用户名: 密码: 验证码:
不同运动应激状态下丘脑—垂体—肾上腺轴应激反应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:运动应激是运动训练与运动健身产生效应的生物学基础,但是运动应激时的下丘脑-垂体-肾上腺轴(HPA)轴中枢反应机制研究较少,尤其对于不同运动应激时一氧化氮(NO)通过糖皮质激素受体(GR)与糖皮质激素(GC)结合而影响HPA轴调节、以及GR、NOS的变化对HPA轴中枢调节系统研究未见报道。本研究以不同负荷跑台运动引起的应激状态为研究对象,从HPA轴外周激素水平变化、中枢相关受体基因水平变化和蛋白表达变化等不同层次和角度,分析不同负荷运动应激的HPA轴的应激程度及中枢调节规律,揭示不同运动负荷应激时的中枢调节机制。
     研究方法:11周龄雄性SD大鼠130只,随机分为长期运动组、一次运动组及对照组。长期运动组大鼠以高、中、低三种不同负荷进行跑台训练,6天/周,1小时/天,实验期8周;一次运动组亦采用三种不同负荷运动,采用长期训练组同等负荷末次运动方案。测试方法与指标:双抗体夹心酶标免疫分析法测定血清CORT、T、ACTH、下丘脑CRH含量;免疫组化法测海马CA1区、下丘脑弓状核、腹内侧核、背内侧核、室旁核、中央杏仁核进行形态观察,并测定GR、NOS等阳性神经元数量变化;RT-PCR法测定海马、下丘脑、杏仁核GR、MR、NOS基因转录水平,Western blotting法测定上述核团GR、NOS蛋白表达量。
     研究结果:(1)长期大负荷运动组海马MR、GR转录减少、GR表达减少(P<0.05),NOS转录及表达水平无明显变化;下丘脑兴奋提高,GR、MR转录水平降低,NOS表达增多(P<0.05);杏仁核GR基因转录水平无明显变化,杏仁核NOS基因转录增多(P<0.05);ACTH升高,CRH、CORT浓度降低。(2)长期中等负荷运动组海马GR、NOS基因转录及表达增多(P<0.01),海马兴奋性降低;下丘脑兴奋性提高,GR转录减少,蛋白浓度升高,NOS基因转录及表达增多(P<0.05);杏仁核兴奋性提高,GR、NOS基因转录及表达减少,各核团MR基因转录减少;CRH、ACTH、CORT浓度升高(P<0.05)。(3)长期低负荷运动组海马兴奋性无明显变化,MR基因转录增多,GR转录水平降低,NOS基因转录及表达增多(P<0.05);下丘脑兴奋,NOS、GR基因转录及表达增多(P<0.05);杏仁核NOS基因转录及表达减少,GR基因转录及表达无明显变化,杏仁核及下丘脑MR基因转录减少,CRH、CORT浓度升高,ACTH无明显变化。(4)一次大负荷运动组海马NOS基因转录及表达增多,GR基因转录增多, MR基因转录减少,海马兴奋性降低;下丘脑兴奋性降低,NOS基因转录及表达增多,GR、MR基因转录减少,GR蛋白升高(P<0.05);杏仁核兴奋性降低,NOS、GR基因转录及表达减少,MR基因转录增多(P<0.05);CRH、CORT浓度升高,ACTH浓度降低(P<0.05)。(5)一次中等负荷运动组海马NOS基因转录及表达增多,GR基因转录及表达水平降低,海马兴奋性无明显变化;下丘脑室旁核兴奋,NOS基因转录及表达增多,GR基因转录水平无变化,表达增多(P<0.05);杏仁核GR基因转录及表达增多,NOS基因转录减少,但NOS浓度升高,各核团MR转录降低(P<0.05);CRH、CORT浓度升高,ACTH浓度降低。(6)一次低负荷运动海马兴奋性无变化,NOS、GR基因转录及表达减少,MR基因转录无变化;下丘脑兴奋性提高NOS基因转录无明显变化,NOS表达增多,GR基因转录及表达增多;杏仁核兴奋性提高,NOS基因转录及表达增多,GR基因转录无明显变化,表达增多,杏仁核及下丘脑MR基因转录减少(P<0.05);CRH、CORT浓度升高,ACTH浓度降低(P<0.05)。
     研究结论:(1)长期大负荷运动应激后海马、下丘脑及杏仁核兴奋性降低,HPA轴抑制;一次大负荷运动应激造成下丘脑及杏仁核兴奋性升高,HPA轴激活。(2)长期大负荷运动后海马抑制是由于海马兴奋性损伤导致;一次大负荷运动后海马抑制是由于外周高水平GC的负反馈调节。(3)运动应激反应中海马的兴奋性与NOS无相关性,即NOS仅参与海马兴奋性损伤,而不参与其兴奋性调节。(4)长期中等负荷运动与一次中等负荷运动应激HPA轴主要不同在于ACTH变化,长期中等负荷ACTH升高由于杏仁核NOS参与对垂体的调节,一次中等负荷后ACTH下降主要受外周GC、下丘脑与杏仁核的GR负反馈调节所致。(5)小负荷运动后海马兴奋性无明显变化,杏仁核与下丘脑兴奋性提高,长期小负荷运动后杏仁核NOS参与垂体ACTH调节,而一次负荷ACTH下降则受GC与海马GR的反馈调节。(6)长期运动HPA轴的应激反应中枢调节多于外周调节;一次运动主要以HPA轴各环节的反馈调节为主。
Objective: Exercise Stress is the biological basis of sports training and sports fitness that can produce effects. However, there was less study of the central response mechanism of HPA axis in exercise stress. In particular, there was no report on the study of HPA axis regulation affected by NO through the combination of glucocorticoid receptor (GR) and glucocorticoid (GC) as well as the changes of GR NOS in HPA Axis central regulatory systems. The research took different load treadmill exercise- induced stress state as the research objective. It analysed different load of exercise stress level of HPA axis and central regulatory rule from the change of the levels of peripheral hormones HPA axis, central-related receptor gene and protein expression, and so on. It revealed the central regulatory mechanisms in the stress of different exercise load.
