淀剂,控制pH=7.0-10.0, Ca/F>1时,出水总氟浓度为15-40mg/L。流化床连续运行50h后,底部沉淀的平均粒径为159.0gm,含水率为27.0%,沉淀质量达到萤石粉矿质量要求(GB19321-88),可以在陶瓷、水泥等行业回用。(3)采用絮凝沉淀法对总氟浓度为20-40mg/L的氟化钙沉淀母液进行了深度处理,调节废水pH=7.0-8.0,控制聚铝投加量为200mg/L、废水流量为40L/h时,出水总氟浓度低于10mg/L,出水浊度低于30NTU,达到国家污水综合排放标准(GB8978-1996)的要求。
     在中试研究的基础上,以沉淀反应与固液分离一体化装置为核心设备,设计了处理能力为100m3/h的冰晶石回收系统。对单台处理能力为25m3/h的结晶反应器进行了工业化生产调试,从工业含氟废水中回收得到了质量合格(GB/T4291-2007)、粒径大的冰晶石产品,产品可作为铝电解行业原料回用。目前,冰晶石回收系统已成功实现工业化应用。
Abstract:China is one of the largest producers of fluoride salts in the world. Large amount of high-concentration fluorine-containing wastewater are produced in fluorine industry, causing serious hazardous effects to the propagations and human-beings. The traditional methods for fluoride removal generally involve chemical precipitation and coagulation. The process generates large amounts of sludge with high water content, low quality, and non-reusability, which has to be disposed with increasing costs. Meanwhile, as precious non-metallic ore resources, fluorites are suffering a shortage crisis worldwide. Hence, the recovery of fluoride from industrial wastewater has great economic and environmental significance from the perspective of resource circulation and sustainable development.
     In this paper, the treatment of fluorine-containing industrial wastewater from a fluorine salts factory in Hunan Province has been investigated. The aim of the study is that the fluorine of wastewater can be recovered as resource, and that the effluent water quality can meet the discharge standard. A novel process, including recovery of sandy cryolite by crystallization and recovery of sandy calcium fluoride by crystallization, has been proposed. A noval reaction-separation integrated reactor and a fluidized bed reactor are designed, respectively. The crystallization technologies for recovery of sandy cryolite and sandy calcium fluoride are investigated. The problems that the cryoliye products and calcium fluoride products with small particle size and high water content cannot be reused have been solved by the novel process. The main results are as follows:
     The solid-liquid equilibrium conditions for the cryolite system and for the calcium fluoride system were investigated, respectively.(1) The distribution of dissolved Al and F complexes, and the stable zones of Na3AlF6, NaAlF4and A1(OH)3for Al3+-Na+-F--H+-H2O system were obtained. The results showed that the stable solids were Na3AlF6, NaAlF4or A1(OH)3, indicating that the cryolite with Na/Al molar ratio of3cannot be precipitated in wastewater. The solid of Na3AlF6with higher Na/Al molar ratio was favored to precipitate with increasing total concentration of fluoride.(2) The relationship between the solubility and particle size of calcium fluoride, and the metastable zones of calcium fluoride for Ca2+-F--H+-Al3+-H2O system were studied. The results showed that the solubility of CaF2and the equilibrium fluoride concentration decreased with increasing particle size of CaF2. The removal efficiency of fluoride increased with increasing particle size of calcium fluoride. The solubility curve and supersolubility curve divided the diagram into undersaturated region, metastable region, and labile region, respectively. The diagram of metastable region can be used to predict the nucleation process of calcium fluoride.
     The technological conditions for recovery of cryolite and recovery calcium fluoride were investigated, respectively.(1) The influence of several variables on the particle size and the molar ratio of cryolite products were studied. The results showed that the sandy cryolite products with low water content can be obtained with increasing seed retention time. The molar ratio of cryolite products can be maintained between2.4to3.0with increasing molar ratio of sodium aluminate.(2) The fluidized state of quartz sand in the fluidized bed (FBR) reactor was characterized. The results showed that the fluidization velocity and terminal velocity increased with increasing seed size, leading to a wide range of controlling conditions. The pressure difference can be used to predict the operation state and the particle size of pellets in the FBR.(3) The growth kinetics of calcium fluoride at high supersaturation was studied in the FBR, and the kinetics model of crystal growth was determined. The results showed that the calcium fluoride and fine particles grew in size with a high linear growth rate by adsorption and aggregation at high supersaturation.(4) The removal efficiency of fluoride by precipitation of calcium fluoride in the FBR was studied at high supersaturation. The synthetic HF wastewater was treated by the suspension of Ca(OH)2. The results showed that the fluoride concentration of the effluent was20to80mg/L at an influent flow of11to32L/h, an influent concentration of1000mg/L, Ca/F molar ratio above 1, and pH of6.0to11.0.(5) The deep removal efficiency of fluoride by flocculation was studied. The results showed that the fluoride concentration of the effluent was below10mg/L at a polyaluminium chloride dosage of100to400mg/L, and pH of6.5to8.0.
