用户名: 密码: 验证码:
嵌岩桩竖向承载机理及其承载力计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的高速发展,我国交通基础设施建设步伐越来越快,为实现国家西部大开发战略,边远山区及西部地区的公路、桥梁等交通基础设施建设正稳步推进,跨江河与跨山谷高架桥的修建日益增多。对于大跨径桥梁,其上部荷载较大且对沉降要求较为严格,而嵌岩桩是少数几种能直接建造在基岩上的基础结构形式之一,其承载力高,沉降较土体中更容易控制在允许范围内,因而嵌岩桩在桥梁基础工程中得到了广范的应用。但是由于桥梁工程嵌岩桩基所处的水文地质条件复杂、施工工艺多样、极限承载力较高、静载荷试验不能达到破坏等原因,人们对其承载性状存在着不同的认识,在承载力计算及嵌岩深度的确定上差别较大。因此深入研究嵌岩桩的承载机理,确定其承载力计算方法,合理选择嵌岩桩设计参数成为亟待解决的问题。故本文结合国家自然科学基金项目“按桩顶沉降控制基桩竖向承载力的设计理论研究”(项目编号50878083)以及湖南省交通厅项目“山区超高桥墩桩基础承载机理及优化设计研究”等课题,对此开展深入系统的研究。
     本文首先综合分析了嵌岩桩承载特性与受力机理,基于岩体结构面剪切强度的研究方法,从嵌岩桩桩-岩界面的剪切-位移细观受力机理出发,建立了基于剪胀效应的桩侧摩阻力的二段线性软化跌落模型,通过荷载传递法求得弹塑性条件下的桩侧摩阻力及桩身轴力的解析式。探讨了直径d、岩石模量E、剪胀角β对嵌岩桩承载特性的影响。在剪胀模型的基础上,进一步引入分形维数描述的两相接触介质粗糙表面的抗剪强度公式,建立了以分形维数D表示的嵌岩桩侧摩阻力传递模型,求得弹性条件下的桩侧摩阻力及桩身轴力的解析式。基于所获得的解答,深入地探讨了分维数D对桩侧摩阻力T(z)、桩身轴力P(z)的影响规律。
     其次,基于得到的桩-岩界面模型,从能量原理出发,建立了桩体受荷载时的能量平衡方程,将桩体离散成许多受力单元,对能量平衡方程进行差分后,利用位移协调关系对嵌岩桩桩顶荷载-位移曲线进行数值求解,从而实现按桩顶位移控制承载力的设计方法。并考虑嵌岩段岩体质量及所处应力状态对极限承载力的影响,引入Hoek-Brown岩体经验强度准则,采用Lambe变换,建立嵌岩段桩侧摩阻力模型,然后基于简化的桩端岩体破坏模式,利用极限平衡原理,推导了三向压力下嵌岩桩桩端阻力的计算公式,进而导得嵌岩桩极限承载力计算公式。
     再次,从满足竖向承载力要求对桩基的嵌岩深度进行了探讨,基于嵌岩桩的位移计算公式,推导了可按桩顶荷载和沉降要求共同确定的嵌岩深度计算公式,并就桩顶沉降对嵌岩深度嵌岩深度对桩端荷载分担比的影响进行了探讨。针对规范中按横向荷载确定的嵌岩深度计算模型进行改进,考虑由桩体转动引起的桩侧法向应力和水平向的摩阻力的共同作用替代原有单一水平方法应力的作用,得到改进的嵌岩深度计算公式。同时进一步针对岩溶地区桩基嵌岩深度的确定问题,将桩端荷载作用下岩层的极限破坏视为冲切破坏,引进格里菲斯非线性岩石强度准则,采用极限分析上限法确定了冲切破坏面的功能方程,通过变分原理对功能方程的极值求解,进一步通过微分得到了桩端岩层抗冲切安全厚度,进而对岩溶区桩基的桩长进行优化。
     针对桥梁工程中部分条件下嵌岩桩负摩阻力的问题,综合考虑桩土相对位移及有效应力的影响,建立了改进的负摩阻力计算模型,采用位移协调法,对堆载条件下层状地基的负摩阻力中性点及轴力进行计算,并得到了考虑负摩阻力时嵌岩桩承载力的计算方法,并用一工程实例验证了方法的合理性。
     最后参与设计并完成了某特大桥嵌岩桩工程现场静载试验,对桩侧土阻力,嵌岩段摩阻力及端阻力进行了理论分析,并利用实测的数据对本文嵌岩桩承载机理及其承载力计算方法进行了验证。
With the high-speed development of national economy, the construction step of China's transportation infrastructure is more and more quickly. In order to realize the development of west regions strategy, the construction of highway, bridges and other transportation infrastructure of remote mountainous areas and western area are steadily boosted. The building of the viaduct which cross rivers and across the valley is increasing. For long-span bridges, the top load is high and settlement requirement is more stringent. And rock-socketed pile is the few foundation form that can be directly builted in the bed-rock. Due to the high bearing capacity and settlement is easier to control within permitted range than in soils, the rock-socketed pile is widely used in bridge foundation engineering. But because the hydrological geological conditions of rock-socketed pile foundation in bridge engineering is complex, the construction technology is diversiform, limit bearing capacity is higher, the static load test can't be reached damage and other reasons. The understanding of the load characters is different. The calculation of bearing capacity and socketed depth is greater different between people. So further research rock-socketed pile's load-bearing mechanism, determine its bearing capacity calculation method and select rock-socketed pile design parameters reasonably become the problems to be solved. So combined with the national natural science fund project "The design theory study on determination of vertical bearing capacity of pile by the settlement of pile top "(project Numbers50878083) and the scientific project of Communications Department of Hunan Province "study on the bearing mechanism and optimization design for piles foundation with high bridge piers in mountainous district", this dissertation developed deeply, systematic research to this problem.
