用户名: 密码: 验证码:
中国西部冰川变化与湿地响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川在从平衡线以上的积累区运动到平衡线以下的消融区时,逐渐融化为液态水,最后注入河流,成为众多江河的源头。不仅如此,其他类型湿地,如湖泊湿地、沼泽草甸湿地、河流湿地等,也受冰川融水补给的影响。文中研究区是中国冰川的主要分布区,自北向南共分布有14座山系,分别为阿尔泰山、天山、喀喇昆仑山、昆仑山和喜马拉雅山等,其中天山、喀喇昆仑山、昆仑山、念青唐古拉山和喜马拉雅山等5座山系的总冰川面积和冰储量分别占中国冰川相应总量的79%和84%。中国西部冰川资源丰富,不同类型湿地,特别是湖泊及河流也广为发育。冰川及湿地为人类生产生活以及生态环境的持续发展提供不可或缺的水源。近年来,冰川面积持续减少,湿地也发生了相应的变化,明确冰川与湿地的变化情况,以及二者的响应关系,是了解湿地补给状况,合理开发湿地冰川资源,使二者可持续地为人类及生态环境中其他主体提供水源的基础。
     本研究以小流域为单元,分析中国西部50个小流域内冰川与湿地变迁规律及时空分布。根据影响冰川与湿地变化的主要驱动因子(高程、月平均气温、月平均降水量)来划分小流域类型。利用改进的空间自相关分析——双变量空间自相关分析方法,以典型区向全区扩展方式,研究中国西部湿地对冰川变化的响应距离以及不同响应关系分布情况。
     通过分析得到的主要成果如下:
     1、本文利用274景MSS遥感影像、269景ETM+遥感影像、619景CBERS遥感影像,在MAPGIS软件平台上,通过人机交互解译的方式提取了1977年、2000年、2005年的冰川与不同类型湿地的信息。综合考虑三类数据源的空间分辨率及冰川、湿地的斑块特征,将10个像元确定为面积最小类别的最优分辨率,解译精度可以达到0.1km~2。通过GIS的空间分析功能得到了1977~2000年、2000~2005年冰川与湿地的时空动态变化分布图。在此基础上,分析了1977~2005年冰川与湿地变化的总体趋势,研究了50个小流域内冰川与湿地时空动态变化的分布情况及变迁规律。
     2、综合考虑影响冰川与湿地变化的主要驱动因子,本文选择高程、月平均气温、月平均降水量三个因素,研究小流域的特征。并以此为依据,划分小流域的类别。
     对于高程因子,以1000m为间隔,共划分了10个高程等级。利用GIS的空间分析功能,计算出冰川与湿地的三类时空动态变化(增加、减少、稳定)在不同高程的分布情况,分析了影响冰川与湿地分布与变化的主要高程范围。
     对于气候因子,为了与冰川、湿地数据时相统一,选择了1972~1978年、1998~2002年、2005~2007年7~12月份的月平均气温和月平均降水量数据分别对应1977年、2000年、2005年的冰川与湿地数据。共计算了1977~2000年、2000~2005年50个小流域内月平均气温和月平均降水量的变化率,为小流域类型的划分提供依据。
     小流域类别的划分方法是在不同高程范围的基础上,组合月平均气温、月平均降水量的不同变化方式。即每个高程范围内,有四类不同的小流域——月平均气温上升、月平均降水量增加,月平均气温上升、月平均降水量减少,月平均气温降低、月平均降水量增加,月平均气温降低、月平均降水量减少。因此,研究区内共有40类不同的小流域。选择典型区时,首选冰川与湿地广布以及变化明显的高程范围,并综合考虑月平均气温与月平均降水量变化率显著地小流域。
     3、本文引入空间自相关分析,并对其进行改进,利用双变量自相关分析方法,研究冰川与湿地的响应关系,并量化了二者的响应距离。分别选取全局自相关及局部自相关研究响应距离和不同响应关系的分布。
     在研究典型区冰川与不同类型湿地的响应距离分析时,选择了Moran’s I指数,利用欧几里得距离,以增加、减少的冰川、湿地斑块为研究对象,计算了不同类型小流域内冰川与湿地的响应距离和响应关系。研究表明,所有类型湿地在气候因子变化类型为月平均气温上升、月平均降水量减少的小流域内,均与冰川呈显著响应。根据这一结论,由典型区向全区扩展,分析近30年来,研究区内所有月平均气温上升、月平均降水量减少的小流域内冰川与湿地的响应距离和响应关系的空间分布。
     全区的双变量局部自相关,以25km×25km的栅格内冰川与湿地的变化为研究对象,选择LISA图,来分布响应关系的空间分布情况。研究表明,典型区与全区的双变量自相关分析结果一致,趋势相同。响应关系可分为两类,即天然湿地(湖泊、河流、河流湿地、沼泽草甸湿地)与冰川变化呈负相关,人工湿地与冰川变化呈正相关。其中,河流湿地对冰川的响应较为显著。随着高程的降低,天然湿地与冰川的相关性在上升,响应距离在缩短;人工湿则反之。
Glacier is known as the source of many rivers. The reason is that the watermelted from glacier finnaly empties into river, when it moves from accumulation zoneto ablation zone. Moreover, different types of wetlands, except river, are alsoimpacted by glacier. China’s glaciers mostly distribute in the study area of this paper.14mountains locate from north to east. They are the Altai Mountain, the TianshanMountian, the Pamirs, the Har Goolun Range, the Kunlun Moutains, the Himalayasand so on. Among those, the glaciers in the Tianshan Mountain, the Har GoolunRange, the Kunlun Mountains and the Nyainqentanglha Mountains accout for79%ofthe China’s glacier area, and84%of China’s glacier storage. Western China is rich inglaciers and wetlands, especially the lake and river. They are important water sourcefor sustainable development of human production and other life. In recent years, theglacier continues to decrease and wetland changes at the same time. To exploit thewetland and glacier rationally, as well as, to supply the sustainable water sources forhuman and ecological environment, it is necessary to realize the change principle ofwetland and glacier and the response to each other.
