用户名: 密码: 验证码:
转iaaM和ABP1基因对棉花和苎麻纤维及细胞发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物生长素(auxin)是调控植物生长发育最重要的植物激素,关于生长素及其信号途径的研究逾百年来历久弥新。近年来有关生长素结合蛋白ABP1作用于植物细胞伸长和分裂的研究深受植物分子生物学界的关注。本研究以棉花和苎麻两种具有长纤维细胞的植物为材料,通过对生长素合成基因iaaM及生长素结合蛋白基因ABP1的转基因研究,探索了生长素及其结合蛋白ABP1对棉纤维的伸长、苎麻韧皮纤维及细胞发育的影响。
     棉花纤维是高度伸长的胚珠表皮细胞。生长素影响着棉纤维的发育和伸长。为了确证纤维细胞内的生长素对纤维伸长的作用,本实验将催化色氨酸转变为生长素的关键酶——色氨酸单加氧酶基因iaaM重组到棉花纤维特异表达启动子E6调控的表达载体中,构建了在纤维细胞中特异表达iaaM基因的载体并以HPTⅡ作为选择标记,采用农杆菌介导的子房注射法转化棉花“湘杂棉14”,经潮霉素抗性筛选,获得了8株抗性植株。其中5株植株基因组中检测到目的基因的整合。RT-PCR分析证明纤维细胞中iaaM基因在转录水平上能有效表达,纤维细胞中的生长素含量也相应提高。但在转基因株稳定后,连续两年的利植和分析,其棉纤维长度并未发生明显改变。
     生长素结合蛋白ABP1是生长素信号途径新确定的成员,但由于在模式植物拟南芥中的突变致死性使其功能的认识严重不足。为了揭示ABP1在棉花发育,尤其是棉纤维发育中的功能,本研究以“湘杂棉14”为材料,采用RT-PCR法克隆了棉花ABP1基因,该基因全长cDNA序列为792bp,与GenBank中陆地棉“新陆中5号”ABP1基因序列存在7个碱基的差别,同源性为99%,但可以编码一个保守的ABP1蛋白。采用半定量PCR方法检测了ABP1基因在棉花叶、花和开花后15d的纤维细胞中都有表达。其中在叶片中的表达量最高,在花器官和纤维细胞中的表达量稍低。为了验证ABP1在棉花纤维发育中的功能,将克隆的ABP1cDNA构建成了35S启动子控制的过表达载体并以NPTⅡ作为选择标记,经农杆菌介导转化了棉花后,筛选获得了6株Kan抗性植株,在其中3株中检测到ABP1表达水平提高。对这些ABP1过表达植株的观察分析表明,植株整体生长发育正常,纤维产量和长度变化都不显著。与受体对照植株相比,仅观察到叶缘的表皮毛密度增加。
     鉴于棉花纤维细胞的特殊性,我们还选取苎麻作为材料,开展ABP1与韧皮纤维及细胞发育相关的研究。利用本研究团队已克隆的苎麻ABP1cDNA (BnABP1)构建了BnABP1基因cDNA过表达载体和反义表达载体,以HPT Ⅱ作为选择标记,分别通过农杆菌介导的叶盘转化法转化苎麻“湘苎3号”,经潮霉素抗性筛选和PCR检测获得了4株ABPl过表达植株和4株ABP1反义表达植株。ABP1过表达植株整体生长发育也完全正常,未能观察到基因过表达引起的性状改变。但ABP1反义表达载体转化苎麻后,植株生长发育表现出显著抑制现象。反义转基因苗生长发育迟缓,成苗后叶片小而卷曲,叶表皮毛减少;叶脉发育不完全,叶脉小,并且在叶片的某些部位还缺乏叶脉;叶柄的发育也表现异常。对叶片进行组织切片观察到表皮细胞和栅栏细胞变小,组成主脉和侧脉的细胞小,并且主脉维管束不发达,韧皮部细胞和导管变小,还缺少一些典型细胞层,细胞间的耦合也发生了变化。叶柄切片也观察到细胞和组织的类似变化。茎的发育也表现出薄壁细胞、韧皮部细胞、导管和维管束细小,导致转基因植株茎明显小于对照;韧皮纤维细胞数量减少的同时细胞也更为短小。
     上述实验结果表明,棉花纤维作为特化的胚珠表皮细胞,伸长可能受多种因素共同调控,单纯提高细胞内生长素浓度或整体ABP1的表达水平对纤维伸长都没有显著作用。但ABP1表达水平的提高对棉花叶表皮毛的发育有一定的影响。
     对于苎麻韧皮纤维及其茎和叶细胞,它们的正常发育需要一定表达量的ABP1,过表达ABP1对其并没有剂量效应,但当ABP1表达受到抑制后其量低于一定的阈值时,细胞的分化和伸长会表现出显著异常,说明ABP1通过影响细胞的分化及伸长来影响苎麻纤维及其茎和叶的发育。
     对ABP1反义表达苎麻组织切片观察发现,ABP1的抑制表达并不影响其组织的初级分化。尽管植株生长受到严重抑制,但植株各组织的细胞类型分化完整,只是各类细胞都更加细小,细胞数量减少。说明ABP1表达抑制后主要影响细胞的膨大、伸长和细胞分裂频次,导致各组织中分化的细胞数量减少,器官细小。
Auxin, the most important phytohormone, plays a key role in the regulation of plant growth and development. How the signaling between it and its downstream effectors occurs has attracted widespread attention of researchers. AUXIN BINDING PROTEIN1(ABP1) is the first characterized protein that binds auxin and has been implied as a receptor for a number of auxin responses. Several lines of evidence support a role for ABP1in control of cell expansion and cell division. In this study, we used the fiber plants-cotton and ramie as the model to dissect the roles of auxin and ABP1in cotton fiber elongation, the development of ramie phloem fiber and cell development.