     At first, the bearing characteristics and carrying force mechanism of the rock-socketed pile were comprehensively analysised. Benefit from the shear strength research methods of rock mass structure surface and wherefrom the shear displacement mesoscopic stress mechanism of the pile-rock interface, the two sections of linear softening fall model of pile side friction base on the shear expansion rule were established. Through the load transfer method, the analytical formula of axial force and side friction under the condition of elastic-plastic were obtained. Then, how the diameter d, rock modulus Eτ, the dilatancy angle β influence the load-bearing characteristics of rock-socketed piles was discussesed. Basis on shear expansion model, the shear strength formula of two-phase contact medium rough surface described by fractal dimension was introduced. Further more, the shaft resistance transfer model of rock-socketed pile expressed by fractal dimension D was set up. And the analytical solutions of the pile shaft resistance and pile axial force under the elastic condition was obtained. Further, the law that how the fractal dimension D influence the shaft resistance τ(z), pile axial force P(z) has been discussed in depth.
     Secondly, based on the pile rock interface models, the energy balance equation of piles under vertical load was established from the principle of energy. Dividing the pile into many carrying force units and differencing the energy balance equation, the load-displacement curve of rock-socketed pile was simulationed using displacement and harmonious relationship that realized the bearing capacity design method determined by the settlement of pile top. Considering impact to ultimate bearing capacity of the quality of rock structures and the stress state, the Hock-Brown strength criterion for rock mass was introduced. A new practical model of skin friction for rock-socketed piles was obtained with Lambe transformation. Then based on the failure mode of rock mass on the pile tip, the formula of rock-socketed pile tip resistance under three-dimensional pressure was derived by means of the ultimate equilibrium principle that guided the ultimate bearing capacity calculation formula.
     Again, the pile foundation socketed depth meeting the requirement of vertical bearing capacity was discussed. Then the socketed depth calculation formula identified by pile load and settlement requirements was deduced based on the displacement calculation formula of rock-socketed pile. Further, the influence pile settlement on socketed depth and socketed depth on pile end load sharing ratio was discussed. And more, the socketed depth calculation model determined according to lateral load was improved. The improved socketed depth calculation formula was obtained considering the combined action of normal stress and level friction resistance causing by rotation of pile body replacing the single level normal stress. And further contraposing the problem of pile foundation socketed depth in karst area, it treat the rock ultimate damage of pile end load as punching failure. The Griffith nonlinear rock strength criterion has been introduced. Then the work-energy equation of punching failure shell was established using limit analysis method. Through solving extreme value of work-energy equation by the variational principle, the calculation formula of safe thickness for the rock stratum anti-punching failure was obtained by differential equation that can be to optimize the pile length in the karst area.
     For the problem of negative skin friction resistance of socketed pile in bridge project under the part condition, improved negative skin friction resistance calculation model was established in view of the influence of the pile soil relative displacement and the effective stress. The neutral point of negative skin friction resistance and axial force was calculated under heap load conditions by the method of displacement coordination and the bearing capacity calculation method considering negative skin friction resistance in rock-socketed pile was provided. At last the rationality of the method was validated by using an engineering example.
     Finally, a rock-socketed pile static load test of a super major bridge construction site was completed. The pile frictional resistance in soil and rock-socketed section and bottom resistance were analyzed. The bearing mechanism and the calculation method of bearing capacity were validated by the measured data.
引文
[1]桩基工程手册编写委员会.桩基工程手册.北京:中国建筑工业出版社,1995,1-8
    [2]杨克已.实用桩基工程.北京:人民交通出版社,2004,5-10
    [3]史佩栋.实用桩基工程手册.北京:中国建筑工业出版社,1999,12-19
    [4]高大钊,赵春风,徐斌.桩基础的设计方法与施工技术.北京:机械工业出版社,1999:213-233
    [5]张忠苗.桩基工程.北京:中国建筑工业出版社,2007,15-30
    [6]陈仲颐,叶书麟.基础工程学.北京:中国建筑工业出版社,1996,22-28
    [7]程昌钧.桩基的数学建模、理论分析与计算方法.北京:科学出版社,2009,13-21
    [8]赵明华.桥梁桩基计算与检测.北京:人民交通出版社,2000,1-5
    [9]冯忠居,谢永利,上官兴.桥梁桩基新技术-大直径钻埋预应力混凝土空心桩.北京:人民交通出版社,2005,2-10
    [10]赵明华.土力学与基础工程(第二版).武汉:武汉理工大学出版社,2003,187-226
    [11]龚维明,戴国亮,宋晖.大直径深长嵌岩桩承载机理研究与应用.北京:人民交通出版社,2010,1-10
    [12]Reese L C, Hudson W R, Vijayvergiya V N. An investigation of the interaction between bored piles and soil. In:Proceeding 7th International Conference on Soil Mechanics Foundation Engineering. Mexico City,1969,2:211-215.