     The small catchments were selected as study units, and the units discussed in thispaper were50small catchments in Western China. The variation as well as thetemporal and spatial distribution of the glaciers and wetland within these areas hadbeen analyzed. The catchments were divided into different types according to themain driving factors (elevation, monthly mean temperature and monthly meanprecipitation). These factors had influence on the variation of the glaciers and thewetland. By using bivariate auto-correlation analysis method, the respond distances ofwetland to the glaciers and the distribution of different responses were investigated.Besides, the response modes of wetland to the glaciers were extended from the typicalregions to the whole distinct.
     In this paper, the following conclusions were drawn through analysis:
     1. Three kinds of data served as the main data source in this paper. They are theLandsat MSS data (274scenes acquired in1977), the Landsat ETM+data (269scenesacquired in2000) and the CBERS data (619scenes acquired in2005). The information of the glaciers and different types of wetland in the study region wereextracted via human-computer interactive interpretation on MAPGIS softwareplatform. The spatial resolution of all the scenes used in this paper as well as thecharacteristics of the patches of the glaciers and wetland were taken into considerationcomprehensively. Ten pixels were defined as the best resolution of minimum area sothat the data achieved by this process were accurate to0.1km~2. Several maps wereachieved by operating the function of Spatial Analysis of GIS. The information theyprovided were the distribution of the temporal and spatial dynamic changes of theglaciers and wetland from the year1977to2000and from the year2000to2005.
     Based on these data, the general trends of these changes from1977to2005werefurther analyzed. The temporal and spatial distribution of the glaciers and wetlandwithin50catchments as well as the law of the variation had been investigated in thisstudy.
     2. The characteristics of the catchments and the main driving factors wereconsidered comprehensively for that all of them had influence on the changes ofglaciers and wetland. Three influential factors that were used to divide the catchmentswere elevation, monthly mean temperature and the monthly mean precipitation.
     As to the factor of elevation, it was divided into10ranges with an interval of1000m. By making use of the function of spatial analysis of GIS, three types of thedistribution of the temporal and spatial dynamic changes (increasing, decreasing andstable) of the glaciers and wetland within each range of elevation had been calculated.The main ranges of elevation that had an influence on the distribution of glaciers andwetland had also been analyzed.
     As to the factor of climate, in order to be consistent with the time phase of theimage data of the glaciers and wetland, the data of monthly mean temperature andmonthly mean precipitation from July to December were chosen. The data were alsoin the periods of time from the year1972to1978, from the year1998to2002andfrom the year2005to2007. The data of these periods each corresponds with the dataof the glaciers and wetland of the year1977,2000and2005separately. As a whole,the change rate of monthly mean temperature and monthly mean precipitation withinthe50catchments during the periods from the year1977to2000and from the year2000to2005had been calculated. The results provided the basis for the division ofthe types of small catchments.
     On the basis of different ranges of elevation, the division of the types of smallcatchments composited various ways of the change of monthly mean temperature as well as monthly mean precipitation. Therefore, within each range of elevation, theremight be four types of small catchments—the type with an increasing monthly meantemperature and an increasing monthly mean precipitation, the type with an increasingmonthly mean temperature and a decreasing monthly mean precipitation, the typewith a decreasing monthly mean temperature and an increasing monthly meanprecipitation, as well as the type with a decreasing monthly mean temperature and adecreasing monthly mean precipitation. Therefore, there were40different types ofsmall catchments in the study area. When choosing typical regions, the smallcatchments with the elevation ranges in which there were widely distributions of theglaciers and wetland and at the same time with noticeable dynamic changes of theglaciers, wetland, monthly mean temperature and the monthly mean precipitationwould be the first choices.
     3. A method of modified auto-correlation analysis was introduced in this paper,which was bivariate auto-correlation analysis method, used to investigate the responseof wetland to the changes of the glaciers and quantified their respond distance. Theglobal auto-correlation was selected to investigate the respond distance, while thelocal auto-correlation was chose to investigate distribution of different respondrelationships.
     When investigating the method of analyzing the respond distances of the glaciersand different types of wetland, the Moran’s I Index and the Euclidean Distance weretaken into consideration. The patches of increased and decreased glaciers and wetlandwere regarded as the research objects. The distance and relationships of the responseof wetland to the changes of the glaciers within different types of catchments werecalculated. It was showed that all types of wetland within the small catchments whichhad an increasing monthly mean temperature and a decreasing monthly meanprecipitation had noticeable responses to the changes of the glaciers. On the basis ofthis conclusion, the areas were extended from the typical regions to the whole distinct.The respond distances and the distribution of the respond relationship of wetland tothe change of glaciers within all the catchments of this kind in the recent30yearswere analyzed in this paper.