     Two crystallization reactors were designed and used for recovery and treatment of fluorine-containing industrial wastewater by steps.(1) A novel reaction-separation integrated reactor was designed. The seed retention time can be prolonged to strengthen the induced crystallization process in the integrated reactor. The fluorine-containing industrial wastewater was treated by a pilot-scale integrated reactor (capacity80L/h). The recovery rate of cryolite was above70%at a reaction temperature of35℃to50℃, a reaction pH of4.0to7.0, and a stirring reaction time of14min. The quality of cryolite products with large size and low water content (<20%) can meet the national standard of GB/T4291-2007.(2) The industrial complex wastewater with a fluoride concentration of300to1000mg/L was treated by a pilot-scale fluidized bed reactor (capacity0.49m3/h). The suspension of Ca(OH)2was used as the precipitant. The results showed that the fluoride concentration of the effluent was15to40mg/L at pH of7.0to10.0, and Ca/F molar ratio above1. After50h operation, the particle size and water content of calcium fluoride on bottom of the FBR were159.0μm and27.0%, respectively. The qualities of calcium fluoride products can meet the national standard of comminuted fluorspar (GB19321-88) in China. The calcium fluoride products could be used as raw materials in the ceramics and cement industry.(3) The mother liquor of calcium fluoride with a fluoride concentration of20to40mg/L was treated by flocculation process. The influent flow of the wastewater was40L/h, and the reaction pH of wastewater was adjusted at7.0to8.0. The dosage of polyaluminium chloride was200mg/L. The turbidity and fluoride concentration of effluent were less than30NTU and lOmg/L, respectively. The qualities of effluent can meet the national discharge standard (GB8978-1996).
     Based on the pilot-scale study, the system with a production capacity of100m3/h was designed for recovery of cryolite. The reaction-separation integrated reactor was the key equipment of the stystem. One of the integrated reactors with a production capacity of25m3/h was tested. The cryolite products with large size and high quality (GB/T4291-2007) can be precipitated from industrial wastewater. The system for recovery of cryolite has been successfully applied to industry.
引文
[1]钟兴厚,肖文锦,袁启华,娄润和.无机化学丛书(第六卷,卤素)[M].北京:科学出版社,1995.
    [2]胡伟.氟化工生产技术(上)[M].北京:科学出版社,2010.
    [3]GB8217-87,萤石块矿质量标准[S].北京:冶金工业出版社,1988.
    [4]宋忠宝,栗亚芝,张江华,等.一种重要的非金属资源-萤石矿的开发及利用[J].西北地质,2006,38(4):54-59.
    [6]侯红军,杨华春,皇甫根利,等.冰晶石灼减的影响因素[J].轻金属,2004,(2):10-13.
    [7]茆卫兵.控制合成冰晶石中杂质SiO2含量的研究[J].无机盐工业,1996,(5):11-12.
    [8]陆正华.论合成冰晶石的结晶水[J].轻金属,1988,(11):21-24.
    [9]GBT 4291-2007,冰晶石[S].北京:中国标准出版社,2007.
    [10]谢亚平,赵天水.氟平衡计算模式[J].轻金属,1992,(2):33-36.
    [11]谢亚平.铝电解氟平衡及相关的氟化盐单耗[J].轻金属,1997,(5):32-35.
    [12]尹丽文.中国应尽快停止出口萤石[J].国土资源情报,2009,(8):16-19.
    [13]吕惠进.我国萤石矿产资源可持续开发利用研究[J].矿业研究与开发,2005,25(1):6-9.
    [14]李冬永.我国氟化盐工业现状[J].中国金属通报,2003,(44):14-17.
    [15]陈石义,张寿庭.我国氟化盐产业中萤石资源利用现状与产业发展对策[J].资源与产业,2003,15(2):79-83.
    [16]陈宏宇.我国氟能源存在的问题研究-兼析中铝集团氟化盐企业现状[D].北京:对外经济贸易大学,2006.
    [17]吴海峰,侯利芳.无机氟化工氟资源综合利用发展现状与建议[J].无机盐工业,2011,43(12):9-11.
    [18]付红扬,魏莹莹,李勇.磷矿伴生氟资源综合利用的研究进展[J].辽宁化工,2012,41(5):462-464.
    [19]任锦霞.高氟废水除氟实验研究[D].西安:西安建筑科技大学,2005.
    [20]Huang C J, Liu J C. Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer [J]. Water Research,1999,33(16):3403-3412.
    [21]Hu C Y, Lo S L, Kuan W H, et al. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation[J]. Water Research,2005,39(5): 895-901.
