用户名: 密码: 验证码:
产油脂酵母菌的遗传改良和油脂的发酵生产
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年研究表明生物柴油是一种清洁、可降解、可再生生物能源,现在的引擎无需改造就可以直接使用生物油脂作为燃料,并且产生更少的有害气体,环境污染和能源危机使得生物柴油备受关注。目前生物油脂的高额成本是其工业化生产的主要障碍。寻求廉价原料是降低生物柴油成本的关键。
     我们实验室以前的研究中发现胶红酵母(Rhodotorula mucilaginosa)TJY15是一种产油脂酵母菌。以胶红酵母(R. mucilaginosa)为实验菌种,菊粉水解液为原料,分批培养时该酵母细胞干重和油脂的含量分别为14.8g/L和48.8%;以菊芋根块的水解液为底物分批发酵和分批补料发酵时该酵母细胞干重和油脂的含量分别为14.4 g/L、48.6%和19.47g/L、52.2%。对所产脂肪酸分析表明C16:0, C18:1和C18:2含量较高,三者之和占总脂肪酸的87.6%,说明以菊芋原料经过该酵母转化产生的油脂脂肪酸组成与植物油脂脂肪酸组成类似。
     为了建立直接转化菊糖生产油脂的工艺,把季也蒙毕赤酵母(Pichia guilliermondii)M-30细胞进行固定化,固定化的突变株M-30细胞与游离的胶红酵母细胞混合培养,研究结果发现适合季也蒙毕赤酵母M-30包埋的最佳条件是:聚乙烯醇7%、海藻酸钠1.4%、pH8.0、氯化钙3%。季也蒙毕赤酵母M-30在固定化培养中酶活达到169.3% U/mL,对照游离细胞酶活只有124.3 U/mL。胶红酵母和季也蒙毕赤酵母M-30联合培养,以菊粉、菊芋提取物为底物,经过48h混合培养,胶红酵母油脂和细胞干重分别为53.16%、12.24g/L;55.43%、12.83 g/L。经过48h发酵罐混合培养,胶红酵母油脂产量达到最高值56.57%,细胞干重达到19.64 g/L,发酵培养的胶红酵母细胞中的C16:0, C18:1 ,C18:2这三种脂肪酸占总脂肪酸的90.0%。
     为了建立一步发酵菊糖产生油脂的工艺,将来源于马克斯克鲁维酵母(Kluyveromyces marximum)CBS 6556的酶基因INU1在产油脂解脂亚罗威亚酵母中表达:首先将菊粉酶基因INU1与表达质粒pINA1317连接,并在产油脂解脂亚罗威亚酵母(Y. lipolytica) ACA-DC50109中进行了功能表达,得到了重组子Z31。Z31培养72 h经测定粗酶液酶活力为41.7±0.4 U/mL。优化了Z31的产油脂条件,选择5%糖(菊芋)为碳源,氮源选择硫酸铵和酵母膏,且C/N为350,即硫酸铵0.017%和酵母膏0.0355%,发酵78 h油脂达到峰值,油脂和细胞干重分别为46.3%和11.6 g/L。通过2-L发酵罐分别以菊粉和菊芋提取物为底物发酵78h菌体产油量分别为48.3%和50.57%,菌体干重分别达到13.3 g/L和14.63 g/L, C16:0, C18:0 ,C18:1这三种脂肪酸占总脂肪的91.5%。重组油脂酵母产油与单独培养红酵母产油、固定化联合培养产油相比,产油含量和细胞干重相似,从而建立了利用重组油脂酵母菌一步转化菊糖和菊芋根块提取液产生油脂的工艺,大大简化了上述的油脂生产工艺。
In the past years, biodiesel, which is biodegradable, can be used without modifying existing engines, and produces less harmful gas emissions such as sulfur oxide has received increasing attention because of the environmental pollution and energy crisis world wide. At present the high production cost of biodiesel is a major barrier to its commercialization. Therefore, using a low cost raw material is crucial in reducing the cost of biodiesel production.
     In our previous study, it was found that Rhodotorula mucilaginosa TJY15a isolated from the marine fish Synechogobius hasta could accumulate a large amount of oil from glucose and hydrolysate of cassava starch. In this study, we found that R. mucilaginosa TJY15a could accumulate 48.8% (w/w) oil from hydrolysate of inulin and its cell dry weight reached 14.8 g/l during the batch cultivation while it could accumulate 48.6% (w/w) oil and 52.2% (w/w) oil from hydrolysate of extract of Jerusalem artichoke tubers and its cell dry weight reached 14.4 g/l and 19.5 g/l during the batch and fed-batch cultivations, respectively. At the end of the fed-batch cultivation, only 0.04% of reducing sugar and 0.08% of total sugar were left in the fermented medium. Over 87.6% of the fatty acids from the yeast strain TJY15a cultivated in the hydrolysate of extract of Jerusalem artichoke tubers was C16:0, C18:1 and C18:2, especially C18:1 (54.7%). Therefore, the results show that hydrolysates of inulin and extract of Jerusalem artichoke tubers were also the good materials for single cell oil production.