     Methods: 11-week 130 male SD rats were randomly divided into three groups: long-term exercise group, one exercise group and control group. The rats of that long-term exercise group were trained to run on the treadmill with three different loads: high-load, middle-load, and low-load, 6 days/week, one hour/day, and the experimental period was 8 weeks. One exercise group was also divided into three different load movements, adopting the last sports program of the same load of the long-term group. Testing methods and indices: It determined the content of serum CORT, T, ACTH, hypothalamic CRH levels with the method of double-antibody sandwich enzyme linked immunosorbent. With the method of Immunohistochemistry, it tested hippocampal CA1, hypothalamic arcuate nucleus, ventromedial nucleus, dorsomedial nucleus, paraventricular nucleus, central amygdaloid nucleus, and observed the morphological changes, determining the number of changes of GR, NOS-positive neurons, and so on. With the method of PT-PCR, it determined the gene transcription level of hippocampus, hypothalamus, and amygdala GR, MR, NOS. With the method of Western blotting, it determined the protein expression of GR and NOS of the above-mentioned nuclei.
     Results:
     (1) Hippocampus MR, GR transcription in the long-term heavy load exercise group decreased, and GR expression also decreased(P<0.05). Transcription and expression of NOS did not change significantly. The excitability in hypothalamus was elevated. GR, MR transcription decreased. NOS expression increased (P<0.05). GR gene transcription in the amygdale had no significant change, and NOS gene transcription in the amygdale increased (P<0.05). ACTH increased, but CRH, CORT concentration decreased.
     (2) Hippocampus GR, NOS gene transcription and expression increased in the long-term moderate load exercise group (P<0.01). The excitability in Hippocampus decreased, whereas the excitability in hypothalamus was elevated. GR transcription decreased, but protein concentration increased. NOS gene transcription and expression increased (P<0.05). Amygdala excitability increased; GR, NOS gene transcription and expression decreased, and the nuclei of MR decreased; CRH, ACTH, CORT concentration increased (P<0.05).
     (3) Hippocampal excitability in the long-term low-load exercise group had no significant change. MR gene transcription increased, whereas GR transcription level decreased. NOS gene transcription and expression increased (P<0.05); hypothalamus was excited. NOS, GR gene transcription and expression increased (P <0.05); NOS gene transcription and expression in amygdala decreased. GR gene transcription and expression showed no significant changes. MR gene transcription in the amygdala and hypothalamus decreased, CRH, CORT concentration increased. ACTH had no significant changes.
     (4) Hippocampus NOS gene transcription and expression increased in heavy load exercise group. GR gene transcription increased, but MR gene transcription decreased. Hippocampal excitability decreased. The excitability of hypothalamus decreased. NOS gene transcription and expression increased. GR, MR gene transcription decreased, whereas GR protein increased ( P<0.05 ) . Amygdala excitability decreased. NOS, GR gene transcription and expression decreased. MR gene transcription increased (P<0.05); CRH, CORT concentration increased, whereas ACTH concentration decreased (P <0.05).
     (5) Hippocampal NOS gene transcription and expression in moderate load exercise group increased. The level of GR gene transcription and expression decreased. There was no significant change in hippocampal excitability. Hypothalamic paraventricular nucleus was excited, and NOS gene transcription and expression increased. There was no change in the level of GR gene transcription, and the expression increased(P<0.05); GR gene transcription and expression in amygdala increased, whereas NOS gene transcription decreased. NOS concentration increased, but MR transcription of the nuclei decreased (P<0.05). CRH, CORT concentration increased, but ACTH concentration decreased.
     (6) There was no change in hippocampus excitability in a low-load exercise group. NOS, GR gene transcription and expression decreased. There was no change in MR gene transcription; Excitability of hypothalamic increased. NOS gene transcription showed no significant changes. NOS expression increased, GR gene transcription and expression increased, amygdala excitability increased, and NOS gene transcription and expression increased. GR gene transcription showed no significant changes, and expression increased. MR gene transcription of amygdala and hypothalamus decreased (P<0.05); CRH, CORT concentration increased, but ACTH concentration decreased (P<0.05).
     Conclusions
     (1) The stress of long-term heavy load exercise led to the decrease of the excitability in hypothalamus and amygdala, and the suppression of HPA Axis. The stress of one heavy load exercise led to the increase of the excitability in hypothalamus and amygdala. HPA axis was activated.
     (2) The suppression of hippocampal of long-term heavy load post-exercise was led by the injury of the hippocampus excitability. The suppression of hippocampus of one heavy load exercise was due to peripheral glucocorticoid feedback regulation.