    [22]Bhatnagar A, Kumar E, Sillanpaa M. Fluoride removal from water by adsorption-a review[J]. Chemical Engineering Journal,2011,171(3):811-840.
    [23]Grzmil B, Wronkowski J. Removal of phosphates and fluorides from industrial wastewater[J]. Desalination,2006,189(1):261-268.
    [24]Saha S. Treatment of aqueous effluent for fluoride removal[J]. Water Research, 1993,27(8):1347-1350.
    [25]徐金兰.白银氟化盐厂含氟废水特性研究[D].西安:西安建筑科技大学,2001.
    [26]徐睛.氟化盐厂的主要环保问题及其对策[J].轻金属,2001,(9):59-63.
    [27]张玉芝.微量元素与人体健康[J].微量元素与健康研究,2004,21(3):56-57.
    [28]王树华.氟化工的安全技术及环境保护[M].北京:化学工业出版社,2005.
    [29]Ozsvath D L. Fluoride and environmental health:a review[J]. Reviews in Environmental Science and Bio/Technology,2009,8(1):59-79.
    [30]Wang B, Zheng B, Zhai C, et al. Relationship between fluorine in drinking water and dental health of residents in some large cities in China[J]. Environment international,2004,30(8):1067-1073.
    [31]Alain T, Gunter H. Fluorine and health:molecular imaging, biomedical materials and pharmaceuticals[M]. Amsterdam:Elsevier Science,2008.
    [32]朱其顺,许光泉.中国地下水氟污染的现状及研究进展[J].环境科学与管理,2009,34(1):42-44.
    [33]Groth III E. Fluoride pollution[J]. Environment:Science and Policy for Sustainable Development,1975,17(3):29-38.
    [34]卢旭初,王介庆.天然高氟坏境对畜牧业的影响[J].兽药与饲料添加剂,2000,5(6):29-30.
    [35]Arnesen A K M, Krogstad T. Sorption and desorption of fluoride in soil polluted from the aluminium smelter at Ardal in Western Norway [J]. Water, Air, and Soil Pollution,1998,103(1-4):357-373.
    [36]GB5749-85,生活饮用水卫生标准[S].北京:中国标准出版社,1985.
    [37]GB3838-2002,地表水质量标准[S].北京:中国标准出版社,2002.
    [38]GB8978-1996,污水综合排放标准[S].北京:中国标准出版社,1996.
    [39]Singh K, Lataye D, Wasewar K, et al. Removal of fluoride from aqueous solution:status and techniques[J]. Desalination and Water Treatment,2013, 51(16-18):3233-3247.
    [40]Maheshwari R C. Fluoride in drinking water and its removal[J]. Journal of Hazardous materials,2006,137(1):456-463.
    [41]Nagendra Rao C R. Fluoride and environment-a review[C]. Proceedings of the Third International Conference on Environment and Health. Toronto:York University,2003:15-17.
    [42]刘希文,李川,尚宏志.石灰法处理氟化铝母液高氟污水的研究[J].当代化工,2001,30(2):79-80.
    [43]蒋为,杨仁斌,桂腾杰,等.消石灰处理含氟废水试验研究[J].湖南农业科学,2009,(4):79-81.
    [44]张希祥,王煤,段德智.氧化钙粉末处理高浓度含氟废水的实验研究[J].四川大学学报(工程科学版),2001,33(6):111-113.
    [45]Cao J, Liu F, Lin Q, et al. Hydrothermal synthesis of xonotlite from carbide slag[J]. Progress in Natural Science,2008,18(9):1147-1153.
    [46]余锋,陈鸿福.含氟废水的处理[J].无机盐工业,2001,33(6):31-32.
    [47]夏太国,田国明,吴秀珍.用电石渣-废盐酸除氟条件的研究[J].辽宁化工.1997,26(4):227-227.
    [48]程刚,黄翔峰,刘佳.钙盐沉淀法处理集成电路工业含氟废水影响因素研究[J].环境科学导刊,2007,26(4):36-38.
    [49]董铁,刘建民,李志祥.高浓度含氟废水的处理[J].天津化工,2004,18(5):58-60.
    [50]Hu C Y, Lo S L, Kuan W H. Effects of the molar ratio of hydroxide and fluoride to Al (III) on fluoride removal by coagulation and electrocoagulation[J]. Journal of colloid and interface science,2005,283(2):472-476.
    [51]Chang M F, Liu J C. Precipitation removal of fluoride from semiconductor wastewater[J]. Journal of Environmental Engineering,2007,133(4):419-425.
    [52]Raju D V R, Raju N J, Kotaiah B. Complexation of fluoride ions with alum-flocs at various pH values during coagulation and flocculation[J]. Journal of the Geological Society of India,1993,42(1):51-54.
    [53]Bratby J. Coagulation and flocculation in water and wastewater treatment[M]. London:IWA publishing,2006.