     The changes of the glaciers together with wetland within the25km×25km gridwere taken as the research objects in the local bivariate auto-correlation analysis ofthe whole distinct. The map of LISA was selected to organize the spatial distributionof the respond relationships. The investigation demonstrated that the results of localbivariate auto-correlation analysis of the whole distinct were in correspondence with those of the typical regions. The relationships of the response could be divided intotwo types. It was to say the responses of natural wetland (the river, the lake, the riverwetland and the swamp meadow wetland) had negative correlated responses to thechanges of the glaciers. While in such regions, the constructed wetland had positivecorrelated responses to such changes. Among them, the river wetland had noticeableresponse to the changes of glaciers. With the decrease of DEM, the correlationsbetween the natural wetland and the glaciers were increasing and the responsedistances were shorter. The response mode of the constructed wetland was quiteopposed to the ones of the response of the natural wetland.
引文
[1]上官冬辉,刘时银,丁永建,等.玉龙喀什河源区32年来冰川变化遥感监测[J].地理学报,2004,59(6):855-862.
    [2]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土,2002,24(3):219-225.
    [3] HAEBERLI W, BARRY R, CIHLAR J. Glacier monitoring within the globalclimate observing system [J]. Annals of Glaciology,2000,31:241-246.
    [4]颜东海,李忠勤,高闻宇,等.祁连山北大河流域冰川变化遥感监测[J].干旱区研究,2012,29(2):245-250.
    [5]李治国,姚檀栋,田立德.国内外冰川变化对水资源影响研究进展[J].自然资源学报,2008,23(1):1-8.
    [6] JANSSON P, HOCK R, SCHNEIDER T. The concept of glacier storage: areview [J]. Journal of Hydrology,2003,282:116-129.
    [7] HOUGHTON J T,DING Y,GRIGGS D J,et al. Climate change2001: thescientific basis[M]. Cambridge: Cambridge University Press,2001.
    [8] HODGE S, TRABANT D, KRIMMEL R, et al. Climate variations and changesin mass of three glaciers in Western North America [J]. Journal ofClimate,1998,11(9):2161-2179.
    [9] BAJRACHARYAR S,MOOL K P,SHRESTHAR B. Impact of climate changeon Himalayan glaciers and glacial lakes case studies on GLOF and associatedhazards in Nepal and Bhutan[M]. Kathmandu: International Centre forIntegrated Mountain Development G.P.O. Box3226,2007.
    [10] WANG X D, ZHONG X H, LIU S Z, et al. Regional assessment ofenvironmental vulnerability in the Tibetan Plateau: development and applicationof a new method [J]. Journal ofArid Environments,2008,72:1929-1939.
    [11] OWEN A L, THACKRAY G, ANDERSON S R, et al. Integrated research onmountain glaciers: current status, priorities and future prospects [J].Geomorphology,2009,103:158-171.
    [12] KANG S C, XU Y W, YOU Q L, et al. Review of climate and cryosphericchange in the Tibetan Plateau [J]. Environmental Research Letters,2010,5:1-9.
    [13]杨针娘,曾群柱.冰川水文学[M].重庆:重庆出版社,2001.
    [14]张明军,王圣杰,李忠勤,等.近50年气候变化背景下中国冰川面积状况分析[J].地理学报,2011,66(9):1155-1165.
    [15]宁宝英,何元庆,沈永平,等.1979~2009年《冰川冻土》论文发表趋势:基于文献计量分析的结果与启示[J].冰川冻土,2010,32(6):1276-1285.
    [16] DYURGEROV M. Glacier Mass Balance and Regime: Data of Measurementsand Analysis[D].Boulder: University of Colorado,2002.
    [17]吴立宗,李新.中国冰川信息系统[M].北京:海洋出版社,2004.
    [18]李治国,姚檀栋,叶庆华,等.1980~2007年喜马拉雅东段洛扎地区冰川和冰湖变化研究[J].干旱区资源与环境,2012,26(7):47-52.
    [19]蒲健辰,姚檀栋,王宁练,等.近百年来青藏高原冰川的进退变化[J].冰川冻土,2004,26(5):517-522.
    [20]姚檀栋,刘时银,蒲健辰,等.高亚洲冰川的近期退缩及其对西北水资源的影响[J].中国科学(D辑),2004,34(6):535-543.
    [21]施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J].科学通报,2000,45(4):434-438.
    [22] QIN D, XIAO C. Global climate change and cryospheric evolution in China [J].The European Physical Journal Conferences,2009,1:19-28
    [23]王旭,周爱国,SIEGERT F,等.念青唐古拉山西段冰川1977~2010年时空变化[J].地球科学——中国地质大学学报,2012,37(5):1082-1092.
    [24] VERGARA W, DEEB A M, VALENCIA A M, et al. Economic impacts of rapidglacier retreat in the Andes [J]. Eos, Transactions, American GeophysicalUnion,2007,88(25):261-264.
    [25] ZEMP M, HAEBERLI W, HOELZLE M, et al. Alpine glaciers to disappearwithin decades?[J]. Geophysical Research Letters,2006,33:L13504.
    [26] YAO T D. Glacial fluctuations and its impacts on lakes in the southern TibetanPlateau[J]. Chinese Science Bulletin,2010,55(20):2071.
    [27]刘淑珍,李辉霞,鄢燕,等.西藏自治区洛扎县冰湖溃决危险度评价[J].山地学报,2003,21(增刊):128-132.