    [13]Horvath R G, Kenney T C, Trow W A. Results of tests to determine shaft resistance of rock-socketed drilled piers. In:Proceedings of the International Conference on Structural Foundations on Rock. Sydney,1980:349-361
    [14]Horvath R G, Kenney T C, Kozicki P. Methods of improving the performance of drilled piers in weak rock. Canadian Geotechnical Journal, 1983,20(4):758-772
    [15]Brandl H. Bearing capacity of piers and piles with large diameters. In: Proceeding 11th International Conference Soil Mechanics Foundation Engineering. San Francisco,1985,3:1525-1530
    [16]黄求顺.嵌岩桩承载力的试验研究.中国建筑学会地基基础学术委员会论文集.太原:山西高校联合出版杜,1992,47-52,
    [17]史佩栋.超高层建筑物下嵌岩桩的荷载传递特性的长期观测.中国建筑学会地基基础学术委员会论文集.太原:山西高校联合出版社,1992,21-24
    [18]史佩栋,梁晋渝.嵌岩桩竖向承载力的研究.岩土工程学报,1994,16(4):32-39
    [19]中国建筑科学研究院.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1995,39-40
    [20]董金荣.嵌岩桩承载性状分析.工程勘察,1995,(3):13-18
    [21]吕福庆,吴文,姬晓辉.嵌岩桩静载试验结果的研究与讨论.岩土力学,1996,17(1):84-96
    [22]刘利民,张洪文,张建新.嵌岩桩承载性状的灰色关联分析.西部探矿工程,1996,8(3):6-7
    [23]张忠苗,汤展飞,吴世明.基于桩顶与桩端沉降的钻孔桩受力性状研究.岩土工程学报,1997,19(4):88-93
    [24]Carrubba P. Skin friction of large-diameter piles socketed into rock. Canadian Geotechnical Journal,1997,34(2):230-240
    [25]刘松玉,季鹏,韦杰.大直径泥质软岩嵌岩灌注桩的荷载传递性状.岩土工程学报,1998,20(4):58-61
    [26]Charles W, Ng W, Terence L, et al. Side resistance of large diameter bored piles socketed into decomposed rocks. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(8):642-657
    [27]张忠苗.软土地基超长嵌岩桩受力性状.岩土工程学报,2001,23(5):552-556
    [28]董平,秦然,陈乾,等.大直径人工挖孔嵌岩桩的承载性状。岩石力学与工程学报,2003,22(12):2099-2103
    [29]程晔,龚维明,薛国亚.南京长江第三大桥软岩桩基承载性能试验研究.土木工程学报,2005,38(12):94-98
    [30]聂如松,冷伍明,李箐,等.东江大桥嵌岩桩承载性能试验研究.岩土工程学报,2008,30(9):1410-1415
    [31]Pells P J N, Rowe R K, Tunrer R M. An experimental investigation into side shear for socketed piles in sandstone. In:Proceedings of the International Conference on Structural Foundations on Rock. Sydney,1980:291-302
    [32]Thorne C P. The capacity of piers drilled into rock. In:Proceeding of the International Conference on Structural Foundations on Rock. Sydney,1980: 223-233
    [33]四川省公路勘察设计院试验室.嵌岩灌注桩的轴向承载力.岩土工程学报,1984,6(2):13-22
    [34]张四平.嵌岩桩传荷性能及破坏机理的试验研究.重庆建筑工程学院学报,1990,12(2):1-9
    [35]张四平,邓安福,李世蓉.软质岩中嵌岩桩模型试验技术的研究.重庆建筑工程学院学报,1990,12(3):68-75
    [36]Dykeman P, Valsangkar A J. Model studies of socketed caissons in soft rock. Canadian Geotechnical Journal,1996,33(2):747-759
    [37]徐松林,吴文,昊玉山.软岩中混凝土灌注桩荷载传递初步分析.岩土力学,1998,19(1):75-80
    [38]明可前.嵌岩桩受力机理分析.岩土力学,1998,19(1): 65-69
    [39]Gu X F, Haberfield C M. Laboratory investigation of shaft resistance for piles socketed in basalt. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):465
    [40]张建新,吴东云,杜海金.嵌岩桩承载性状和破坏模式的试验研究.岩石力学与工程学报,2004,23(2):320-323
    [41]叶琼瑶,黄绍铿.软岩嵌岩桩的模型试验研究.岩石力学与工程学报,2004,23(3):461-464
    [42]王耀辉,谭国焕,李启光.模型嵌岩桩试验及数值分析.岩石力学与工程学报,2007,26(8):1691-1697
    [43]张建新,吴东云.桩端阻力与桩侧阻力相互作用研究.岩土力学,2008,29(2):541-544
    [44]彭柏兴,王星华,印长俊.红层嵌岩桩嵌岩段侧阻力试验研究.建筑结构,2008,38(4):18-21
    [45]Chiu H K, Dight P M. Prediction of the performance of rock-socketed side-resistance-only piles using profiles. International Journal of Rock Mechanics and Mining Sciences,1983,20(1):21-32
    [46]Radhakrishnan R, Leung C F. Load transfer behavior of rock-socketed piles. Journal Geotechnical Engineering ASCE,1989,115(6):765-768
    [47]O'Neill M W, Hassan K H. Drilled Shafts:Effects of construction on performance and design criteria. In:Proceeding International Conference on Design and Construction of Deep Foundtions. U.S., Federal Highway Administration,1994,1:137-187
    [48]Seidel J P, Haberfield C M. The axial capacity of pile sockets in rocks and hardsoils. Ground Engineering,1995,28(2):33-38.