    [54]李风亭,张善发,赵艳.混凝剂与絮凝剂[M].北京:化学化工出版社,2005.
    [55]Chang M F, Liu J C. Precipitation removal of fluoride from semiconductor wastewater [J]. Journal of Environmental Engineering,2007,133(4):419-425
    [56]陈杰山,杨春平.聚合硫酸铁处理含氟废水的研究[J].广东化工,2008, 35(12):82-84.
    [57]庞翠玲,刘立良.絮凝沉淀法处理稀土冶炼含氟酸性废水[J].化工之友,2006.6:18-19.
    [58]Fan X, Parker D J, Smith M D. Adsorption kinetics of fluoride on low cost materials[J]. Water Research,2003,37(20):4929-4937.
    [59]张金辉,李思,李萍,等.国内外含氟废水吸附处理方法研究进展[J].水处理技术,2013,39(5):7-12.
    [60]马艳然.粉煤灰处理含氟废水[J].水处理技术,1993,19(6):356-359.
    [61]Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Separation & Purification Technology,2005,42(3):265-271.
    [62]王鲁敏,殷军港,邓昌亮,等.褐煤型吸附剂对氟离子的吸附[J].烟台大学学报(自然科学与工程版),2003,16(4):293-297.
    [63]马刚平,刘振儒.斓氧化膜硅胶吸附除氟性能研究[J].中国环境科学,1999,19(4):346-348.
    [64]Rahmani A, Nouri J, Kamal Ghadiri S, et al. Adsorption of fluoride from water by Al3+ and Fe3+ pretreated natural Iranian zeolites [J]. International Journal of Environmental Research,2010,4(4),607-614.
    [65]赵晖,孙杰,张帆.流念化诱导结晶沉积法处理无机废水的研究进展[J].应用化工,2007,36(10):1021-1023.
    [66]陈平,金奇庭.诱导沉淀结晶技术在水处理中的应用[J].中国给水排水,2004,20(9):24-26.
    [67]孙杰,赵晖,邓南圣.无害化诱导结晶新工艺处理重金属废水[J].水处理技术,2006,32(9):63-65.
    [68]万锐,吕锡武,朱光灿,等.诱导结晶法回收磷的试验研究[J].中国给水排水,2009,25(15):82-85.
    [69]阎中,熊娅,王凯军,等.诱导结晶工艺处理含铜废水[J].化工学报,2009(10):2603-2608.
    [70]Zhou P, Huang J C, Li A W F, et al. Heavy metal removal from wastewater in fluidized bed reactor[J]. Water Research,1999,33(8):1918-1924.
    [71]Lee C I, Yang W F, Hsieh C I. Removal of Cu (II) from aqueous solution in a fluidized-bed reactor[J]. Chemosphere,2004,57(9):1173-1180.
    [72]Giesen A. Removal of amorphous components in a fluidized bed type crystallize[M]. Chemical Water and Wastewater Treatment IV. Springer Berlin Heidelberg,1996:299-306.
    [73]Costodes V C, Lewis A E. Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor:Fines production and column design[J]. Chemical Engineering Science,2006,61(5):1377-1385.
    [74]陈平.载体诱导沉淀结晶法软化水及脱氟的研究[D].西安:西安建筑科技大学,2004.
    [75]Yang M. Precipitative removal of fluoride from electronics wastewater[J]. Environment Engineering,2001,127(10):902-907.
    [76]Kristel V, Nausikaa V, Jan V, et al. Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor[J]. IEEE Transactions on Semiconductor Manufacturing,2003,16(3):423-428.
    [77]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Phosphorus recovery from wastewater by struvite crystallization:A review[J]. Critical Reviews in Environmental Science and Technology,2009,39(6):433-477.
    [78]Aldaco R, Garea A, Irabien A. Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand[J]. Industrial & Engineering Chemistry Research,2006,45(2):796-802.
    [79]范建伟,张杰.钙盐-电凝聚法处理含氟工业废水[J].工业用水与废水,2006,37(1):48-51.
    [80]陈后兴,罗仙平,刘立良.含氟废水处理研究进展[J].四川有色金属,2006,3(1):31-35.
    [81]吴华雄,孟林珍.反渗透法处理含氟废水的实验研究[J].电力环境保护,1998,14(3):1-5.
    [82]Mohapatra M, Anand S, Mishra B K, et al. Review of fluoride removal from drinking water[J]. Journal of Environmental Management,2009,91(1):67-77.
    [83]Aldaco R, Irabien A, Luis P. Fluidized bed reactor for fluoride removal[J]. Chemical Engineering Journal,2005,107(1):113-117.
    [84]Aldaco R, Garea A, Irabien A. Modeling of particle growth:Application to water treatment in a fluidized bed reactor[J].Chemical Engineering Journal, 2007,134(1):67-71.