     In order to directly convert inulin and the extract of Jerusalem artichoke tubers into single cell oil by R.mucilaginosa TJY15a and avoid mixing the cells of R. mucilaginosa, the cells of the mutant M-30 were immobilized. Then the immobilized cells were co-cultured with the free cells of the oleaginous yeast R. mucilaginosa TJY15. It was found that the immobilized inulinase-producing cells of P. guilliermondii M-30 can produce 169.3 U/mL of inulinase activity while the free cells of the same yeast strain only produces 124.3 U/mL of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells are co-cultivated with the free cells of R. mucilaginosa TJY15a, R. mucilaginosa TJY15a can accumulate 53.2% oil from inulin in its cells and cell dry weigh reaches 12.2 g/L. Under the similar conditions, R. mucilaginosa TJY15a can accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reaches 12.8 g/L within 48 h. When the co-cultures are grown in 2-L fermentor, R. mucilaginosa TJY15a can accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weigh reaches 19.6 g/L within 51 h. About 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers is C16:0, C18:1 and C18:2.
     In order to convert inulin and inulin-containg materias into single cell oil by one step fermentation, the gene of exo-inulinase cloned from Kluyveromyces marxianusCBS6556 was expressed in the oleaginous yeast Y. lipolytica ACA-DC50109. First, the INU1 gene was ligated into the expression plasmid pINA1317 and expressed in the cells of the oleaginous yeast. Then, the inulinase activity of different transformants was determined. The activity of the inulinase by the transformant Z31 of the transformants obtained was found to be 41.7 U/mL after cells growth for 78h. After optimization of the medium and cultivation conditions for single cell oil production, the transformant could accumulate 46.3% (w/w) oil from inulin in its cells and cell dry weight was 11.6 g/Lwithin 78 h at the flask level. During the 2-L fermentation, the transformant could accumulate 48.3% (w/w) oil from inulin in its cells and cell dry weight was 13.3 g/L within 78 h while the transformant could accumulate 50.6% (w/w) oil from extract of Jerusalem artichoke tubers in its cells and cell dry weight was 14.6 g/L within 78 h. At the end of fermentation, most of the added sugar was utilized by the transformant cells. Over 91.5% of the fatty acids from the transformant cultivated in the extract of Jerusalem artichoke tubercles was C16:0, C18:0 and C18:1, especially C18:1 (58.5%).
引文
鲍时翔,朱法科,林炜铁,等.被孢霉菌发酵产生花生四烯酸的研究.微生物学报1997,37(5):374-377
    陈娜丽,冯辉霞,王冰,等.固定化细胞载体材料的研究进展.化学与生物工程, 2009 , 26 (10):13-17
    董欣荣,曹健.微生物功能性油脂的研究.郑州粮食学院报,1999,20(4):10-15.
    方新湘,张有林,秦本记,等.汽油微生物固定化细胞脱硫技术.化工进展,2007,26 (1):51-55
    何东平,陈涛.微生物油脂学[M].北京:化学化工出版社,2005,36~37.
    何明,林庆胜,都卫宁,等.生物固定化技术及其应用研究进展.生物技术通报, 2009增刊88-93
    孔祥莉,刘波,赵宗保,等.斯达氏油脂酵母利用混合糖发酵产油脂.生物加工过程, 2007,5(2):36-41.