    [49]叶玲玲,朱小林.传递函数法计算嵌岩桩承载力.同济大学学报,1995,23(3):315-320
    [50]刘利民.关于嵌岩桩桩端阻力计算的一些问题.地下空间,1997,17(2):71-75.
    [51]陈竹昌,舒翔.嵌岩长桩突然破坏机制的探讨.同济大学学报,1998,26(5):507-511
    [52]邱钰,刘松玉,周琳.嵌岩桩单桩沉降计算的一种简化模型.东南大学学报,1999,29(5):131-1 36
    [53]洪南福,陈竹昌,林锋.软质岩石人工挖孔桩嵌岩凹凸段承载性状研究.土工基础,1999,13(3):18-23
    [54]Sooil Kim, Sangseom Jeong, Sunghan Cho, et al. Shear load transfer characteristics of drilled shafts in weathered rocks. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(11):999-1010
    [55]刘树亚,刘祖德.嵌岩桩理论研究和设计中的几个问题.岩土力学,1999,20(4): 86-92
    [56]刘兴远,郑颖人.影响嵌岩桩嵌岩段特性的特征参数分析.岩石力学与工程学报,2000,19(3):383-386
    [57]邱钰,胡雪辉,刘松玉.用荷载传递法计算深长大直径嵌岩桩单桩沉降.土木工程学报,2001,34(5):72-75
    [58]Seidel J P, Collingwood B. A new socket roughness factor for prediction of rock socket shaft resistance. Canadian Geotechnical Journal,2001,38(1): 138-153
    [59]邱钰,刘松玉,韦杰.深长大直径嵌岩桩单桩沉降的简化计算.岩土工程学报,2002,24(4):535-537.
    [60]Serrano A, Olalla C. Ultimate bearing capacity at the tip of a pile in rock-part1:theory. International Journal of Rock Mechanics and Mining Sciences,2002,39(7):833-846
    [61]Serrano A, Olalla C. Ultimate bearing capacity at the tip of a pile in rock—part2:application. International Journal of Rock Mechanics and Mining Sciences,2002,39(7):847-866
    [62]Serrano A, Olalla C. Shaft resistance of a pile embedded in rock. International Journal of Rock Mechanics and Mining Sciences,2004,41(1):21-35
    [63]宋仁乾,张忠苗.软土地基中嵌岩桩嵌岩深度的研究.岩土力学,2003,24(6):1053-1056
    [64]董平,秦然.基于剪胀理论的嵌岩桩嵌岩段荷载传递法分析.岩土力学,2003,24(2):215-219
    [65]张建新,刘利民.孔壁粗糙度对钻孔灌注桩桩侧阻力的影响.工程勘察, 2003,(1):13-15
    [66]赵明华,曹文贵,刘齐建.按桩顶沉降控制嵌岩桩竖向承载力的方法.岩土工程学报,2004,26(1):67-71
    [67]赵明华,杨明辉,曹文贵.陈昌富确定嵌岩灌注桩竖向承载力的荷载传递法.岩石力学与工程学报,2004,23(8):1398-1402
    [68]何思明,卢国胜.嵌岩桩荷载传递特性研究.岩土力学,2007,28(12):2598-2602
    [69]Hoonil Seol, Sangseom Jeonga, Chunwhan Chob. Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI). International Journal of Rock Mechanics and Mining Sciences,2008,45:848-861
    [70]Pells P J N, Turner R M. Elastic solutions for the design and analysis of rock-socketed piles. Canadian Geotechnical Journal,1979,16(3):481-487
    [71]Rowe R K, Armitage H. Theoretical solutions for axial deformation of drilled in rock. Canadian Geotechnical Journal,1987,24(a):114-125
    [72]Rowe R K, Armitage H. A design method for drilled piers in soft rock. Canadian Geotechnical Journal,1987,24(b):126-142
    [73]Leong E C, Randolph M F. Finite element modeling of rock-socketed piles. International Journal for Numerical and Analytical Methods in Geomechnics,1994, (18):25-47
    [74]陈斌,卓家寿,吴天寿.嵌岩桩承载性状的有限元分析.岩土工程学报,2002,24(1):51-55