    [85]Aldaco R, Garea A, Fernandez I, et al. Resources reduction in the fluorine industry:fluoride removal and recovery in a fluidized bed crystallizer[J]. Clean Technolofies and Environmental Policy,2008,10(2):203-210.
    [86]Aldaco R, Garea A, Irabien A. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor[J]. Water Research,2007,41(4):810-818.
    [87]Ruben A, Aurora G, Angel I. Fluoride recovery in a fluidized bed: Crystallization of calcium fluoride on silica sand[J]. Industrial & Engineering Chemistry Research,2006,45(2):797-802.
    [88]Garea A, Aldaco R, Fernandez I, et al. Integration along the lifecycle of calcium fluoride in the fluorine industry[J]. Computer Aided Chemical Engineering, 2006,21:811-816.
    [89]Clifford Y, Taia P C, Chenb, et al. Growth kinetics of CaF2 in a pH-stat fluidized bed crystallizer[J]. Journal of Crystal Growth,2006,290(2):577-584.
    [90]Cornelis W, Jansen. Process for the removal of fluoride from waste water[P]. US:5106509A,1992-03-21.
    [91]Liao M H. Method for removing fluorine from a fluorine-containing wastewater[P]. US:US7329357B,2008-02-28.
    [92]刘希文,李川,尚宏志.氯化铝母液生产冰晶石实验研究[J].沈阳化工,2000,29(3):138-140.
    [93]张文浩,李永芬.氟化盐母液综合利用及效益分析[J].气象与环境学报,2008,24(2):28-33.
    [94]陈献桃.以Na2SiF6固相形式回收钙镁磷肥厂含氟废水中的氟[J].岳阳师范学院学报(自然科学版),2000,13(3):46-47.
    [95]张文恒,李广平.含氟废水的处理及氟化盐的回收利用[J].有色冶炼,2002,(6):32-33.
    [96]丁绪淮,谈遒.工业结晶学[M].北京:化学工工业出版社,1985:81-85.
    [97]时钧,汪家鼎,余国琮,等.化学工程手册,第二版(上册)[M].北京:化学工业出版社,1996.
    [98]Myerson A. Handbook of industrial crystal lization[M]. London: Butterworth-Heinemann,2002.
    [99]Mullin J W. Crystallization [M]. London:Butterworth-Heinemann,2001.
    [100]Costodes V C, Lewis A E. Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor:fines production and column design[J]. Chemical engineering science,2006,61(5):1377-1385.
    [101]果庭.胶体稳定性[M].北京:科学出版社,1990.
    [102]Komline Sr T R, Wills W R. Method for agglomeration measuring and control[P]. U.S. Patent:3723712,1973-3-27.
    [103]熊娅,王凯军,阎中.诱导结晶工艺中诱品载体的选择与改性[J].环境工程 学报,2013,7(1):42-46.
    [104]Liu Z, Zhao Q, Wei L, et al. Effect of struvite seed crystal on MAP crystallization[J]. Journal of Chemical Technology and Biotechnology,2011, 86(11):1394-1398.
    [105]Liu Y H, Kumar S, Kwag J H, et al. Magnesium ammonium phosphate formation, recovery and its application as valuable resources:a review[J]. Journal of Chemical Technology and Biotechnology,2013,88(2):181-189.
    [106]Hirasawa I, Kaneko S, Kanai Y, et al. Crystallization phenomena of magnesium ammonium phosphate (MAP) in a fluidized-bed-type crystallizer[J]. Journal of Crystal Growth,2002,237:2183-2187.
    [107]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [108]刘程,张万福,陈长明.表面活性剂应用手册(第二版)[M].北京:化学工业出版社,1995
    [109]Michaels A S, Colville Jr A R. The effect of surface active agents on crystal growth rate and crystal habit[J]. The Journal of Physical Chemistry,1960,64(1): 13-19.
    [110]Yin J, Li J, Zhang Y, et al. Effects of monohydroxy-alcohol additives on the seeded agglomeration of sodium aluminate liquors[J]. Light Metals,2006,1: 153-157.
    [111]Counter J A. Crystal growth modifying reagents; nucleation control additives or agglomeration aids[J]. Light Metals,2006,131.
    [112]董楠娅,陈启元,尹周澜.五元杂环类添加剂对铝酸钠溶液种分过程的影响[J].The Chinese Journal of Nonferrous Metals,2008.18(S1):21-26
    [113]李小斌,阎丽,周秋生,等.醚类添加剂B35对铝酸钠溶液晶种分解过程的影响[J].中国有色金属学报,2011,21(2):459-464.
    [114]Chen C L. Comparative influencing effect of hydrodynamics on crystallization kinetics in tapered fluidized-bed crystallizer[D]. Taiwan:University of Kang Ning,2006.
    [115]Van Dijk J C, Oomen J. Development in water softening by means of pellet reactors[J]. Journal of the American Water Works Association,1983,75(12): 619-25.