    况金蓉,冯道伦,龚文琪.固定化细胞技术在废水处理中的应用.武汉理工大学学报,2001,23(11):52-55
    李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究.海洋与湖泊,1999,30(1):34-40
    李凯,冯小海,吴波,等.利用聚乙烯醇-海藻酸钙固定化Propionibacterium freudenreichii NX - 4制备丙酸.南京工业大学学报(自然科学版) ,2008 ,30 (4):20-25
    李魁,王梅玉.利用食品工业废弃物生产真菌油脂.食品工业科技,1997(6):65-69
    李梅海洋胶红酵母菌TJY15a菌株产油脂的研究[硕士学位论文]山东青岛中国海洋大学海洋生命学院,2010
    李永红,刘波,赵宗保,等.圆红冬孢酵母菌发酵产油脂培养基及发酵条件的优化研究生物工程学报2006,22(4):650-656
    李植峰,张玲,沈晓京,赖炳森,等.四种真菌油脂提取方法的比较研究.微生物学通报, 2001,28(6):72-75
    林海,王申健,罗晖,等.木糖醇发酵菌株固定化细胞的改性研究.林产化学与工业, 2006,26(4):78-82
    林金涛圆红冬孢酵母两阶段培养法生产微生物油脂生物工程学报2010,26(7):997–1002
    刘波,孙艳,刘永红,等.产油微生物油脂生物合成与代谢调控研究进展微生物学报2005,45(1):153-156
    刘长海,杜冰,姚汝华,微生物发酵法生产EPA及DHA的研究进展食品科技2004,(6) 13-17
    刘煜;阴景喜;闫开明等微生物油制取新技术研究粮油加工与食品机械2002(1):40-41
    吕微,伍季,付有利.固定化细胞技术及其在食品工业中的应用.江西农业学报, 2008, 20 (2) :76-78
    律泽魏炜徐岩岩固定化细胞技术在废水处理中的应用.实用技术, 2009,21-23
    马丽娟,邢大辉,王红蕾,等.培养条件对产油微生物生长的影响.生物工程学报2009,25(1):55-59
    马艳玲微生物油脂及其生产工艺的研究进展生物加工过程2006,4(4):7-11
    闵航,郑耀通,钱泽澍,等.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究.环境科学,1994 ,15 (5) :10-14.
    缪晓玲藻类可再生能源的利用及藻细胞抗环境胁迫的研究(M).北京:清华大学出版社, 2004.34-102
    曲威,刘波,吕建州,等.高产油脂斯达氏酵母菌株的选育及摇瓶发酵条件的初步研究.辽宁师范大学学报(自然科学版),2006,29(1):88-92.
    施安辉,周波.粘红酵母GLR513生产油脂最佳小型发酵条件的探讨.食品科学,2003,24(3):48~51
    施巧琴酶工程科学出版社2005第一版221-222
    史国利,吕宪禹.全细胞长链脂肪酸在假丝酵母属分类中应用初探.真菌学报, 1992,1(2):150-157.
    J.萨姆布鲁克, D.W.拉塞尔,黄培堂(译).分子克隆实验指南(第三版).北京:科学出版社. 2002.
    孙菲菲,秦艳,韦星明,等.固定化细胞技术应用于芒果醋的研究.中国酿造,2008 ,17:56-58
    孙清,代廷广,王君玲.固定化细胞技术在能源与环境工程上的应用.农村能源,2002,2,22-23
    孙婷,杜伟,刘德华,等.固定化全细胞催化可再生油脂合成生物柴油的稳定性.生物工程学报2009,25(9):1379-1385
    汤世华,杨建斌,何东平,等.发酵法生产多不饱和脂肪酸的研究进展.武汉工业学院学报2007,26(3):16-20
    王风芹,王艳颖,谢慧等我国生物柴油原料来源的多样性探讨氨基酸和生物资源2008,30(1): 4-9
    王洪柞,刘世勇.酶和细胞的固定化化学通报,1997 (2):22一27
    王健,冯玉杰.磁性壳聚糖微球固定化酵母细胞及其用于发酵生产酒精的研究.化学与生物程,2008 ,25 (8):67-69.
    王克明细胞固定化技术在食品工业中的应用中国酿造2006,8,6-10
    王新,李陪军,孔宗强,等.固定化细胞技术的研究与进展.农业环境保护,2001,20(2):120-122
    吴水清,姚汝华.真菌产生多不饱和脂肪酸的研究.中国生化药物杂志1997,18(3):127-130
    咸漠,杨丽,康亦兼,等.深黄被孢霉催化转化脂肪醇合成不饱和脂肪酸的初步研究.催化学报2000,21(4):387-389
    相光明,刘建军,赵祥颖,等.产油微生物研究及应用.粮食与油脂, 2008(6): 7-11
    肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展.食品科学, 2003,24(4):158-161
    徐华顺,罗玉萍,李思光,等.微生物发酵产油脂的研究进展.中国油脂1999, 24(2):34-36.