     (3) In the response of the exercise stress, the excitability of the hippocampus had no correlation with NOS. NOS had participated only in the hippocampus excitatory damage, not participated in the regulation of their excitability.
     (4) The main difference of HPA axis of the long-term moderate load exercise and one moderate load exercise lied in the change of ACTH. The rise of ACTH of long-term moderate load exercise was due to the participation of the regulation to pituitary between the amygdale and NOS. The decrease of ACTH one moderate load exercise was caused by negative feedback regulation of peripheral GC, and GR of hypothalamus and amygdala.
     (5) There was no significant change for hippocampal excitability of low-load post-exercise. However, the excitability in amygdala and hypothalamus was elevated. After a long-term low-loaded exercise, amygdala NO participated in the regulation of pituitary ACTH. ACTH of one loaded exercise decreased, which was affected by the feedback regulation of GC and hippocampus GR.
     (6) The stress response of central regulation of HPA axis of a long-term exercise was more than peripheral regulation. One exercise gave priority to HPA axis feedback regulation of various sectors.
引文
1.姚泰主编.生理学(第6版)[M].北京:人民卫生出版社,2003.2-3
    2.Ottaviani E, Franchini A , Genedani S. ACTH and its immune-neuroendocrine functions: A comparative study[J]. Curr Pharm Des,1999, 5(9):673-681
    3.邓树勋,王健主编.高级运动生理学——理论与应用[M].北京,高等教育出版社,2003.8,198-209
    4.刘永琦.虚证的免疫学本质[J].中国中医基础医学杂志,2003,(5):6
    5.Metalnikov S, Chorine V. Rledes reflexes conditionnels dans I’immunite[J]. Annales de L’Institute Pasreur,1926,40:893-900
    6.Selye H. A syndrome produced by diverse noxious agents[J]. Nature.1936,138,32-33
    7.Besedovsky H, Sprkin E. Network of immune-neuroendocrine interactions[J]. Clinical And Experimental Immunology.1977,27(1):1-12
    8.张殿明,徐隆绍主编.神经内分泌学(第1版)[M].北京:中国医药科技出版社,1991.349-355
    9.范少光,丁桂凤.神经内分泌和免疫系统之间的相互调节作用[J].生物学通报,2000,35(3):1.
    10.贺新怀,席孝贤.中医药免疫学[M].北京:人民军医出版社,2002.275-276.
    11.Lawrence D A,Kim D.Central/peripheral nervous system and immune response[J]. Toxicology, 2000,142(3):189-201
    12.Blalock J E. The Syntax of immune-neuroendocrine communication [J]. Immunol Today.1994,15(11):504-511
    13.罗克.免疫应答的调节与神经-免疫-内分泌系统的网络调节(续)[J] .福建畜牧医学.2006,28(3):14-16
    14.肖学长,褚晓凡.低强度激光疗法对神经-内分泌-免疫网络的影响及临床新进展[J].解剖学研究.2002,24(1):46-48
    15.温二生,王凤珍,胡志苹.海马与学习记忆的研究进展[J] .赣南医学院学报,2006,26:651-652
    16.常永红.记忆细胞与二次免疫反应[J].生物学通报.2006,41(11):26
    17.名和田新.内分泌代谢疾病与生物节律[J].日本医学介绍.2000,21(2):64-65
    18.薛红,徐蕾,余曙,等.电针对大鼠创伤痛术后抗炎/促炎细胞因子比值影响的昼夜节律研究[J].成都中医药大学学报.2007,30(4):22-27
    19.乐凡,叶胜龙.昼夜节律钟基因与肿瘤[J].中国肿瘤生物治疗杂志.2007,14(1):83-86
    20.Panda S, Hogenesch J B. It′s all in the timing: Many clocks,many outputs[J]. J Biol Rhythms,2004,19(5):374-387
    21.Sato TK,Panda S,Kay SA,et al. DNA arrays:App lications and implications for circadian biology[J]. J Biol Rhythms,2003,18(2)96-105
    22.Meijer JH, Michel S, Vansteensel MJ. Processing of daily and seasonal light information in themammalian[J]. Gen Comp Endocrinol.2007,152 (23):159–164
    23.韩秀引,王蕾,欧可群.哺乳动物的生物钟系统研究[J].中国临床康复.7(25):3498-3499
    24.Ramet J, Hauser B, Waldura J, et al. Circadian rhythm of cardiac response to vagal stimulation tests[J]. Pediatril Neural. 1992(8):91
    25.Kummell HC, Leeuwen PV, Heckmann C, et al. Quality of life and circadian variation of heart rate and heart rate variability in short term survivors and nonsurvivors after acute myocardial infarction[J]. Clin Cardiol,1993,16(5):776
    26.何国军,吴中海.新生大鼠延髓面神经后核内侧区呼吸节律起步神经元的确认及分类[J].生理学报.2009,61(1):79-84
    27.Zhang FT, Wu ZH. Effect of blocking medial area of nucleus retrofacialis on respiratory rhythm[J]. Respir Physiol.1991,85(1):73-81
    28.Lewis PA, Miall RC. Brain activation patterns duringmeasurement of sub and super second intervals [J]. Neurop sychologia,2003,41(12):1583-1592.