    [116]Harms Jr W D, Bruce Robinson R. Softening by fluidized bed crystallizers[J]. Journal of Environmental Engineering,1992,118(4):513-529.
    [117]Smethurst G. Basic water treatment for application world-wide[M]. Thomas Telford,1988.
    [118]Tai C Y, Wu C K, Chang M C. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets[J]. Chemical Engineering Science,2008, 63(23):5606-5612.
    [119]Li J, Zhu J X, Bassi A S, et al. Evaluation of different dental materials using a slugging fluidized bed[J]. Powder Technology,2001,118(3):275-284.
    [120]Sellami J, Ataallah I, Muhr H, et al. Experimental study on mixing and precipitation in a fluidized bed reactor[J]. Powder technology,2005,157(1): 163-167.
    [121]Lewis A E. Fines formation (and prevention) in seeded precipitation processes[J]. Kona,2006,24:119.
    [122]Garea A, Aldaco R, Irabien A. Improvement of calcium fluoride crystallization by means of the reduction of fines formation[J]. Chemical Engineering Journal, 2009,154(1):231-235.
    [123]Bhuiyan M I H, Mavinic D S, Beckie R D. Nucleation and growth kinetics of struvite in a fluidized bed reactor[J]. Journal of Crystal Growth,2008,310(6): 1187-1194.
    [124]Mavinic D S, Koch F A, Huang H, et al. Phosphorus recovery from anaerobic digester supernatants using a pilot-scale struvite crystallization process[J]. Journal of Environmental Engineering and Science,2007,6(5):561-571.
    [125]Bhuiyan M I H, Mavinic D S, Koch F A. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors:A sustainable approach[J]. Water Science and Technology,2008,57(2):175-182.
    [126]Shimamura K, Homma Y, Watanabe A, et al. Research on MAP recovery conditions using a fluidized-bed crystallized phosphorous removal system[J]. Journal of Water and Environment Technology,2003,1(1):73-78.
    [127]Costodes V C, Lewis A E. Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor:Fines production and column design[J], Chemical Engineering Science,2006,61(5):1377-1385.
    [128]Giesen A. Crystallisation process enables environmental friendly phosphate removal at low costs[J]. Environmental Technology,1999,20(7):769-775.
    [129]潘才娣.品种法反应与分离一体化装置[P].中国:2587488Y 2003-11-26.
    [130]刘战广,周雪飞,张亚雷,等.一体化鸟粪石法氮磷回收装置[P].中国: 201010141900,2010-04-08.
    [131]蒋绍阶,褚同伟,张莹.小型一体化水处理设备沉淀装置[P].中国:200910103102,2009-01-20.
    [132]李小亚,冉慧英.反应与沉淀自动化一体机[P].中国:201120314696,2011-08-26.
    [133]何勤聪,汤优敏,廖琦琛,等.一体化斜管沉淀池[P].中国:201120325452,2011-09-01.
    [134]肖连生,黄芍英,张启修,等.一种反应及固液分离一体化装置[P].中国:200810143176,2008-09-10.
    [135]Shu L, Schneider P, Jegatheesan V, et al. An economic evaluation of phosphorus recovery as struvite from digester supernatant[J]. Bioresource Technology, 2006,97(17):2211-2216.
    [136]Liu Z, Zhao Q, Lee D J, et al. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor[J]. Bioresource Technology,2008,99(14): 6488-6493.
    [137]Pastor L, Mangin D, Barat R, et al. A pilot-scale study of struvite precipitation in a stirred tank reactor:Conditions influencing the process [J]. Bioresource Technology,2008,99(14):6285-6291.
    [138]Regy S, Mangin D, Klein J P, et al. Phosphate recovery by struvite precipitation in a stirred reactor[J]. Centre Europeen d'Etudes des Polyphosphates,2001.
    [139]Suzuki K, Tanaka Y, Kuroda K, et al. Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device[J]. Bioresource Technology,2007,98(8):1573-1578.
    [140]Shimamura K, Ishikawa H, Mizuoka A, et al. Development of a process for the recovery of phosphorus resource from digested sludge by crystallization technology [J]. Water Science & Technology,2008,57(3).
    [141]Jordaan E M. Development of an aerated struvite crystallization reactor for phosphorus removal and recovery from swine manure[D]. University of Manitoba,2011.
    [142]Battistoni P, Boccadoro R, Fatone F, et al. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR)[J]. Environmental technology,2005,26(9):975-982.
    [143]Huang Y H, Shih Y J, Chang C C, et al. A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process[J]. Desalination and Water Treatment,2011,32(1-3):351-356.
    [144]Doyle J D, Parsons S A. Struvite formation, control and recovery[J]. Water Research,2002,36(16):3925-3940.
    [145]Wang D, Li X, Ding Y, et al. Nitrogen and phosphorus recovery from waste water and the supernate of dewatered sludge [J]. Recent patents on food, nutrition & agriculture,2009,1(3):236-242.