    许牡丹,杨伟东,王振磊.甲壳素固定化β-甘露聚糖酶的研究.食品科技, 2007,1,49-52
    薛飞燕,张栩,谭天伟.柠檬酸调控微生物油脂合成的研究.会议2006中国生物质能科学技术论坛论文集2006年
    杨革,王玉萍.多价不饱和脂肪酸高产菌株的选育及发酵产物的分析.曲阜师范大学学报:自然科学版1997,23(4):75-79
    杨文英,董学畅.细胞固定化及其在工业中的应用.云南民族学院学报(自然科学版) 2001,13(7):76-79
    殷梦华,何东平,陈涛.产多不饱和脂肪酸微生物的研究.粮油加工与食品机械, 2005,5:52-55
    袁成凌,王纪,姚建铭,等.低能离子注入花生四烯酸产生菌诱变选育及其产业化研究.高技术通讯2003,13(6):22-25
    张超,王立,高虹,等.固定化细胞应用进展.微生物学杂志, 2006,26(4):82- 84
    张弘固定化细胞发酵生产凝胶多糖的研究[硕士学位论文]广西南宁广西大学生命科学与技术学院,2002
    张娟梅,江贤章,黄建忠裂殖壶菌Schizochytrium sp. FJU-512 DHA单细胞油脂的研究福建师范大学学报(自然科学版) 2007,23(2):75-80
    张峻,邢来君.γ-亚麻酸高产菌株的选育及发酵产物的分离提取.微生物学通报, 1993, 20(3) :140-143.
    张杰;张晓东;许海朋等Cryptococcus curvatus O3酵母菌培养及产油脂特性微生物学通2009,36(1):41-45
    张磊,张烨,侯红萍.固定化细胞技术的研究进展.四川食品与发酵, 2006,2,16-17
    张玲,李植峰,赖炳森,等.雅致枝霉TE715发酵生产γ-亚麻酸的实验研究.中国生化药物杂2000,21(6):277-279.
    张秋会,马莺.工业化生产EPA和DHA藻株的选育.中国油脂,2004,29(6):30-32
    张全国,荆艳艳,周雪花,等.吸附法固定光合细菌技术产氢能力的研究.农业工程学报,2008 28(4):199-203
    张秀鲁,陈霄,吴昕,等.发酵法生产高含量γ-亚麻酸油脂的研究.中国粮油学报,1993,2:24-29.
    张瞳海洋季也蒙毕赤酵母重组菊粉酶及其在产乙醇中的应用[博士学位论文]山东青岛中国海洋大学海洋生命学院,2010
    赵人俊,严虹,郑幼霞.影响被抱霉生产含亚麻酸油脂的几种因素.生物工程学报, 1995,11(4):361-365.
    赵人俊,郑幼霞.丝状真菌被孢霉产生油脂的研究.菌物系统.1995,14(2):130-135
    周华,姜眠,欧阳平凯.固定化细胞成型机械的研究综述.工业微生物, 1998,28(3:)43-46
    朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用. 重庆建筑大学学报2000,22(5):95-101
    A Singh ,and P Ward; Docosapentaenoic acid (C22:5,ω-3) production by Pythium acanthicum ;Journal of Industrial Microbiology1998, 20:187–191
    Alexander W, Trond EE, Hans-Kristian K, Sergey BZ, Mimmi TH. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 2007, 76:1209–1221
    Alvarez HM, Steinbuchel A Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 2002,60:367–376
    Bender JP, Mazutti MA, Treichel H, Di Luccio M Inulinase production by Kluyveromyces marxianus NRRL Y-7571 using solid state fermentation. Appl Biochem Biotechnol 2006 32:951–958
    Beopoulos,A.,Mrozova,Z.,Thevenieau,F.,LeDall,M.T.,Hapala,I.,Papanikolaou,S.,Chardot, T.,Nicaud,J.M., Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl.Environ.Microbiol. 2008.74,7779–7789.
    Bergkamp RJ, Bootsman TC, Toschka HY, Mooren AT, Kox L, Verbakel JM, Geerse RH, Planta RJ. Expression of an alpha-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol 1993,40:309–317
    Bezbradica, D., Obradovic, B., Leskosek-Cukalovic, I., Bugarski, B., Nedovic, V., Immobilization of yeast cells in PVA particles for beer fermentation. Proc. Biochem. 2007, 42, 1348–1351.
    Bligh,E.G. and Dyer W.J. A rapid method of total lipid extraction and purification. Can.J.Biochem. Physiol. 1959,37:912-917.
    Botham P A, Ratledge C. A biochemical explanation for lipid accumulation in Candida107 and other oleaginous microorganisms. JGen Microbiol, 1979,114:361-375
    Brown MR, Barrett, SM, Volkman JK, Nearhos SP, Nell JA .Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture Aquaculture .1996,143: 341-360
    Chiara Bigogno,Inna Khozin-Goldberg,Sammy Boussiba,et al.Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa,the richest plant source of arachidonic acid .Phytochemistry,2002,60:497-503.