    29.刘平,汪凯,程怀东.时间知觉的神经机制[J].中国神经精神疾病杂志.2008,34(11):700-702
    30.姚泰主编.生理学(第6版)[M].北京:人民卫生出版社.2004,10.275-379
    31.罗克.免疫应答的调节与神经-免疫-内分泌系统的网络调控[J].福建畜牧兽医.2006,28(1):51-52
    32.罗克.免疫应答的调节与神经-免疫-内分泌系统的网络调控(续)[J].福建畜牧兽医.2006,28(2):28-29
    33.Cerghet M, Skoff R P, Bessert D, et al . Proliferation and death of oligodendrocytes and myelin proteins are differentially regulated in male and female rodents[J]. J Neurosci,2006,26(5):1439-1447.
    34.Gur R C, Turet sky B I, Mat sui M, et al. Sex differences in brain gray and white matter in healt hy young adults: correlations wit hcognitive performance[J]. J Neurosci, 1999,19(10):4065-4072
    35.Simon Baron- Cohen, Rebecca C,Knickmeyer, MatthewK. Belmonte. Sex Differences in the Brain: Implications for ExplainingAutism[J].Science 2005,11(310):819-823
    36.肖明,丁炯.下丘脑视前两性异形区的性别差异性与细胞凋亡[J].解剖科学进展.2001,7(2):143-145
    37.GUR Ruben C., GUNNING-DIXON Faith M., TURETSKY Bruce I., et al1. Brain region and sex differences in age association with brain volume: A quantitative MRI study of healthy young adults[J]. Am J Geriatr Psychiatry.2002,10:72-80.
    38.Xu J, Kobayashi S, Iijima K, et al. Gender effect s on age-related changes in brain st ructure [J]. Am J Neuroradiol , 2000,21 (1):112-118
    39.Hirayasu Y, SamuraM, Ohta H, et a1. Sex effects on rate of changes of P300 latency with age[J].Clinical Neurophysiol.2000,111:187–1941
    40.卢志明,车至香,李桂琴.自身免疫性疾病的性别差异[J].国外医学临床生物化学与检验学分册.2001,22(3):150-163
    41.顾静雄,马坚.CD35表达的性别差异与自身免疫病易感性[J].江苏医药.1999,25(6):425-426
    42.任淑平,赵淑华,陈秋野等.时间和性别对唾液中免疫球蛋白A的影响[J].环境与健康杂志.1999,16(2):98-99
    43.Gabay C, Kusher I. Acute - phase p roteins and other systemic responses toinflammation[J].N EnglMed,1999,340 (6):448-454
    44.Ridker P M, Hennekns C H, Buring J E, et al. C-reactive protein and othermarkers of inflammation in the prediction of cardiovascular disease inwomen [J].N Engl J Med,2000,342(12):836-843.
    45.鞠晓红,方德洋,马爱新等.C-反应蛋白水平的性别和年龄差异[J].广东医学.2007,28(6):923-924
    46.Keller M B. Past, present and future directions for defining optimal treatment outcome in depression: remission and beyond[J]. Jama, 2003, 289(23):3152-3160
    47.Uvnas-Moberg K, Neuroendocrinology of the mother-child interaction[J]. Trends in Endocrinology and Metabolism.1996,7:126-131
    48.Sijens P E, den Heijer T, Origgi D, et al. Sexual Dimorphism in the Influence of Advanced Aging on Adrenal Hormone Levels:The Rancho Bernardo Study[J].J Clin Endocrinology & Metabolism.2000,10:3561-3568
    49.常永超,李维,许德.血糖、血脂及血液流变学指标在性别间的差异[J].医药论坛杂志.2009,30(10):29-30
    50.邹承鲁主编.当代生物学[M] .北京:中国致公出版社.2000,394-396
    51.童坦君,张宗玉.衰老机制及其学说.生理科学进展[J].2007,38(1):14-18
    52.许绍芬主编.神经生物学(第2版)[M].上海:复旦大学出版社,1999.8:475-477
    53.吕国蔚主编.医学神经生物学[M].北京:高等教育出版社,2000:369-381
    54.迟素敏主编.内分泌生理学[M].西安:第四军医大学出版社,2005:345-349
    55.Hertoghe T. The "Multiple hormone deficiency" theory of aging-Is human senescence caused mainly by multiple hormone deficiencies? [J]. Ann New York Acad Sci, 2006,(1057)448-465.
    56.张雅萍.坤宁安丸对更年期综合征患者生殖内分泌-免疫功能的影响[J] .中医药信息,2001,18(3):52-54
    57.Chidgey A P, Boyd R L. Stemming the tide of thymic aging[J].Nat Immunol, 2006,7(10):1013-1016
    58.Kim H J, Nel A E. The role of phase II antioxidant enzymes in protectingmemory T cells from spontaneous apoptosis in young and old mice[J]. J Immunol 2005,175(5):2948-2959
    59 . Sutherland J S, Goldberg G L, Hammett M V, et al. Activation of thymicregeneration in mice and humans following androgen blockade[J]. J Immunol 2005,175(4):2741-2753
    60.许倩,杨松鹤,赵联伟等.中药天年饮对衰老大鼠脾淋巴细胞增殖转化能力的影响[J].中国组织工程研究与临床康复.2007,11(12):2368-2370
    61.杨宏,鞠躬.细胞因子与下丘脑-垂体-肾上腺轴[J] .神经解剖学杂志,1996,12 (1):70-74
    62.乔玉成.神经-内分泌-免疫网络在健身运动中的整合调控作用[J].山西师大体育学院学报.2002,17(1):74-79
    63.蒋春雷,路长林主编.应激医学[M].上海:上海科学技术出版社.2006,38-39
    64.Bao A M, Hestiantoro A, Van Someren E J, et al. Colocalization of corticotropin-releasing hormone and oest rogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders[J]. Brain.2005,128(6):1301-1313.