    [146]El Diwani G, El Rafie S, El Ibiari N N, et al. Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer[J]. Desalination,2007,214(1):200-214.
    [147]Battistoni P, De Angelis A, Pavan P, et al. Phosphorus removal from a real anaerobic supernatant by struvite crystallization[J]. Water Research,2001, 35(9):2167-2178.
    [148]Battistoni P, Fava G, Pavan P, et al. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals:preliminary results[J]. Water Research,1997,31(11):2925-2929.
    [149]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Struvite crystallisation and recovery using a stainless steel structure as a seed material [J]. Water Research, 2007,41(11):2449-2456.
    [150]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Impact of calcium on struvite crystal size, shape and purity[J]. Journal of crystal growth,2005,283(3): 514-522.
    [151]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Impact of reactor operation on success of struvite precipitation from synthetic liquors[J]. Environmental technology,2007,28(11):1245-1256.
    [152]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Kinetics of struvite precipitation: effect of the magnesium dose on induction times and precipitation rates [J]. Environmental technology,2007,28(12):1317-1324.
    [153]Adnan A, Mavinic D S, Koch F A. Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility[J]. Journal of Environmental Engineering and Science,2003,2(5):315-324.
    [154]Britton A, Koch F A, Mavinic D S, et al. Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant[J]. Journal of environmental engineering and science,2005,4(4):265-277.
    [155]Bhuiyan M I H, Mavinic D S, Koch F A. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors:a sustainable approach[J]. Water Science & Technology,2008,57(2):447-454.
    [156]Adnan A, Koch F A, Mavinic D S. Pilot-scale study of phosphorus recovery through struvite crystallization-II:Applying in-reactor supersaturation ratio as a process control parameter [J]. Journal of Environmental Engineering and Science,2003,2(6):473-483.
    [157]Stratful I, Scrimshaw M D, Lester J N. Removal of struvite to prevent problems associated with its accumulation in wastewater treatment works[J]. Water Environment Research,2004,76(5):437-443.
    [158]Piekema P, Giesen A. Phosphate recovery by the crystallisation process: Experience and developments [J]. Environmental Technology,2001,21: 1067-1084.
    [159]阎中,熊娅,王凯军,等.诱导结晶工艺处理含铜废水[J].化工学报,2009(10):2603-2608.
    [160]Lee C I, Yang W F, Hsieh C I. Removal of Cu (II) from aqueous solution in a fluidized-bed reactor[J]. Chemosphere,2004,57(9):1173-1180.
    [161]Zhou P, Huang J C, Li A W F, et al. Heavy metal removal from wastewater in fluidized bed reactor[J]. Water Research,1999,33(8):1918-1924.
    [162]Chen J P, Yu H. Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor[J]. Journal of Environmental Science & Health Part A, 2000,35(6):817-835.
    [163]Huang C, Pan J R, Lee M, et al. Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process[J]. Journal of Chemical Technology and Biotechnology,2007,82(3):289-294.
    [164]Van Lier R J M, Buisman C J N, Giesen A. Crystalactor technology and its applications in the mining and metallurgical industry[C]. Solid/Liquid separation including Hydrometallurgy and the Environment,29th Annual Hydrometallurgical Meeting. Canada:Quebec,1999:221-231.
    [165]Mahvi A H, Shafiee F, Naddafi K. Feasibility study of crystallization process for water softening in a pellet reactor[J]. International Journal of Environmental Science & Technology,2005,1(4):301-304.
    [166]汪翠萍,宋存义,孙大均,等.沉淀与结晶相结合实现水软化[J].环境工程,2009,27(增刊):1
    [167]Dirken P, Barrs E, Graveland A, et al. On the crystallization of calcite(CaCO3) during the softening process of drinking water in a pellet reactor with fluidized beds of quartz, garnet and calcite seeds[J]. Industrial Crystallization,1990,90: 95.
    [168]Chen Y H, Yeh H H, Tsai M C, et al. The application of fluidized bed crystallization in drinking water softening[J]. Journal of the Chinese institute of Environmental Engineering,2000,10(3):177-184.
    [169]Van Schagen K, Rietveld L, Babuska R, et al. Control of the fluidised bed in the pellet softening process[J]. Chemical Engineering Science,2008,63(5): 1390-1400.
    [170]Tai C Y, Hsu H P. Crystal growth kinetics of calcite and its comparison with readily soluble salts[J]. Powder technology,2001,121(1):60-67.
    [171]Tai C Y, Chien W C, Chen C Y. Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer[J]. AIChE journal,1999,45(8):1605-1614.
    [172]Van Ammers M, Van Dijk J C, Graveland A, et al. State of the art of pellet softening in the Netherlands[J]. Water Supply,1986,4:223-235.