    Chi Z, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzyme Microb Technol 2001;38:240–6.
    Chi ZM, Chi Z, Zhang T, Liu GL, Yue LX. Inulinase expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 2009;82:211–20.
    Chi ZM,Ma C,Wang P, Li HF. Optimization of mediumand cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 2007;98:534–8.
    Chi, Z. M., Chi, Z., Zhang, T., Liu, G. L., Yue, L. X., Inulinase expressing microorganisms and applications of inulinases. Appl. Microbiol. Biotechnol. 2009, 82, 211–220.
    Chi, Z. M., Liu, J., Zhang, W., Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enz. Microb. Technol. 2001, 38, 240-246.
    Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., Zhao, C. H., Biotechnological potential of inulin for bioprocesses. Biores. Technol. 2011,102, 4295–4303.
    Chi, Z.M.,Liu,J.,Zhang,W.,Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. EnzymeMicrob.Technol. 2001,38,240–246.
    Chi,Z.M.,Chi,Z.,Zhang,T.,Liu,G.L.,Yue,L.X., Inulinase expressing microorganisms and applications of inulinases.Appl.Microbiol.Biotechnol.2009,82,211–220.
    Colin Ratledge,Philip A.Bothnaj. Path ways of Glueose Metabolism in Candida 107 , a Lipid caaumulating Yeast.Journal of General Mierobiology,1997,2,391~395.
    Colin Ratledge. Fatty acid biosynthesis in microorganisms being used for Single Cell oil production,Bioehimie,2004,86:807-815.
    Colin Ratledge. Micorogranisms for Lipid. Asta Biotecmlol,1991,11(5):429-438
    Colin Ratledge.The Bioehemistry and Moleeular Biology of Lipid Aeeumulationino leaginous Microorganisms.Advances in Applied Mierobiology,2002,51:1-51.
    Cunha, M. A. A., Rodrigues, C. B., Santos, J. C., Converti, A., da Silva, S. S., Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol–hydrogel. Curr. Microbiol. 2007, 54, 91–96.
    D.Sorger,G.Daum.Triaeylglyeerol biosynthesis in yeast.Appl Microbiol Bioteehnol,2003,61:289-299.
    Dejan Bezbradica, Bojana Obradovic, Ida Leskosek-Cukalovic, Branko Bugarski, Viktor Nedovic. Immobilization of yeast cells in PVA particles for beer fermentation. Process Biochemistry 2007,42 1348–1351
    Du J, Wang HX, Jin HL, Yang KL, Zhang XY. Fatty acids production by fungi growing in sweet potato starch processing waste water. Chin J Bioproc Engineer 2007;5:33–6.
    Dunstan,G.A., Volkman, J.K., Barrett, S.M. and Jeffrey, S.W. Polyunsaturated fatty acids from 14 species of diatom(Bzcillariophyeae). Phytochemistry.1994,35:155-161.
    Evans C T, Scragg A H, Ratledge C. Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginousyeastsby adenine nucleotides.EurJBiochem, 1983,132:609-615·
    Fakas S, Papanikolaou S, Batsosa A, Galiotou-Panayotoua M, Mallouchosa A, Aggelis G. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioeng 2009;33:573–80.
    Folch J, Lees M, Slane-Stanley J. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497–509.
    Gong F, Chi ZM, Sheng J, Li J, Wang XH Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and Inulin hydrolysis by the purified inulinase. Biotechnol Bioproc Eng .2008,13:533–539
    Gong F, Sheng J, Chi ZM, Li J. Inulinase production by a marine yeast Pichia guilliermondii and and inulin hydrolysis by the crude inulinase. J Indu Microbiol Biotechnol 2007; 34: 179–185.
    Guo N, Gong F, Chi ZM, Sheng J, Li J. Enhanced inulinase production in solid state fermentation by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. J Ind Microbiol Biotechnol 2008;36:499–507.
    HectorM. A lvarez Frank M ayes Dirk Fabritius Alexander Steinbuchel Foanation of intracyto-plasmic lipid in iinclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996 165 :377-386
    Han X, Miao XL, Wu QY. High quality biodiesel production from heterotrophic growth of Chlorella protothecoides in fermenters by using starch hydrolysate as organic carbon. J Biotechnol 2006;126:499–507.
    Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Proc Biochem 1996;31:355–61.
    Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., Kim, J., Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Proc.Technol. 2009, 90, 1502–1514.