    65.韩晓春.下丘脑-垂体-肾上腺在慢性应激中的作用[J].医学综述.2006,12(2):73-75
    66.章汝霜,李启富.下丘脑-垂体-肾上腺轴与糖尿病[J].国际病理科学与临床杂志.2005,25(6):550-552
    67.吕国蔚主编.医学神经生物学[M].北京:高等教育出版社.2000,269-270
    68.张云丽,王林.运动对下丘脑-垂体-性腺轴功能影响的研究进展[J].辽宁体育科技.2004,26(2):28-29
    69.Brann DW, Mahesh VB. Excitatory amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion[J]. Endocrine Rev,1997 (18): 678-680
    70.常波.运动与下丘脑-垂体-性腺轴(之一:下丘脑垂体-性腺轴的调控)[J].沈阳体育学院学报.2005,24(5):7-11
    71.崔慧先主编.系统解剖学[M].北京:人民卫生出版社.2008,2.288-289
    72.阎淑枝,李希成,赵帮云等.大鼠海马至额叶、顶叶、颞叶皮层的纤维投射[J].第三军医大学学报.1986,8(2):134-137
    73.朱进霞,周祥庭,张华等.大白鼠前脑和脑干向双侧背海马的分枝投射[J].解剖学报.1988,19(3)):261-264
    74.金玉祥,张振友,姚敏等.大白鼠海马向外侧隔核的分枝投射—荧光素双标记法[J].白求恩医科大学学报.1992,18(6):530-531
    75.迟素敏主编.内分泌生理学[M].西安:第四军医大学出版社,2005:25-48
    76.姚泰主编.生理学(第六版)[M].北京:人民卫生出版社.2003,336-348
    77.闫剑群,赵晏.神经生物学概论[M].西安:西安交通大学出版社,2007.4:181-189
    78.Besedovsky H O. Changes in blood hormones during the immune response[J]. Proc Soc Exp Biol Med.1988,15(1):466-471
    79.Fontana A F. Systhesis of IL-1 in the brain of endotoxin-treated mice[J]. J Immunol.1990,13(2):1610-1616
    80.邓树勋,王健主编.高级运动生理学-理论与应用[M].北京:高等教育出版社,2003.8:303-324
    81.刘翔宇,武胜昔,李云庆.大鼠神经系统内谷氨酸受体2/3亚型的定位分布[J].中国神经科学杂志.2002,18(2):503-506
    82.高蓉,李云庆,施际武.大鼠中枢核团内P物质受体的定位分布[J].解剖学报.1999,30(2):163-165
    83.李云庆,高蓉,施际武.大鼠运动核团5-羟色胺1A、2A、5A受体的定位分布[J].神经解剖学杂志.1999,15(2):121-126
    84.高蓉,李云庆,施际武.大鼠中枢运动核团内谷氨酸受体、GABAA受体、甘氨酸受体和阿片μ受体的定位分布[J].解剖学报.1999,30(2):124-128
    85.赵中华.体育运动中神经-肌肉疲劳研究的新进展[J].沈阳体育学院学报.2003,3:44-46
    86.Kitamura T,mishina M,Sugiyama H. Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon1 sub unit[J] Neurosci Res,2003,47(1):55
    87.马强.体力运动益于脑健康的神经生物学基础[J].解放军预防医学.2008,26(4):305-308
    88.韩济生.21世纪的神经科学:高度分析基础上的高度结合[J].北京大学学报(医学版).2003,35(3):22
    89.谢敏豪,冯伟权,严翊主编.运动内分泌学[M].北京:北京体育大学出版社,2008,7:1-9
    90.陈佩杰.运动训练后神经分泌功能的变化[J] .体育科学.1996,(1):56-60
    91.戴志燕.运动对人体内分泌机能的影响[J].南京体育学院学报(自然科学版).2005,4(4):15-16
    92.Buemann B, Tremblay A. Effects of exercise training on abdominal obesity and related metabolic complications[J].Sport-med. 1996 Mar. 21(3):191-212
    93.马山坡.传统保健疗法-艾灸对运动大鼠血睾酮、胰岛素及部分血清酶影响的实验研究[J].山东体育学院学报.2009,25(8):62-64
    94.Wadley GD, Tunstall RJ, SanigorskiA, et al. Differential effects of exercise on insulin2signaling gene exp ression in human skeletal muscle[J]. J Apply Phsiol,2001,90(2): 436-440
    95.陈佩杰,任杰,刘无逸等.强化训练后血浆β-内啡肽及生长抑素与T淋巴细胞及其亚群的关系[J].上海体育学院学报.1995,19(4):24-28
    96.Smith.J.A Guidelines. Standards and perspectives in exercise immunology[J]. Med.Sci. Sports Exerc.1995;27(4):297
    97.Sagiv M, Ben Sira D, Goldhammer E. Beta-blockers, exercise, and the immune system in men with coronary artery diseases[J].Med Sci Sports Exere,2002,34(4):587-591
    98.常波,衣雪洁,黄超群.急性运动对免疫系统的影响[J].体育科技.1997,18(3-4):9-12
    99.李守汉,曾明.不同运动量和运动强度对机体免疫机能的影响[J].四川体育科学.2004,1:28-30
    100.刘莉,林建棣,成伟栋,等.T淋巴细胞及其亚群与运动免疫[J].中国临床康复.2003,7(18):2634
    101.Suzuki K, Nakaji S, Yamada M, et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses[J]. Med Sci Sports Exerc. 2003,35(2):348-355