    [28]仲振维,叶庆华.纳木那尼峰地区冰川信息的综合提取方法[J].冰川冻土,2009,31(4):717-724.
    [29]沈永平,王根绪,吴青柏,等.长江—黄河源区未来气候情景下的生态环境变化[J].冰川冻土,2002,24(3):308-314.
    [30]刘时银,丁永建,李晶,等.中国西部冰川对近期气候变暖的响应[J].第四纪研究,2006,26(5):762-771.
    [31] IMMERZEEL W W, VAN B L P H, BIERKENS M F P. Climate change willaffect theAsian water towers [J]. Science,2010,328(5984):1382-1385.
    [32] PIAO S, CIAIS P, HUANG Y, et al. The impacts of climate change on waterresources and agriculture in China[J].Nature,2010,467(7311):43-51.
    [33] QIU J. Measuring the meltdown[J].Nature,2010,468(7321):141-142.
    [34]刘金亮.基于ASTER数据的冰川及冰碛物的提取方法研究[D].青岛:山东科技大学,2012.
    [35] QIU J. The third pole[J].Nature,2008,454(7203):393-396.
    [36] MEIER M F, DYURGEROV M B. How Alaska affects the world [J].Science,2002,297(5580):350-351.
    [37] BARRY G R. The status of research on glaciers and global glacier recession: areview [J]. Progress in Physical Geography,2006,30(3):285-306.
    [38]李治国,姚檀栋,叶庆华,等.西藏年楚河满拉水库上游冰川变化及其影响[J].冰川冻土,2010,32(4):650-658.
    [39] KARGEL J S, ABRAMS M J, BISHOP M P, et al. Multispectral imagingcontributions to global land ice measurements from space [J]. Remote Sensing ofEnvironment,2005,99:197-219.
    [40] PAUL F, KAAB A, MAISCH M, et al. The new remote-sensing-derived Swissglacier inventory: I. Methods [J]. Annals of Glaciology,2002,34:355-361.
    [41]李震,孙文新,曾群柱.综合RS与GIS方法提取青藏高原冰川变化信息——以布喀塔格峰为例[J].地理学报,1999,54(3):262-268.
    [42] LI Z, SUN W, ZENG Q. Measurements of glacier variation in the Tibetan Plateauusing Lansat data [J]. Remote Sensing of Environment,1998,63(3):258-264.
    [43]李晖,肖鹏峰,冯学智,等.近30年三江源地区湖泊变化图谱与面积变化[J].湖泊科学,2010,22(6):862-873.
    [44]鲁安新,姚檀栋,王丽红,等.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土,2005,27(6):783-792.
    [45]姚檀栋.青藏高原及其毗邻区冰川湖泊图[M].西安:西安地图出版社,2008.
    [46]张淑萍,张虎才,陈光杰,等.1973-2010年青藏高原西部昂拉仁错流域气候、冰川变化与湖泊响应[J].冰川冻土,2012,34(2):267-276.
    [47] RAUP B, K B A, KARGEL S J, et al. Remote sensing and GIS technology inthe global land ice measurements from space (GLIMS) project [J]. Computers&Geosciences,2007,33:104-125.
    [48] RAUP B, RACOVITEANU A, KHALSA J S S, et al. The GLIMS geospatialglacier database: a new tool for studying glacier change [J]. Global andPlanetary Change,2007,(57):101-110.
    [49] K B A, PAUL F, MAISCH M, et al. The new remote sensing derived Swissglacier inventory: II. first results [J]. Annals of Glaciology,2002,34:362-366.
    [50]高闻宇.天山中段南北坡冰川变化研究[D].兰州:西北师范大学,2011.
    [51] KOBIERSKA F, JONAS T, MAGNUSSON J, et al. Climate change effects onsnow melt and discharge of a partly glacierized watershed in Central Switzerland(SoilTrec Critical Zone Observatory)[J].Applied Geochemistry,2011,26:60-62.
    [52]张瑞江,方洪宾,赵福岳,等.青藏高原近30年来现代冰川面积的遥感调查[J].国土资源遥感,2010,(86):45-48.
    [53]汪有奎,贾文雄,刘潮海,等.祁连山北坡的生态环境变化[J].林业科学,2012,48(4):21-26.
    [54]周玉杉,王颖洁,周文明.基于遥感影像的天山冰川面积变化监测[J].矿山测量,2012,(3):21-26.
    [55]刘潮海,丁良福.天山山区冰川编目的新进展[J].冰川冻土,1986,8(2):167-170.
    [56] WHEATON M J, GARRARD C, WHITEHEAD K, et al. A simple, interactiveGIS tool for transforming assumed total station surveys to real worldcoordinates-the CHaMP transformation tool [J]. Computers&Geosciences,2012,(42):28-36.
    [57] NAINWAL H C, NEGI B D S, CHAUDHARY M, et al. Temporal changes inrate of recession: evidences from satopanth and bhagirath kharak glaciers,Uttarakhand, using total station survey [J]. Current Science,2008,94(5):653-660.
    [58] FAVIER V, FALVEY M, RABATEL A, et al. Interpreting discrepancies betweendischarge and precipitation in high-altitude area of Chile’s Norte Chico region(26~32°S)[J]. Water Resources Research,2009,24:1-20.