    Jens-Petter Jostensen.Bjarne Landfald Influence of growth conditions on fatty acid composition of a polyunsaturated-fatty-acid-producing Vibrio species 1996 165:360-310
    Jolivalt,C.,Madzak,C.,Brault,A.,Caminade,E.,Malosse,C.,Mougin,C., Expression of laccase lllb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications.Appl.Microbiol. Biotechnol. 2005, 66,450–456.
    Jun Sheng, Zhenming Chi, Jing Li, Lingmei Gao, Fang Gong. Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Process Biochemistry, 2007,42 805–811
    Kalscheuer R, Stolting T, Steinbuchel A Microdiesel: Escherichia coli engineered for fuel production. Microbiology .2006,152:2529–2536
    Kang SI, Chang YJ, Oh SJ, Kim SI Purification and properties of an endo-inulinase from an Arthrobacter sp. Biotechnol Lett 1998,20:983–986
    Kasim NS, Tsai TH, Gunawan S, Ju YH. Biodiesel production from rice bran oil and supercritical methanol. Bioresour Technol 2009;100:2399–403.
    Kim HS, Lee DW, Ryu EJ, Uhm TB, Yang MS, Kim JB, Chae KS Expression of the INU2 gene for an endoinulinase of Aspergillus ficuum in Saccharomyces cerevisiae. Biotechnol Lett. 1999,21:621–623
    Kim KY, Koo BS, Jo D, Kim SI Cloning, expression and purification of exo-inulinase from Bacillus sp. Snu-7. J Microbiol Biotechnol .2004,14(2):344–349
    Kim KY, Nascimento AS, Golubev AM, Polikarpov I, Kim CS, Kang S, Kim S Catalytic mechanism of inulinase from Arthrobacter sp. S37. Biochem Biophys Res Commun. 2008,371:600–605
    Kushi RT, Monti R, Contiero J Production, purification and characterization of an extracellular inulinase came from Kluyveromyces marxianus var. bulgaricus. J Ind Microbiol Biotechnol.2000, 25:63–69
    Kwon YM, Kim HY, Choi YJ Cloning and characterization of Pseudomonas mucidolens exoinulinase. J Microbiol Biotechnol. 2000,10(2):238–243
    Laloux , Cassart JP, Delcour J, Van Beeumen J, Vandenhaute J. Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett. 1991, 289:64–68
    Lechevalier, H. and Lechevalier, M.P. Chemotaxonomic use of lipids-an overview. Microbial Lipids, Academic Press, London, 1988, pp. 869-902.
    Li M, Liu GL, Chi Z, Chi ZM. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. BiomassBioen 2010;4:101–7.
    Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 2007;80:749–56.
    Li Y, Zhao Z, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microbial Technology 2007;41:312–7
    Liang XA, Dong WB, Miao XJ, Dai CJ .Production technology and influencing factors of microorganism grease. Food Res Dev.2006,27(3):46–47
    Liu B, Zhao ZB Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol .2007,82:775–780
    Liu SJ, Yang WB, Shi AH Screening of the high lipid production strains and studies on its flask culture conditions. Microbiology. 2000,27(2):93–97
    Liu,X.Y.,Chi,Z.,Liu,G.L.,Wang,F.,Madzak,C.,Chi,Z.M.,Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase.Metab.Eng. 2010,12,469–476.
    M. A. A. Cunha, R. C. B. Rodrigues, J. C. Santos, A. Converti, S. S. da Silva. Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol–hydrogel. Current Microbiology 2007, 54 91–96
    Ma YL Microbial oils and its research advance. Chin J Bioprocess Eng .2006,4(4):7–11
    Madzak,C.,Gaillardin,C.,Beckerich,J.M.,Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: areview. J. Biotechnol. 2004,109,63–68.
    Mainul H, Philippe JB, Louis MG, Alain P Influence of Nitrogen and Iron Limitations on Lipid Production by Cryptococcus curvatus Grown in Batch and Fed-batch Culture. Process Biochem1996,31(4):355–361
    Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renew Energ 2009;34:1–5.
    Nagem RAP, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN,Polikarpov I Crystal structure of exo-inulinase from Aspergillus awamori: the enzymefold and structural determinants of substrate recognition. J Mol Biol .2004,344:471–480
    Nicaud, J.M.,Madzak,C.,vandenBroek,P.,Gysler,C.,Duboc,P.,Niederberger,P., Gaillardin, C.,.Protein expression and secretionin the yeast Yarrowia lipolytica. FEMSYeast Res. 2002,2,371–379.