    [173]Adnan A, Dastur M, Mavinic D S, et al. Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale[J]. Journal of environmental engineering and science,2004,3(3):195-202.
    [174]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Agglomeration of struvite crystals[J]. Water research,2007,41(2):419-425.
    [175]Lisbona D F, Steel K M. Treatment of spent pot-lining for recovery of fluoride values[J]. Light Metals,2007,61(2):843-848.
    [176]Schweitzer G K, Pesterfield L L. The aqueous chemistry of the elements. New York:Oxford University Press,2010:158.
    [177]Lisbona D F, Steel K M. Recovery of fluoride values from spent pot-lining: Precipitation of an aluminium hydroxyfluoride hydrate product[J]. Separation and Purification Technology,2008,61(2):182-192.
    [178]Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics in source-separated urine[J]. Water Research,2007,41(5):977-984.
    [179]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [180]陆祖勋.高分子比冰晶石的合成和应用[J].轻金属,1997,(3):21-24.
    [181]Elrashidi M A, Lindsay W L. Solubility of aluminum fluoride, fluorite, and fluorophlogopite minerals in soils[J]. Soil Science Society of America Journal, 1986,50(3):594-598.
    [182]郭瑞光,徐传宁.含氟废水中CaF2形成的动力学研究[J].环境与开发,1994,9(4):338-340.
    [183]李雪玲,刘俊峰,李培元.石灰沉淀法除氟的应用[J].水处理技术,2000,26(6):359-36.
    [184]Parthasarathy N, Buffle J, Haerdi W. Combined use of calcium salts and polymeric aluminium hydroxide for defluoridation of wastewaters[J]. Water Research,1986,20(4):443-448.
    [185]Pan H B, Darvell B W. Solubility of calcium fluoride and fluorapatite by solid titration[J]. Archives of Oral Biology,2007,52(9):861-868.
    [186]Garand A, Mucci A. The solubility of fluorite as a function of ionic strength and solution composition at 25 ℃ and 1 atm total pressure[J]. Marine Chemistry, 2004,91(1-4):28-35.
    [187]Perrin D D. Dissociation constants of inorganic acids and bases in aqueous solution[J]. Pure and Applied Chemistry,1969,20(2):132-236.
    [188]Kolthoff I M. "Theory of coprecipitation." The formation and properties of crystalline precipitates [J]. The Journal of Physical Chemistry,1932,36(3): 860-881.
    [189]Snoeyink V L, Jenkins D. Water chemistry[M]. New York:John Wiley and Sons,1980.
    [190]Sohnel O, Mullin J W. Precipitation of calcium carbonate[J]. Journal of Crystal Growth,1982,60(2):239-250.
    [191]Wu W J, Nancollas G H. A new understanding of the relationship between solubility and particle size[J]. Journal of Solution Chemistry,1998,27(6): 521-530.
    [192]Mihranyana A, Stnr(?)mme M. Solubility of fractal nanoparticles[J]. Surface Science,2007,601(2):316-319.
    [193]于海斌,宋存义,程玉洁.诱导结晶反应中介稳区的研究[J].环境科学研究,2011,24(7):769-774.
    [194]杜虎,周康根,姜科,等.从高浓度含氟废水制备冰晶石的影响因素[J].有机氟工业,2012,(4):13-17.
    [195]YS/T 273.3-2012,冰晶石化学分析方法和物理性能测定方法[S].北京:中国标准出版社,2012.
    [196]Grobelny M. Sodium fluoroaluminates formed in the reaction between aluminum fluoride solution and crystalline sodium fluoride[J]. Journal of Fluorine Chemistty,1976, (8):133-144.
    [197]常青.絮凝原理[M].兰州:兰州大学出版社,1993:127-128.
    [198]周康根,姜科,杜虎,等.一种沉淀反应与固液分离一体化装置[P].中国:201210131185.O,2012-09-12.
    [199]叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社,2006.
    [200]李程文,周康根,姜科,等.晶种法处理含氟废水与氟化钙沉淀砂状化研究[J].环境科学与技术,2011,34(5):158-160.
    [201]杨有才,周康根,李强,等.晶种法回收和取出高浓度含氟废水中的氟[J].工业安全与环保,2012,38(4):4-6.
    [202]周康根,姜科,李程文,等.一种含氟废水的处理方法及装置[P].中国:201010272000.9,2010-09-05.
    [203]郭慕孙,李洪钟.流态化手册[M].北京:化学工业出版社,2008.
    [204]Mersmann A. Crystallization technology handbook.2nd Ed[M]. New York: CRC Press,2001.
    [205]GB5195.2-85,氟石化学分析方法[S].北京:中国标准出版社,1985.
    [206]Bravi M, Mazzarotta B. Size dependency of citric acid monohydrate growth kinetics[J]. Chemical Engineering Journal,1998,70(3):203-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700