    [59] Winiger M, Gumpert M Yamout H. Karakorum-Hindukush-western Himalaya:assessing high-altitude water resources [J]. HydrologicalProcesses,2005,19:2329-2338.
    [60] TAHIRA A A, CHEVALLIER P, ARNAUD Y, et al. Modeling snowmelt-runoffunder climate scenarios in the Hunza River basin, Karakoram Range, NorthernPakistan [J]. Journal of Hydrology,2011,409:104-117.
    [61] LIU T, WILLEMS P, FENG X W, et al. On the usefulness of remote sensinginput data for spatially distributed hydrological modelling: case of the TarimRiver basin in China [J]. Hydrological Processes,2012,26:335-377.
    [62] DANA L G, DAVIS E R, FOUNTAIN G A, et al. Satellite-derived indices ofstream discharge in Taylor Valley, Antarctica [J]. HydrologicalProcesses,2002,16:1603-1616.
    [63] PIETRONIRO A, LECONTE R. A review of Canadian remote sensing andhydrology,1999–2003[J]. Hydrological Processes,2005,19:205-301.
    [64]张继平,刘林山,张镱锂,等.面向对象的极高海拔区水体及冰川信息提取——以珠穆朗玛峰国家级自然保护区核心区为例[J].地球信息科学学报,2010,12(4):517-523.
    [65] TAHIR A A, CHEVALLIER P, ARNAUD Y, et al. Snow cover dynamics andhydrological regime of the Hunza River basin, Karakoram Range, NorthernPakistan [J]. Hydrology and Earth System Sciences,2011,15:2275-2290.
    [66]曹泊,王杰,张忱,等.遥感技术在现代冰川变化研究中的应用[J].遥感技术与应用,2011,26(1):52-59.
    [67] DWYER J. Mapping tide-water glacier dynatnics in East Greenland usingLandsat data [J]. Journal of Glaciology,1995,41(139):584-595.
    [68]姜珊.基于遥感的东昆仑山冰川和气候变化研究[D].兰州:兰州大学,2012.
    [69]殷小军,李新.基于概率松弛标示法的冰川表面流动场计算[J].冰川冻土,2007,29(6):900-904.
    [70]车涛,李新,Mool K P,等.希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J].冰川冻土,2005,27(6):801-805.
    [71] WU Y H, ZHU L P. The response of lake-glacier variations to climate change inNam Co Catchment, central Tibetan Plateau, during1970~2000[J]. Journal ofGeographical Sciences,2008,18(139):177-189.
    [72]边多,边巴次仁,拉巴,等.1975~2008年西藏色林错湖面变化对气候变化的响应[J].地理学报,2010,65(3):313-319.
    [73] YAO T D, PU J C, LU A X, et al. Recent Glacial Retreat and Its Impact onHydrological Processes on the Tibetan Plateau, China, and Surrounding Regions[J]. Arctic, Antarctic, and Alpine Research,2007,39(4):642-650.
    [74] YAO T D. Glacial fluctuations and its impacts on lakes in the southern TibetanPlateau [J]. Chinese Science Bulletin,2010,55(20):2071.
    [75]陈锋,康世昌,张拥军,等.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报,2009,27(6):641-647.
    [76]刘晓尘,效存德.1974~2010年雅鲁藏布江源头杰玛央宗冰川及冰湖变化初步研究[J].冰川冻土,2011,33(3):488-496.
    [77]李治国.近50a气候变化背景下青藏高原冰川和湖泊变化[J].自然资源学报,2012,27(8):1431-1443.
    [78]黄璜.天山荒漠绿洲的关联效应[J].实事求是,2003,(5):44-47.
    [79]中国科学院中国自然地理编辑委员会.中国自然地理,地貌[M].北京:科学出版社,1980.
    [80]张小燕.西北地区植被背景值及演替规律研究[D].杨凌:西北农林科技大学,2003.
    [81]姜琦刚,李远华,邢宇,等.青藏高原湿地遥感调查及生态地质环境效应研究[M].北京:地质出版社,2012.
    [82]白磊.基于小流域的青藏高原湿地变迁及其机理研究[D].长春:吉林大学,2010.
    [83]刘晶.张掖绿洲灌区土壤水分的空间变异性研究[D].兰州:甘肃农业大学,2007.
    [84]包锐,罗斌.拯救河西走廊[J].中国经济周刊,2008,(24):16-17.
    [85]王东.公共艺术与乡村空间的拓展[D].兰州:西北民族大学,2009.
    [86]王琴.河西走廊灌溉农业区的人口生存碳排放评估[D].兰州:兰州大学,2010.
    [87]王东.青藏高原水生植物地理研究[D].武汉:武汉大学,2003.
    [88]樊红芳.青藏高原现代气候特征及大地形气候效应[D].兰州:兰州大学,2008.
    [89]黄锦华.西藏草地不同立地条件及利用方式对土壤的影响[D].杨凌:西北农林科技大学,2009.
    [90]程德贵.步枪在高原山地条件下使用的有关问题研究[D].南京:南京理工大学,2007.
    [91]孟庆伟.青藏高原特大型湖泊遥感分析及其环境意义[D].北京:中国地质科学院,2008.
    [92]方洪宾,赵福岳,张振德,等.青藏高原现代生态地质环境遥感调查与演变研究[M].北京:地质出版社,2009.
    [93]赵福岳,张瑞江,陈华,等.青藏高原隆升的生态地质环境响应遥感研究[J].国土资源遥感,2012,(3):116-121.