    P. Audet and C. L acroix. Process Biochemistry, 1989, 12:217-226
    Palma Parascandola, Paola Branduardi, Elisabetta de Alteriis PVA-gel (Lentikats) as an effective matrix for yeast strain immobilization aimed at heterologous protein production. Enzyme and Microbial Technology 2006,38 :184–18
    Palmieri L, Palmieri F, Runswick M J,et al. Identification by bacterial expression and functional reconstitution of the yeast genomic sequence encoding the mitochondrial dicarboxylate carrier protein.FEBSLett, 1996,399:299-302
    Pan JG, Kwak MY, Rhee JS. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol Lett 1986;8:715–8.
    Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Jose D et al. Recent developments in microbial inulinases, its production, properties and industrial applications. Appl Biochem Biotechnol. 1999,81:35–52.
    Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica grown on industrial glycerol in a single-stage continuous culture. Bioresour Technol 2002;82:43–9.
    Papanikolaou S, Aggelis G. Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol 2003;46:398–402.
    Papanikolaou S, Komaitis M, Aggelis G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 2004;95:287–91.
    Papanikolaou S,Sarantou S,Komaitis M,et al.Repression of reserve lipid turn over in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple limited media. ApplMicrobiol,2004,97:867–875.
    Papanikolaou, S., Aggelis, G., 2002, Lipid production by Yarrowia lipolytica grown on industrial glycerol in a single-stage continuous culture. Biores. Technol. 82: 43-49.
    Papanikolaou, S., Aggelis, G., Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr. Microbiol. 2003,46, 398–402.
    Papanikolaou, S.,Aggelis,G., Selective up take of fatty acids by they east Yarrowia lipolytica. Eur.J.LipidSci.Technol. 2003,105,651–655.
    Papanikolaou, S.,Aggelis,G., Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol. 2009.21,83–87.
    Papanikolaou, S.,Chevalot,I.,Komaitis,M.,Marc,I.,Aggelis,G., Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.Appl.Microbiol.Biotechnol. 2002.58,308–312.
    Papanikolaou,S.,Chevalot,I.,Galiotou-Panayotou,M.,Komaitis,M.,Marc,I.,Aggelis, G., Industrial derivative of tallow: a promising renewable substrate form icrobial lipid,single-cell protein and lipase productionby Yarrowia lipolytica. Electron.J.Biotechnol. 2007,10,1–11.
    Parascandola, P., Branduardi, P., de Alteriis, E., PVA-gel (Lentikats) as an effective matrix for yeast strain immobilization aimed at heterologous protein production. Enz 441 . Microb. Technol. 2006,38, 184–18.
    Peng X, Chen H. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol 2008;99:3885–9.
    Philio A.Botham,Colin Ratledge. Metabolie Studies Related to Lipid Accumulation I n Yeast.Bioehemieal Soeiety Transaetions,1978,6(2):383~385.
    Qiang Li ,Wei Du, De hua Liu. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 2008,80:749–756
    Ratledge C,Wynn J.The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms.Adv Appl Microbiol,2002,51:1-51.
    Ronald J. M. Bergkamp , Theo C. Bootsman , Holger Y. Toschka , Arno T. A. Mooren , Linda Kox , John M. A. Verbakel , Ruud H. Geerse , Rudi J. Planta Expression of an a-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus Applied Microbiology Biotechnology 1993,40:309-317
    Rouwenhorst, R.J.,Hensing,M.,Verbakel,J.,Scheffers,W.A.,VanDijken,J.P., Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS6556.Appl.Environ.Microbiol. 1990.,56,3337–3345.
    Sambrook, J.,Fritsch,E.F.,Maniatis,T., Molecular Cloning:a Laboratory Manual, seconded. Cold SpringHarbor Laboratory Press, Beijing,pp. 1989,367–370 (Chinese translatinged.). Spiro, R.G.,1966.Analysis of sugars found in glycoproteins.MethodsEnzymol.8, 3–26.
    Schken, U., Kempers, P., Lipid biotechnology: Industrially relevant production processes. Eur. J. Lip. Sci. Technol. 2009, 111, 627–645.
    Sims B Biodiesel: a Global Perspective. Biodiesel Magazine 2007,701: 746-8385.
    Singh RS, Sooch BS, Puri M. Optimization of medium and process parameters for the production of inulinasefrom a newly isolated Kluyveromyces marxianus YS-1. Biores Technol 2007;98:2518–25.
    Spiro RG. Analysis of sugars found in glycoproteins. Meth Enzymol 1966;8:3–26. Szambelan K, Nowak J, Czarnecki Z. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed withKluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 2004;26:845–8.