    [75]林育梁,韦立德.软岩嵌岩桩承载有限元模拟方法研究.岩石力学与工程学报,2002,21(12):1 854-1857
    [76]邱钰,周琳,刘松玉.深长大直径嵌岩桩单桩承载性状的有限元分析.土木工程学报,2003,36(10):95-101
    [77]张建新,吴东云,张淑朝.嵌岩桩尺寸效应的有限元分析.岩土力学.2007,28(6):1221-1224
    [78]许锡宾,周亮,刘涛.大直径嵌岩桩单桩承载性能的有限元分析.重庆交通大学学报(自然科学版),2010,29(6):942-946
    [79]中华人民共和国交通部.公路桥涵地基与基础设计规范(JTJ024-85).北京:人民交通出版社,1985,67-70
    [80]中华人民共和国交通部.公路桥涵地基与基础设计规范(JTG63-2007).北京:人民交通出版社,2007,145-150
    [81]中华人民共和国铁道部. 铁路桥涵地基与基础设计规范(TB 10002.5-2005).北京:中国铁道出版社,2005,26-27
    [82]中华人民共和国建设部.建筑地基基础设计规范(GBJ5007-2002).北京:中国建筑工业出社,2002,70-71
    [83]中国建筑科学研究院.建筑桩基技术规范(JGJ94-2008).北京:中国建筑工业出版社,2008,22-23
    [84]Seed H B, Reese L C. The action of soft clay along friction piles. Transactions of ASCE,1957,122:731-754
    [85]Kezdi A. The bearing Capacity of pile and pile groups. In:Proc.Civ. Engrs.Geotech Engng 4th ICSMFE, London,1957,57(2):44-51
    [86]佐滕悟.基桩承载力机理.土工技术,1965,20(1):1-5
    [87]Coyle H M, Reese L C. Load transfer for axially loaded piles in clay. Journal of the Mechanics and Foundations Division,1966,92(2):1-26
    [88]Kraft L M, Ray R P, Kagawa T. Theoretical τ-z curves. Journal of the Geotechnical Engineering Division,1981,107(3):1465-1488
    [89]赵明华,刘江波,杨宇.嵌岩桩桩-土-岩共同作用的非线性计算方法研究.中南公路工程,2004,29(3):1-4
    [90]朱向荣,汪胜忠,叶俊能,等.自平衡试桩荷载传递模型及荷载-沉降曲线转换方法改进研究.岩土工程学报,201 0,32(11):1717-1 721
    [91]刘叔灼,杨位洗.嵌岩(软岩)桩轴向荷载传递机理的弹粘塑性分析.华南理工大学学报(自然科学版),1995,23(3):66-74
    [92]曾维作,李亮,杨小礼.软岩地基中嵌岩桩承载力的机理研究.长沙铁道学院学报.2003,21(2):24-28
    [93]姚海波,陈征宙,王梦恕,等.软岩嵌岩长桩嵌土段工作机理研究.北方交通大学学报,2004,28(4):37-40
    [94]陈金锋,杜文龙,姚凯,等.两种大直径嵌岩桩极限承载力的比较分析.地下空间,2004,24(4):516-519
    [95]李婉,陈正汉,林育梁.南宁地区软岩嵌岩桩的有限元计算机模拟川.工业建筑,2005,36(s):492-496
    [96]王雁然,潘家军.嵌岩桩竖向荷载-沉降特性的有限元分析.武汉大学学报,2006,39(5):46-52
    [97]林天健,熊厚金,王利群.桩基础设计指南.北京:中国建筑工业出版社,1999:618-675
    [98]刘利民,舒翔,熊巨华.桩基工程的理论进展与工程实践.北京:中国建材工业业出版社,2002,208-213
    [99]Zertsalov M G, Konyukhov D S. Analysis of piles in rock. Soil Mechanics and Foundation Engineering,2007,44(1):9-14
    [100]刘建刚,宗竞.嵌岩桩轴向荷载传递的Goodman理论及其分析.地质与勘探,2000,36(5):70-72
    [101]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971,97(12):1657-1674
    [102]重庆市建筑地基基础设计规范编制组.重庆市建筑地基基础设计规范(DBJ50-047-2006).重庆:重庆建设委员会,2006,60-65
    [103]Seidel J P, Haberfield C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear. International Journal of Rock Mechanics and Mining Sciences,2002,39(5):539-553
    [104]GuXF, Seidel J P, Haberfield C M. Direct Shear Test of Sandstone-Concrete Joints. International Journal of Geomechanics,2003,3(1):21-33
    [105]Indraratna B, Haque A, Aziz N. Laboratory modeling of shear behavior of soft joints under constant normal stiffness conditions. Geotechnical and Geological Engineering,1998,16(1):17-44.