    [94]张金山,沈兴菊.河西走廊发展农业的自然条件[J].中学地理教学参考,1999,(4):26.
    [95]白磊,姜琦刚,刘万崧,等.近30年来河西走廊湿地变化及其机理初探[J].国土资源遥感,2010,(1):101-106.
    [96]王璐.后农业税时代河西走廊农地收入与耕地保护研究[D].兰州:甘肃农业大学,2010.
    [97]黄慧萍.面向对象影像分析中的尺度问题研究[D].北京:中国科学院遥感应用研究所,2003.
    [98]崔瀚文,姜琦刚,邢宇,等.32年来气候扰动下中国沙质荒漠化动态变化[J].吉林大学学报(地球科学版),2013,43(2):582-591.
    [99]崔瀚文,姜琦刚,程彬,等.东北地区湿地变化影响因素分析[J].应用基础与工程科学学报,201,21(2):214-223.
    [100]崔瀚文.30年来东北地区湿地变化及其影响因素分析[D].长春:吉林大学,2010.
    [101]李东东,乔玉良,张青海.基于遥感技术的珠海市湿地动态变化分析与研究[J].气象与环境科学,2011,34(2):14-19.
    [102]贺桂芹.西藏高寒湿地生态系统服务功能价值评估及湿地保护对策研究[D].杨凌:西北农林科技大学,2007.
    [103]周月敏.面向小流域管理的水土保持遥感监测方法研究[D].北京:中国科学院遥感应用研究所,2005.
    [104]人民教育出版社课程教材研究所,地理课程教材研究开发中心.地理[M].北京:人民教育出版社,2004.
    [105]陆鼎言.小流域综合治理开发技术初探[J].水土保持通报,1999,19(1):33-37.
    [106]师守祥,张智全,李旺泽,等.小流域可持续发展论——兼论洮河流域资源开发与可持续发展[M].北京:科学出版社,2002.
    [107]梁玉华.流域系统——概念和方法[J].贵州师范大学学报(自然科学版),1997,15(1):13-17.
    [108]熊明彪,胡恒,罗茂盛.四川省小流域水土流失动态监测体系探讨[J].中国水土保持SWCC,2002,(4):22-24.
    [109]王兵.伊洛河流域农村经济空间分异与可持续发展研究[D].郑州:河南大学,2004.
    [110]王慧敏,徐立中.流域系统可持续发展分析[J].水科学进展,2000,11(2):165-172.
    [111]丁文荣.关于流域系统生态环境需水量理论的初步探讨[D].昆明:云南师范大学,2005.
    [112]王慧敏,刘新仁.流域复合系统可持续发展的测度研究[J].河海大学学报,1999,(3):45-48.
    [113]常月明,王心源,王桂林,等.用流域系统的观点看待荒漠化及其治理[J].干旱区资源与环境,2004,18(9):48-53.
    [114]王鸣远.水文过程及其尺度响应[M].北京:中国水利水电出版社,2010.
    [115]蔡守华,詹万林,胡金杰,等.小流域生态系统服务功能价值估算方法[J].中国水土保持科学,2008,6(1):87-92.
    [116]湖泊及流域科学学科发展与优先领域学术研讨会秘书组.湖泊及流域科学研究进展与展望[J].湖泊科学,2002,14(4):289-300.
    [117]彭坷珊.小流域综合治理在水土保持中的特殊作用及发展途径[J].水利水电科技进展,2001,21(2):5-11.
    [118] WETZEL G R. Freshwater ecology: changes, requirements, and future demands[J]. Limnology,2000,(1):3-9.
    [119]刘广润,刘吉平.数字流域中的地质环境与地质资源问题[J].水电能源科学,2001,19(3):12-15.
    [120] Mllennium EcosystemAssessment Board. Eeesystenm and Human Well-being:AFramework for Assessment[M]. Washington DC: Island Press,2003.
    [121]马荣华,杨桂山,段洪涛,等.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学,2011,41(3):394-401.
    [122]施雅风.简明中国冰川目录[M].上海:上海科学普及出版社,2005.
    [123]钱亦兵,吴世新,吴兆宁,等.喀尔里克山冰川资源近50a来的变化及保护对策[J].干旱区地理,2011,34(5):719-725.
    [124]李开明,李忠勤,高闻宇,等.近期新疆东天山冰川退缩及其对水资源影响[J].科学通报,2011,58(32):2708-2716.
    [125]李忠勤,沈永平,王飞腾,等.冰川消融对气候变化的响应——以乌鲁木齐河源1号冰川为例[J].冰川冻土,2007,29(3):333-342.
    [126]焦克勤,叶柏生,韩添丁,等.天山乌鲁木齐河源1号冰川径流对气候变化的响应分析[J].冰川冻土,2011,33(3):606-611.
    [127]王璞玉,李忠勤,李慧林.气候变暖背景下典型冰川储量变化及其特征——以天山乌鲁木齐河源1号冰川为例[J].自然资源学报,2011,26(7):1189-1198.
    [128]王国亚,沈永平.天山乌鲁木齐河源1号冰川面积变化对物质平衡计算的影响[J].冰川冻土,2011,33(1):1-7.
    [129]陈亚宁,贺西安,张小云.流域开发与土地管理模式——兼谈伊犁河流域土地开发与产业定位[J].干旱区地理,2007,30(4):595-600.