    T. Zhang, Z. Chi, C.H. Zhao, Z.M. Chi, F. Gong Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0 Bioresource Technology 2010, 101(21):8166-8170
    Tsujimoto Y, Watanabe A, Nakano K, Watanabe K, Matsui H, Tsuji K, et al. Gene cloning, expression,and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilusKP1289. Appl Microbiol Biotechnol 2003;62: 180–5.
    Uhm TB, Chae KS, Lee DW, Kim HS, Cassart JP, Vandenhaute J. Cloning and nucleotide sequence of the endoinulinase encoding gene, inu2 from Aspergillus ficuum. Biotechnol Lett 1998;20:809–12.
    Volkman, J.K., Barrett, S.M., Dunstan, G.A. and Jeffrey.S.W. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org.Geochem.1993a,20:7-15.
    Wang, F.,Yue,L.X.,Wang,L.,Madzak,C.,Li,J.,Wang,X.H.,Chi,Z.M., Genetic modification of themarine-derivedyeast Yarrowia lipolytica with high-protein content using a GPI-anchor-fusion expression system.Biotechnol.Prog. 2009,25, 1297–1303.
    Wei W, Wan W, Le H, Wang S Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Proc Biochem 1999b,34:643–646
    Wei W, Wang S, Zhu X, Wan W Isolation of a mutant of Kluyveromyces sp. Y-85 resistant to catabolite repression. J Biosci Bioeng 1999a, 87:816–818
    Wei W, Zheng Z, Liu Y, Zhu Z Optimizing the culture conditions for higher inulinase production Kluyveromyces sp. Y- 85 and scaling-up fermentation. J Fermen Bioeng. 1998,86:395–399
    Wen TQ, Liu F, Huo KK, Li YY Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857. World J Microbiol Biotechnol. 2003,19:423–426.
    Wynn J P,Hamid A A,Li Y,et al.Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina.Microbiology,2001,147:2857–2864.
    Xinjun Yu, Ning Guo, Zhenming Chi, Fang Gong, Jun Sheng, Zhe Chi Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochemical Engineering Journal 2009,43 :266–271
    Xuan,J.M.,Fournier,P.,Gaillardin,C.,Cloning of the LYS5 gene encoding saccharopine dehydrogenase.Curr.Gent . 1988,14,15–21.
    Yamauchi H, Mori H, Kobayashi T, Shimizu S. Mass production of lipids by Lipomyces starkeyi in microcomputer aided-fed-batch culture. J Ferment Technol 1986;61:275–80.
    Yu, X. J., Guo, N., Chi, Z. M., Gong, F., Sheng, J., Chi, Z., Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochem. Engineer. J. 2009, 43, 266–271.
    Yue,L.X.,Chi,Z.M.,Wang,L.,Liu,J.,Madzak,C.,Li,J., Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. J.Microbiol.Methods. 2008,72, 116–123.
    Zhang L, Zhao C, Wang J, Ohta Y, Wang Y Inhibition of glucose on an exoinulinase from Kluyveromyces marxianus expressed in Pichia pastoris. Proc Biochem 2005,40:1541–1545
    Zhang L, Zhao C, Zhu D, Ohta Y, Wang Y. Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expr Purif 2004;35:272–5.
    Zhang T, Chi ZM, Sheng J.Ahighly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for single-cell protein production and its nutritive components. Mar Biotechnol 2009a;11:280–6.
    Zhang T, Gong F, Chi Z, Liu GL, Chi ZM, Sheng J, Li J, Wang XH. Cloning and characterization of the inulinase gene from amarine yeast Pichia guilliermondii and its expression in Pichia pastoris. Antonie van Leeuwenhoek 2009b;95:13–22.
    Zhang T, Gong F, Peng Y, Chi ZM. Optimization for high-level expression of the Pichia guilliermondii recombinant inulinase in Pichia pastoris and characterization of the recombinant inulinase. Proc Biochem 2009c;44:1335–9.
    Zhao, C. H., Zhang, T., Li, M., Chi, Z. M., Single cell oil production from hydrolysate of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa 463 TJY15a. Proc Biochem. 2010a, 45, 1121-1126.
    Chun-Hai Zhao Tong Zhang Zhen-Ming Chi Zhe Chi Jing Li Single cell protein production from yacon extract using a highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a and its nutritive analysis Bioprocess and Biosystems Engineering 2010b,33(5):549–556
    Chun-Hai Zhao, Wei Cui, Xiao-Yan Liu, Zhen-Ming Chi, Catherine Madzak Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials Metabolic Engineering, 2010c,12(6):510-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700