    [106]刘利民,何水莲.孔壁粗糙度对嵌岩桩承载力的影响.建筑结构,2000,30(11):10-12.
    [107]Jonston I W, Lam T S K, Williams A F. Constant normal stiffness direct shear testing for socketed pile design in weak rock. Geotechnique,1987,37(1): 83-89
    [108]Patton F D. Multiple modes of shear failure in rock and relative materials [Dissertation]]. Urbana:University of Illinois,1966.
    [109]Kilic A, Yasar E, Celik A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt. Tunneling and Underground Space Technology,2002,17(4):355-362.
    [110]周韬,王星华,巢万里.大直径嵌岩桩的承载性状.湖南交通科技,2006,32(4):85-87
    [111]Barton N R, Choubey V. The shear strength of rock joints in theory and practice. Rock Mechanics,1977,10(2):1-54
    [112]谢和平.岩石节理的分形描述.岩土工程学报,1995,17(1):18-23
    [113]Turk N, Greig M J, Dearman W R, et al. Characterization of rock joint surfaces by fractal dimension. In:Proceedings of the 28th Symposium on Rock Mechanics. Tucson:1987,1223-1236.
    [114]Lee Y H, Carr J R, Bars D J, et al. The fractal dimension as a measure of the roughness of rock discontinuity profiles. International Joural of Rock Mechanics and Mining Sciences,1990,27(6):453-464
    [115]Sakellariou M, Nakos B, Metsakaki. On the fractal character of rock surface. International Journal of Rock Mechanics and Mining Sciences,1991, 28:527-533
    [116]Odling N E. Natural fracture profiles fractal dimension and joint roughness coefficients. Rock Mechanics and Rock Engineering,1994,27(3):135-153
    [117]谢和平.分形-岩石力学导论.北京:科学出版社,1997,291-293
    [118]许宏发,李艳茹,刘新宇,等.节理面分形模拟及JRC与分维的关系.岩石力学与工程学报,2002,21(11):1663-1666
    [119]张亚衡,周宏伟,谢和平.粗糙表面分形维数估算的改进立方体覆盖法.岩石力学与工程学报,2005,24(17):3192-3196
    [120]谢卫红,谢和平,李世平,等.分形节理力学性能实验研究.工程力学,1997,14(4):128-138.
    [121]朱珍德,邢福东,渠文平,等.岩石-混凝土两相介质胶结面抗剪强度分形描述.岩石力学与工程学报,2006,25(S1):2910-2917
    [122]高大钊.桩基础的设计方法与施工技术.北京:机械工业出版社,2002,213-233
    [123]罗骐先.桩基工程检测手册.北京:人民交通版社,2003,8-13
    [124]Osterberg J.New device for load testing driven piles and drilled shaft separates friction and end bearing. In:Balkema Rotterdam A Edition. Piling and Deep Foundmions,1989,421-427
    [125]龚维明,蒋永生,翟晋.桩承载力自平衡测试法.岩土工程学报,2000,22(5): 532-536
    [126]戴国亮.桩承载力自平衡测试法的理论与实践[东南大学博士学位论文].2003,4-10
    [127]戴国亮,龚维明,刘欣良.自平衡试桩法桩土荷载传递机理原位测试.岩土力学,2003,24(6):1065-1069
    [128]龚维明,戴国亮.桩承载力自平衡测试技术及工程应用.北京:中国建筑工业出版社,2006,2-10
    [129]江苏省桩基承载力自平衡测试技术规程编制组.桩基承载力自平衡测试技术规程(DB32/T291-1999),1999,3-20
    [130]Thorne C P. The allowable loadings of foundations on shale and sandstone in the Sydney region. Part 3:Field tests results. Paper presented to the Sydney Group of Aust. Geomechanics Soc., Int.of Engineers of Australia.1977.
    [131]Poulos H G, Davis E H. Pile foundation analysis and design. New York: Wiley,1980.
    [132]Reynolds R T, Kaderabek T J. Miami limestone foundation design and construction. Proceedings ASCE Annual Meeting, ASCE, New York,1980
    [133]Gupton C, Logan T. Design guidelines for drilled shafts in weak rock of south Florida. Proceedings South Florida Annual ASCE Meeting, ASCE, New York,1984
    [134]Reese L C, O'Neill M W. Drilled shafts:Construction procedures and design methods. US.:Washington, Federal Highway Administration,1988
    [135]Toh C T, Ooi T A, Chiu H K, et al. Design parameters for bored piles in a weathered sedimentary formation. In:Proceedings 12th International Conference Soil Mechanics Foundation Engineering, Rio,1989,2:1073-1078
    [136]Hooley P, Lefroy S R. The ultimate shaft frictional resistance mobilised by bored piles in over-consolidated clays and socketed into weak and weathered rock. In:Cripps J C, et al. The engineering geology of weak rock. Rotterdam: Balkema,1993,447-455.