    [130]李吉玫,徐海量,宋郁东,等.伊犁河流域水资源承载力的综合评价[J].干旱区资源与环境,2007,21(3):39-43.
    [131]郑青华,罗格平,朱磊,等.基于CA_Markov模型的伊犁河三角洲景观格局预测[J].应用生态学报,2010,21(4):873-882.
    [132]王宏伟,张小雷,乔木,等.基于GIS的伊犁河流域生态环境质量评价与动态分析[J].干旱区地理,2008,31(2):215-221.
    [133]孙慧兰,李卫红,陈亚鹏,等.新疆伊犁河流域生态服务价值对土地利用变化的响应[J].生态学报,2010,30(4):887-894.
    [134]王彦涛.叶尔羌河流域植物区系及植被研究[D].乌鲁木齐:新疆师范大学,2010.
    [135]王圣杰,张明军,李忠勤,等.近50年来中国天山冰川面积变化对气候的响应[J].地理学报,2011,66(1):38-46.
    [136]曾磊.基于RS和GIS的东帕米尔高原冰川近40a来的变化研究[D].兰州:兰州大学,2012.
    [137]曾磊,杨太保,田洪阵.近40年东帕米尔高原冰川变化及其对气候的响应[J].干旱区资源与环境,2013,27(5):144-150.
    [138]蓝永超,沈永平,吴素芬,等.近50年来新疆天山南北坡典型流域冰川与冰川水资源的变化[J].干旱区资源与环境,2007,21(11):1-8.
    [139]中国科学院兰州冰川冻土研究所巴托拉冰川考察组.喀喇昆仑山巴托拉冰川及其变化[J].中国科学,1978,(6):657-670.
    [140]牛竞飞,刘景时,王迪,等.2009年喀喇昆仑山叶尔羌河冰川阻塞湖及冰川跃动监测[J].山地学报,2011,29(3):276-282.
    [141]王迪,刘景时,胡林金,等.近期喀喇昆仑山叶尔羌河冰川阻塞湖突发洪水及冰川变化监测分析[J].冰川冻土,2009,31(5):808-814.
    [142]焦克勤,姚檀栋,李世杰.西昆仑山32ka来的冰川与环境演变[J].冰川冻土,2000,22(3):250-256.
    [143]上官冬辉,刘时银,丁永建,等.中国喀喇昆仑山、慕士塔格—公格尔山典型冰川变化监测结果[J].冰川冻土,2004,26(3):374-375.
    [144]刘自强,汪建宁.新疆和田籽玉的开采与玉龙喀什河流域生态环境[J].资源调查与环境,2009,30(3):222-228.
    [145]袁兆德.帕米尔活动造山带东北部大型滑坡体特征与年代[D].北京:中国地震局地质研究所,2012.
    [146]王杰,周尚哲,赵井东,等.东帕米尔公格尔山地区第四纪冰川地貌与冰期[J].中国科学:地球科学,2011,41(3):350-361.
    [147]何元庆,庞洪喜,卢爱刚,等.中国西部不同类型冰川区积雪及其融水径流中稳定同位素比率的时空变化及其气候效应[J].冰川冻土,2006,28(1):22-28.
    [148]苏珍,刘时银,王志超.慕士塔格山和公格尔山的现代冰川[J].自然资源学报,1989,4(3):241-246.
    [149]谢自楚,刘潮海.冰川学导论[M].上海:上海科学普及出版社,2010.
    [150]王桂清.吐鲁番地区地表水资源状况分析[J].水利科技与经济,2013,19(1):81-83.
    [151]王亚俊,吴素芬.新疆吐鲁番盆地艾丁湖的环境变化[J].冰川冻土,2003,25(2):229-231.
    [152]阿布都热合曼·哈力克,卞正富,瓦哈甫·哈力克.吐鲁番盆地的水资源运转规律及其持续利用研究[J].水文,2009,29(3):50-54.
    [153]阿布都热合曼·哈力克,阿布都沙拉木·加拉力丁,卞正富.吐鲁番盆地的水资源及其合理开发利用探讨[J].农业系统科学与综合研究,2009,25(3):355-360.
    [154]王永兴.吐鲁番盆地气候变化及其对水资源的可能影响[J].中国沙漠,2000,20(2):207-213.
    [155]辛渝,陈洪武,张广兴,等.新疆年降水量的时空变化特征[J].高原气象,2008,27(5):993-1003.
    [156]柳依莎.青藏高原西部冰川、湖泊的动态变化及其对气候变化的响应研究[D].重庆:重庆师范大学,2012.
    [157]万法江.狮泉河水生生物资源和高原裸裂尻鱼的生物学研究[D].武汉:华中农业大学,2012.
    [158]刘时银,上官冬辉,丁永建,等.基于RS与GIS的冰川变化研究——青藏高原北侧新青峰与马兰冰帽变化的再评估[J].冰川冻土,2004,26(3):244-252.
    [159]张东启,效存德,秦大河.近几十年来喜马拉雅山冰川变化及其对水资源的影响[J].冰川冻土,2009,31(5):885-895.
    [160]任贾文,秦大河,康世昌,等.喜马拉雅山中段冰川变化及气候暖干化特征[J].科学通报,2003,48(23):2478-2482.
    [161]殷俊琦.珠穆朗玛峰地区南北坡冰川分布、变化及预测[D].长沙:湖南师范大学,2012.