    102.Yamada M, Suzuki K, Kudo S, et al. Raised plasma G-CSF and IL-6 after exercise may play a role in neutrophil mobilization into the circulation[J]. J Appl Physiol. 2002,92(5):1789-1794
    103.Nieman DC, Johansen LM, Lee JW, et al. Infections episodes in runners before and after the los Angles Marathon[J]. Sports Med Phys Fitness.1990, 30:316-328
    104.杨锡让,傅浩坚主编.运动生理学进展-质疑与思考[M].北京:北京体育大学出版社,1999:154-168
    105.陈佩杰.运动训练对T淋巴细胞亚群的影响[J].中华预防医学杂志,1995,29(5):317-318
    106.李香华,王鸿翔,赵爱明等.补充猕猴桃饮料对大强度运动后机体免疫机能影响的观察[J].中国运动医学杂志.2003,22(2):187-188
    107.陈佩杰.运动免疫学研究进展[J].体育科学.2000,20(6):41-43
    108.邓艺华,吴卫兵,刘晓丹.运动对免疫功能的影响[J].中国康复理论与实践.2004,10(1):48-49
    109.矫玮,佟启良,王耐勤等.力竭运动时阿片肽对免疫机能的作用[J].体育科学.2000,20(3):56-58
    110.谢东北,郝选明.运动与免疫关系研究述评[J].体育学刊.2009,16(5):100-103
    1. Gerra G,Zaimovic A,Mascetti GG, et al. Neuroendocrine responses to experimentally--induced psychological stress in healthy humans[J]. Psychoneuroendocrinology, 2001, 26(1): 91-107
    2.邓雷,张蕴琨,陆小香. GABA受体阻断剂对力竭运动应激后大鼠海马CA1区神经元氧化还原状态及超微结构的影响[J].西安体育学院学报.2009,26(3):351-356
    3.白宝丰,张蕴琨.力竭运动后大鼠脑皮质运动区谷氨酸受体NR2A蛋白含量及酪氨酸磷酸化水平的变化[J].中国运动医学杂志.2005,24(4):400-403
    4.满君,田野,高颀.过度运动后大鼠海马氨代谢的变化[J].中国运动医学杂志.2005,24(2):173-175
    5.王斌,张蕴琨,李靖等.力竭运动对大鼠纹状体、中脑及下丘脑单胺类神经递质含量的影响[J].中国运动医学杂志.2002,21(3):248-252
    6.龚群,张蕴琨.力竭运动后大鼠海马脑区谷氨酸受体NR2A蛋白含量和基因表达的变化. [J]中国运动医学杂志.2006,25(4):420-423
    7.洪煜,张蕴琨,蒋晓玲.力竭运动恢复期大鼠海马5-HT含量及其代谢的动态变化[J].山东体育学院学报.2009,25(5):40-43
    8.宋亚军,孙勤枢,王宁,等.益气升阳、活血安神中药复方对急性耐力运动后大鼠不同脑区单胺类神经递质的影响[J].中国运动医学杂志.2004,23(1):38-41
    9.王斌,蒋晓玲,张蕴琨,等.游泳-水环境对大鼠海马活性氧、HPA轴激素影响的研究[J].体育与科学.2008,29(1):80-84
    10.李峰,杨维益,季绍良,等.运动性疲劳大鼠脑组织中一氧化氮合酶和内皮素mRNA表达的变化规律及中药“体复康”的调节作用[J].中国运动医学杂志.2001,20(2):116-120
    11.Bedford TG, Tipton CM, Wilson NC, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J].J Appl Physiol,1979, 47(6):1278-1283
    12.丁树哲,陈彩珍,漆正堂,等.不同强度训练对大鼠骨骼肌p53和细胞色素氧化酶I亚基基因和蛋白表达的影响[J].中国运动医学杂志.2008,27(4):454-457
    13.王芳媛,刘恩芝,郭层城.中等强度运动对大鼠海马CA3区椎体细胞树突棘数量的影响[J].中国体育科技.2009,45(2)103-106
    14.刘军.Ebselen对大强度耐力训练大鼠脑组织自由基代谢的影响[J].陕西师范大学学报(自然科学版).2009,37(1):83-86
    15.曹鹏.不同强度跑台运动对老龄雌性大鼠骨量及骨代谢的影响[J].北京体育大学学报.2009,32(2):74-76
    16.李宁川,王金玉,黄美蓉.运动训练对应激大鼠下丘脑CRH mRNA的影响[J].中国体育科技.2006,42(5):82-84
    17.郑丽芳,阚红卫,尹艳艳,等.一种拟青霉代谢产物提取物对慢性应激抑郁大鼠血CORT、ACTH含量及下丘脑CRHmRNA表达的影响[J].中国临床药理学与治疗学, 2005, 10(10):1162-1165
    18.Hu Y, Asano K, Kim S, et al. Relationship between serum testosterone and activities of testicular enzymes after continuous and intermittent training in male rats[J]. Int J Sports Med, 2004, 25(2): 99-102
    19.王坚,赵旦,李洁,等.实验性水上漂浮、高强度运动对大鼠HPA轴和免疫系统的影响[J].体育与科学.2009,30(2):68-71
    20.Choi DC, Evanson NK, Furay AR,et al. The anteroventral bed nucleus of the stria terminalis differentially regulates hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress[J]. Endocrinology. 2008,Feb;149(2): 818-826
    21.武桂新,谢敏豪,冯炜权.运动应激与睾酮生物合成研究进展[J]. 2001,北京体育大学学报,24 (3):342-346
    22.王茂叶.长期太极拳锻炼对老年女性血清睾酮/皮质醇、免疫球蛋白和生长激素的影响[J].首都体育学院学院.2009,21(3):343-345
    23.严翊,谢敏豪,李晟玮.大鼠五周间歇性无氧游泳训练的血睾酮降低模型[J].北京体育大学学报.2009,32(2):63-66
    24.许豪文.运动和雄性激素(二)[J].中国运动医学杂志,1988,7(1):49-50
    25.郑红英,宋刚.皮质醇、睾酮与运动[J].沈阳体育学院学报.2004,23(3):304-305