    [137]Rosenberg P, Journeaux N L. Friction and bearing tests on bedrock for high capacity socket design. Can Geotech J,1976,13(3):324-333
    [138]Meigh A C, Wolski W. Design parameters for weak rocks. In:Proceeding the 7th European Conference on Soil Mechanics and Foundations Engineering, British Geotechnical Society,1979,5:57-77
    [139]Hovarth R G. Drilled piers socketed into weak shale—methods of improving performance [PhD thesis]. University of Toronto, Toronto, Canada,1982.
    [140]Wyllie D C. Foundations on rock. London:Chapman & Hall,1991.
    [141]Kulhawy F H, Phoon K K. Drilled shaft side resistance in clay soil to rock. In: Proceedings of Conference on Design. and Performace of Deep Foundation: Piles and Piers in Soil and Soft Rock, Geotechnical Special. Publicatin No.38, New York,1993,172-183
    [142]AASHTO. Standard specifications for Highway Bridges. American Association of State Highway and Transportation Officials, Washington, DC,1997.
    [143]Zhang L Y, Einstein H. End bearing capacity of drilled shafts in rock. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(7):574-584.
    [144]Teng W C. Foundtion Design. Prentice-Hall, Inc., Englewood, NJ.1962
    [145]Coates D F. Rock mechanics principle. Ottawa:Queen's printer,1977
    [146]刘思思,赵明华,言志信.单桩竖向荷载—沉降曲线的能量法数值计算.公 路交通科技,2010,27(8):22-26
    [147]Hoek E, Brown E T. Empirical strength criterion for rock masses. Journal of Geotechnical Engineering Division ASCE,1980,106(GT9):1013-1035
    [148]刘佑荣.岩体力学.武汉:中国地质大学版社,2002,35-50
    [149]Hock E, Wood D. A modified Hoek-Brown failure criterion for jointed rock masses。 Proc.Int.Conf.Eurock, Chest, England,1992,202-214
    [150]Serrano A, Olalla C. Tensile resistance of rock anchors. International Journal of Rock Mechanics and Mining Sciences,1999,36(10):449-474
    [151]郑大同.地基极限承载力的计算.北京:中国建筑工业出版社,1979,3-9
    [152]中华人民共和国水利部.工程岩体分级标准(GB50218-94).北京:中国计划出版社,1995,4-11
    [153]工程地质手册编委会.工程地质手册(第四版).北京:中国建筑工业出版社,2007,768-800
    [154]吴斌,吴恒立,杨祖敦.虎门大桥嵌岩压桩试验的分析和建议.岩土工程学报,2002,24(1):56-60.
    [155]马骏.虎门大桥东塔桩基大吨位静载试验研究.公路交通科技2002,19(2):70-73
    [156]赵明华,张玲,刘建华.公路桥梁嵌岩桩嵌岩深度计算.中南公路工程,2007,32(1):1-4
    [157]Bell F G. Engineering in Rock Masses. New york:Butterworth Heinemann, 1994
    [158]赵明华,陈昌富,曹文贵,等.嵌岩桩桩端岩层抗冲切安全厚度研究.湘潭矿业学院学报,2003,18(4):41-45.
    [159]赵明华,曹文贵,何鹏祥,等.岩溶及采空区桥梁桩基桩端岩层安全厚度研究.岩土力学,2004,24(1):64-68
    [160]Walraven J C. Fundametal analysis of aggregate interlock. Journal of the Structural,1981,107(ST11):2245-2270
    [161]Jiang D H, Shen J H. Strength of concrete slabs in punching shear. Journal of Structural Engineering,1986,112(12):2578-2591
    [162]David Z Y, Orit L. Punching shear in concrete slabs. International Journal of Mechanical Sciences,1999,41(1):1-15
    [163]Chen W F. Limit analysis and soil plasticity. Amsterdam:Elsevier Science, 1975.
    [164]Hongseob O H, Jongsung Sim. Punching shear strength of strengthened deck panels with externally bonded plates. Composites Part B:Engineering,2004, 35(4):313-321
    [165]徐芝纶.弹性力学简明教程.北京:高等教育出版社,2002,122-124
    [166]史佩栋.桩基工程手册.北京:人民交通出版社,2008,178-200,
    [167]黄强.桩基工程若干热点技术问题.北京:中国建材工业出版社,1996,141-144
    [168]陈显新,徐新跃.桩负摩阻力的若干问题.岩石力学与工程学报,2004,23(S1):4615-4618
    [169]王恺敏,王建华,陈锦剑,等.大面积堆载作用下饱和土中的桩基工作性状.上海交通大学学报,2006,40(12):2130-2133
    [170]杨庆,孔纲强,郑鹏一,等.堆载条件下单桩负摩阻力模型试验研究.岩土力学,2008,29(10):2805-2810
    [171]周国庆,杨维好.中砂融沉位移与单桩负摩阻力关系的试验研究.中国矿业大学报,1999,28(6):536-538.