    [162]韩兰英,孙兰东,张存杰,等.祁连山东段积雪面积变化及其区域气候响应[J].干旱区资源与环境,2011,25(5):109-112.
    [163]张肃斌.河西走廊生态系统退化特征与恢复策略研究[D].杨凌:中西北农林科技大学,2007.
    [164]丁宏伟,张举,吕智,等.河西走廊水资源特征及其循环转化规律[J].干旱区研究,2006,23(2):241-248.
    [165]陈昌毓.祁连山区水资源及其对河西走廊生态环境的影响[J].自然资源学报,1995,10(2):104-105.
    [166]刘洪兰,白虎志,张俊国,等.1957~2006年河西走廊中部气候变化对水资源的影响[J].冰川冻土,2010,32(1):183-188.
    [167]王素萍,宋连春,韩永翔.河西走廊地区气候和绿洲生态研究的若干进展[J].干旱气象,2006,24(2):78-83.
    [168]宋鸿,陈晓玲.中国土地市场化进程的空间自相关分析[J].华中师范大学学报(自然科学版),2008,42(1):132-136
    [169]杨斌.基于地统计学的土地利用空间数据挖掘方法研究[D].北京:中国地质大学,2009.
    [170]恭映璧,李春华,胡日利.50年来长沙市湿地时空变化及空间自相关分析[J].中国农学通报,2012,28(14):269-274.
    [171]项大成.省级地方政府财政支出与国内生产总值关系的空间计量分析[D].天津:天津财经大学,2009.
    [172]杨琨.江苏省经济开发区土地集约利用空间差异性研究[D].南京:南京师范大学,2011.
    [173] GOULD P R. Is statistics inference the geographical name for a wild goose [J].Economic Geography,1970,46:439-448.
    [174]刘吉平,吕宪国,崔炜炜.别拉洪河流域湿地变化的多尺度空间自相关分析[J].水科学进展,2010,21(3):392-398.
    [175]赵小风,黄贤金,张兴榆,等.区域COD、SO2及TSP排放的空间自相关分析:以江苏省为例[J].环境科学,2009,30(6):1580-1587.
    [176]李秀玲,陈健,王刚.西北地区红砂种群ISSR遗传变异的空间自相关分析[J].中国沙漠,2008,28(3):468-472.
    [177]谈文琦,徐建华,岳文泽,等.城市景观空间自相关与自相似的尺度特征研究[J].生态学杂志,2005,24(6):627-630.
    [178]谢正峰,王倩.广州市土地利用程度的空间自相关分析[J].热带地理,2009,29(2):192-133.
    [179]邱炳文,王钦敏,陈崇成,等.福建省土地利用多尺度空间自相关分析[J].自然资源学报,2007,22(2):311-321.
    [180]霍霄妮,李红,孙丹峰,等.北京耕作土壤重金属含量的空间自相关分析[J].环境科学学报,2009,29(6):1339-1344.
    [181]黄飞飞,张小林,余华,等.基于空间自相关的江苏省县域经济实力空间差异研究[J].人文地理,2009,24(2):84-89.
    [182] GOODCHILD M F. Spatial autocorrelation[M]. Norwich: Geobooks,1986.
    [183]张维生.黑龙江省森林空间自相关分析[J].东北林业大学学报,2008,36(10):16-18.
    [184]赵超,舒红,宣国富. MODIS影像植被时空变化分析——以吉林省为例[J].测绘科学,2010,35(5):173-175.
    [185] ANSELIN L. Local indicators of spatial association-LISA [J]. GeographicalAnalysis,1995,27(2):93-115.
    [186]于尚洋. GLMM中基于空间自相关和迭代残差的空间聚类检测[D].秦皇岛:燕山大学,2008.
    [187] GETIS A, ORD J K. The analysis of spatial association by use of distancestatistics [J]. GeographicalAnalysis,1992,24(3):177-189.
    [188]王秀娜.近40年来南阿尔泰山地区现代冰川变化及对气候变化的响应[D].兰州:兰州大学,2012.
    [189]徐强.“3S”技术在青藏高原冰川测绘中的应用研究[D].成都:成都理工大学,2008.
    [190]邢宇.基于RS/GIS的全球变化下中国陆域湿地时空演变研究[D].长春:吉林大学,2011.
    [191]祁晨. RS-GIS技术支持下的近35a艾丁湖演变研究[D].乌鲁木齐:新疆师范大学,2008.
    [192]聂勇,张镱锂,刘林山,等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报,2010,65(1):13-28.
    [193]刘勇,邓晓峰.希夏邦马峰—珠穆朗玛峰地区地貌与环境演化问题探讨[J].冰川冻土,1998,20(1):79-84.
    [194]中国科学院兰州冰川冻土沙漠研究所冰川研究室.我国西藏南部珠穆朗玛峰地区冰川的基本特征[J].中国科学,1974,(4):383-400.
    [195]雷欢欢.西藏登山运动与环境保护关系的研究[D].西安:陕西师范大学,2011.
    [196]李巧媛.不同气候变化情景下青藏高原冰川的变化[D].长沙:湖南师范大学,2011.
    [197]刘昭.雅鲁藏布江拉萨——林芝段天然水水化学及同位素特征研究[D].成都:成都理工大学,2011.
    [198]段丽萍.西藏地质旅游资源概况及开发建议[J].地质通报,2006,25(1-2):302-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700