    26.J acobson L, SaPolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis[J]. Endocr Rev, 1991,12(2):118-134
    27.Han F, Ozawa H, Mat suda K I, et al. Changes in the expression of corticotrophin releasing hormone, mineralocorticoid receptor and glucocorticoid receptor mRNAs in the hypothalamic paraventricular nucleus induced by fornixt ransection and adrenalectomy[J]. J Neuroendocrinol , 2007 ,19(4):229-238
    28.Chronwall BM. Anatomy and physiology of the neuroendocrine arcuate nucleus[J]. Peptides,1985,6(2):1-6
    29.王迎春,杨桂姣,李楠,等.持续游泳运动大鼠下丘脑弓状核内c-fos基因的表达[J].山西医科大学学报.2008,39(2):101-104
    30.蒋文华.神经解剖学(第1版)[M].上海:复旦大学出版社,2002:297-308
    31.Inglefield J R,Schwarzkopf S B,Kellogg C K. Alterations in behavioral responses to stressors following excitotoxin lesions of dorsomedial hypothalamic regions[J]. Brain Res, 1994, 633(1-2):151-161
    32.Soltis RP, Cook JC, Gregg AE. EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala[J]. Am J Physiol,1998,275(2pt2):624-631
    33.郑陆,隋波,潘力平,等.递增符合运动大鼠下丘脑-垂体超微结构变化及其恢复过程观察[J].山东体育学院学报.2006,22(1):57-62
    34.高华善,孙成三,刘忠华等.一氧化氮合酶在大鼠室旁核各亚核的分布[J].滨州医学院学报,1997,20(6)532-533
    35. Krukoff TL, Khalili P. Recruitment of nitric oxide-producing neurons during increased levels of environmental stimulation[J]. J Comp Neurol,1997,377:509-519
    36.王雪.神经细胞的生理和病理过程与原瘤基因c-fos的关系[J].国外医学、生理、病理科学与临床分册.1998,18:358-361
    37.Lee TH, Jang MH ,Shin MC,et al. Dependence of rat hippocampal c-fos expression on intensity and duration of exercise[J]. Life Sci, 2003, 72 (12):1421-1436
    38.Yanagita S, Amemiya S, Suzuki S, et al. Effects of spontaneous and forced running on activation of hypothalamic corticotrop in-releasing hormone neurons in rats[J]. Life Sci. 2007,80:356-363
    39.于海珍,徐波,沈勋章.运动训练对海马LTP的影响及其机制[J].首都体育学院学报.2009,21(1):79-82
    40. Murphy KP, Reid GP, Trentham DR,et al. Activation of NMDA receptor is necessary for the induction of associative long-term potentiation in area CA1 of the rat hippocampal slice[J]. Physiol Lond,1997,504:379-385
    41.Kikuchi S, Iwasa H, Sato T. Lasting changes in NMDAR1 mRNA level in various regions of cerebral cortex in epileptogenesis of amygdaloid-kindled rat[J]. Psychiatry Clin Neurosci. 2000,Oct; 54(5): 573-577
    42.耿战辉,程义勇,马秀玲,等.应激对大鼠海马Glu-NMDA受体通路的影响及锌的保护机制[J].中国应用审理学杂志.2003,19(2):161-164
    43.赵永才,吴耿安,黄亨奋.运动与记忆:N-甲基-D-天冬氨酸受体和谷氨酸在学习记忆中的作用[J].中国临床康复.2005,9(37):101-103
    44.余茜,李晓红,刘羲,等.康复训练对脑梗死大鼠学习记忆与健侧海马神经元NMDA受体通道的影响[J].中华物理医学与康复杂志,2002,24(11): 683-686
    45.张建军.耐力训练及力竭运动后大鼠海马CA1区神经元形态学、N-甲基-D-天冬氨酸受体及突触体素的变化[J].郑州大学学报(医学版).2008,43(5):881-884
    46.Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system[J]. Pathol Int, 1999,49(11):921-929
    47.王春艳,孙雷,王敏,等.氨甲酰胆碱引起的促钠排泄反应和下丘脑室旁核胆碱乙酰转移酶免疫阳性反应变化[J].神经解剖学杂志.2005,21(3):309-312
    48. RT Bartus, RL Dean 3rd, B Beer, AS Lippa. The cholinergic hypothesis of geriatric memory dysfunction[J].Science,1982,217(4558):408-414
    49.吴佐泉,赵慧生,丁继兵,等.额叶损伤对大鼠基底前脑胆碱能神经元的影响[J].中国神经科学杂志.2001,17(1):80-83
    50.Vaynman S, Ying Z, Wu A, et al. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factormediated synaptic plasticity[J]. Neuronscience. 2006, 139: 1221-1234