    [172]孙军杰,王兰民,黄雪峰.黄土地基湿陷时桩的负摩阻力最大值出现深度研究.防灾减灾工程学报,2003,23(4):20-25
    [173]黄雪峰,陈正汉,哈双,等.大厚度自重湿陷性黄土中灌注桩承载性状与负摩阻力的试验研究.岩土工程学报,2007,29(3):338-346
    [174]陈雪华,律文田,王永和.台后填土对桥台桩基的影响分析.岩土工程学报,2006,28(7):910-913
    [175]律文田,冷伍明,王永和.软土地区桥台桩基负摩阻力试验研究.岩土工程学报,2005,27(6):642-645
    [176]徐兵,曹国福.部分桩身在回填土中的钻孔灌注桩负摩阻力试验研究.岩土工程学报,2006,28(1):56-58
    [177]王波,王保田,张福海.膨胀土地基桥台桩基负摩阻力现场试验研究.河海大学学报(自然科学版),2006,34(4):447-450
    [178]屠毓敏,王建江.邻近堆载作用下排桩负摩擦力特性研究.岩土力学,2007,28(12):2352-2356
    [179]夏立农,柳红霞,欧名贤.垂直受荷桩负摩阻力时间效应的试验研究.岩石力学与工程学报,2009,28(6):1177-1182
    [180]肖俊华,袁聚云,赵锡宏.桩基负摩擦力的下拉荷载与时间关系研究.岩土力学,2009,30(9):2779-2782
    [181]Johannessen I J, Bjerrum L. Measurements of a steel plie to rock due to settlements of the surrounding clay. In:Proceedings of The 6th ICSMFE, Montreal, Toronto:University of Toronto Press,1965
    [182]李光熠,汪彬.钢管桩负摩阻力及水平位移的测定.岩土力学,1988,9(2): 89-97
    [183]张厚先.湿陷性黄土地基大直径单桩负摩阻力计算的试验研究.施工技术,1994,(9):36-38
    [184]魏鉴栋,凌道盛,陈云敏.受大面积堆载影响负摩擦桩的Q-S曲线分析.浙江大学学报(工学版),2007,41(1):166-170
    [185]Poulos H G, Mattes N S. The Analysis of downdrag in end-bearing piles. Proceedings of 7th international conference on Soil Mechanics and Foundation Engineering,1969,2:205-209
    [186]Chow Y K, Chin J T, Lee S J. Negative skin friction on pile groups. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(2):75-91
    [187]The C 1, Wong K S. Analysis of downdrag on pile groups. Geotechnique, 1995,45(2):191-207.
    [188]Poorooshsb H B, Alamgir M, Miurab N. Negative skin friction on rigid and deformable Piles. Computers and Geotechnics,1996,18(2):109-126
    [189]王建华,陆建飞,沈为平.Biot固结理论在单桩负摩擦研究中的应用.岩土工程学报,2000,22(5):590-593
    [190]王建华,高绍武,陆建飞.表面堆载作用下群桩负摩擦研究.计算力学学报,2003,20(2):169-174
    [191]高绍武,王建华,毛娜.层状地基中单桩负摩擦问题积分方程解法.岩土力学,2005,26(9):1456-1460
    [192]施建勇,赵维炳,周春儿.钢桩负摩阻力分析.岩土工程学报,1995,17(3):53-59
    [193]赵锡宏,张启辉,张保良.承受负摩擦力的桩基沉降计算的迭代法.岩土力学,1999,20(2):17-21
    [194]陈福全,龚晓南,马时冬.桩的负摩阻力现场试验及三维有限元分析.建筑结构学报,2000,21(3):77-80
    [195]袁灯平,黄宏伟,马金荣.软土地基桩侧负摩阻力三维非线性数值分析地下空间,2004,24(4):456-450
    [196]夏力农,王星华.桩体材料弹性模量对桩基负摩阻力特性的影响.防灾减灾工程学报,2006,26(2):143-146
    [197]赵明华,刘思思.多层地基单桩负摩阻力的数值模拟计算.岩土工程学报,2008,30(3):336-340
    [198]屠毓敏,俞洪良.负摩擦桩非线性分析.中国公路学报,2001,14(1):31-34
    [199]赵明华,贺炜.基桩负摩阻力计算方法初探.岩土力学,2004,25(9): 1442-1146.
    [200]庄宁,周小刚,赵法锁.单桩负摩阻力的双折线模型理论解.地球科学与环境学报,2006,28(1):62-64
    [201]陈仁朋,周万欢,曹卫平,等.改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用.岩土工程学报,2007,29(6):824-830
    [202]李作勤.摩擦桩的荷载传递及承载力的一些问题.岩土力学,1990,11(4):1-12.
    [203]李玲玲.大直径钻孔灌注桩负摩阻力试验研究.岩石力学与工程学报,2009,28(3):583-590
    [204]中华人民共和国交通部.公路桥涵施工技术规范(JTJ041-2000).北京:人民交通出版社,2000,45-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700