    51. E.Ronald de Kloet.CORTISOL and PTSD:Animal studies and clinical perspectivws[C].2005年日本文部省PTSD科学研讨会记要,第20页.
    52.Burn J. Hypothalamus-pituitary-adrenal activity during human sleep: Accordinat-Ing role for the limbic hippocampal system[J]. Exp Chin Endocrinol Diabetes, 1998, 106(3): 153
    53.王先远.糖皮质激素受体表达与衰老[J].国外医学老年学分册, 2000,21 (3):127
    54. E Ronald De Kloet, Saskia A B E Van Acker, Rosana M Sibug, et al.Brain mineral ocorticoid receptors and centrally regulated functions[J]. Kidney Int, 2000, 57:1329-1336
    55.杜喆,韩芳,石玉秀.PTSD样大鼠海马MR和GR变化的研究[J].中国组织化学与细胞化学杂志.2007,16(6):695-700
    56. Bremner JD, Randall P, Scott TM, et al. MRI-based measurement of hippocampus volume in patients with combat-related posttraumatic stress disorder[J]. Am J Psychiatry, 1995, 152: 973–981
    57. BA Kalman, RL Spencer. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain[J]. Endocrinology, 2002, 143(11): 4184-4195
    58.杜喆,韩芳,石玉秀.大鼠下丘脑内糖皮质激素受体在创伤后应激障碍时的表达变化[J].解剖学杂志. 2008,31(5):652-654
    59. AvinS.Lalmansingh,Rosalie M. Uht. Estradiol regulates corticotrophin-releasing hormone gene(crh)expression in a rapid and phasic manner that parallels estrogen receptor-alpha and beta recruitment to a 3′, 5′- cyclic adenosine 5′- monophosphate regulatory region of the proximal crh promoter[J]. Endocrinology, 2008, 149(1): 346-357
    60.刘宁宇,韩芳,杜喆,PTSD样大鼠杏仁中央核糖皮质激素受体表达的变化[J].中国医科大学学报.2008,37(2):148-151
    61. Mary F. Dallman, Norman Pecoraro, Susan F. Akana, et al. Chronic stress and obesity: a new view of“comfort food”[J]. Proc Natl Acad Sci USA,2003,100(20):11696-11701
    62.Hyman SE. Brain neurocircuitry of anxiety and fear: implications for clinical research and practice[J]. Biol Psychiat, 1998, 44(12): 1201-1236
    63.Mariotto S, Menegazzi M, Suzuki H. Biochemical aspects of nitric oxide[J]. Curr Pharm Des. 2004, 10(14): 1627-1645
    64.Ferrini M,Wang C. Aging-related expression of inducible nitric oxide synthase and cytotoxicity markers in rat hypothalamic regions associated with male productive function[J]. Neuroendocrinology 2001, 74(1): 1-11
    65.Arancio O, Kiebler M, Lee CJ, et al. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons[J]. Cell, 1996, 87: 1025-1035
    66.Dawson VL.Nitric oxide: role in neurotoxicity[J].Clin Exp Pharmacol Physiol. 1995, 22:305-308
    67.Dawson TM,Snyder SH. Gases as biological messengers: nitric oxide and carbon monoxide in the brain[J]. Journal of Neuroscience. J Neurosci. 1994 Sep;14(9):5147-5159.
    68.王韵,韩济生.一氧化氮在医学中的现在和将来[J].生理科学进展,1999,30 (1):94-95
    69.Persichini T, Cantoni O, Suzuki H, et al. Cross-talk between constitutive and inducible NO synthase: an update[J]. Antioxid Redox Signal, 2006, 8(5-6):949-954
    70.张靓,黄叔怀.不同运动负荷对大鼠cNOS和iNOS活性的影响及其机理探讨[J].中国运动医学杂志.2002,21(1)23-26
    71.李宁川,颜军,陈炳猛,等.不同负荷运动训练对大鼠脑组织中一氧化氮合酶活性的影响[J].中国运动医学杂志.2001,2(4):367-369
    72.肖明,丁炯,吴凌,等.大鼠中缝背核内一氧化氮合酶阳性神经元向中央杏仁核的投射[J].南京医科大学学报.2002,22(2):132-135
    73.金延安,高卉,戴冀斌.糖皮质激素对戊四氮致痫大鼠脑内一氧化氮合酶表达的影响[J].临床和实验医学杂志.2008,7(11):10-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700