     Cotton fiber is a highly elongated cell derived from the ovule epidermis. Auxin plays an important role in cotton fiber development. It can promote fiber elongation. A Tryptophan monooxygenase encoded by iaaM gene is the key enzyme in converting tryptophane to indole-3-acetamide which is then hydrolyzed to the indole acetic acid (IAA). So the iaaM gene has been widely used to manipulate the IAA level in various plants. To identify the function of IAA in fiber elongation, we constructed a plant expression vector carrying auxin synthesis gene iaaM coding sequence under the control of the fiber-specific E6promoter from Gossypium hirsutum and it was introduced into the genome of a cotton cultivar,'Xiangzamian14', by an Agrobacterium-mediated transformation method. Transgenic seedlings were screened out by hygromycin resistance, and then subjected to molecular analysis. PCR analysis showed that iaaM gene was successfully integrated into the cotton genome in five transgenic lines. The result of RT-PCR also verified that iaaM gene was transcripted at mRNA level in transgenic line. The IAA level in fibers at15days post anthesis was increased. However, the length of fibers was not changed significantly. It is clearly shown that excess endogenous auxin can not promote fiber cell elongation.
     Auxin binding protein1(ABP1) is recently recognized as an essential receptor in auxin signaling. ABP1is especially involved in cell elongation. However, it is lack of evidence on the role of ABP1during postembryonic development due to the embryo lethal in Arabidopsis. To identify the role of ABP1in cotton development, the ABP1gene of cotton was cloned by RT-PCR in Gossypium hirsutum cultivar 'Xiangzamian 14'and its transcription level was analyzed by semi-quantitative reverse transcription polymerase chain reaction. The cDNA of GhABP1was792bp in length and shared99%identity to the cDNA of FJ609678from Gossypium hirsutum cultivar 'Xinluzhong5".It is expressed in leaves, flowers and fibers at15days post anthesis. The transcription level in young leaves is higher than that in other tissues. An over expression vector carrying ABP1gene coding sequence was constructed, and was introduced into the genome of a cotton cultivar'Xiangzamian14'by an Agrobacteriwn-mediated transformation method. Transgenic lines over expressing ABP1were generated. RT-PCR analysis showed that the transcription level of ABP1gene was up-regulated in three transgenic lines which exhibited normal morphological phenotypes. The leaf size and shape were not altered obviously but with leaf trichome density on the leaf margin increased. Moreover, over expression of ABP1did not result in significant alteration in fiber length.
     Ramie [Boehmeria nivea (L.) Gaud.] is a perennial fiber plant. Its fiber is the longest phloem fiber. The role of auxin signaling in ramie development remains unclear. We were cloned ABP1cDNA (BnABP1) from ramie several years ago. Here, we focused on analyzing the effect of ABP1on ramie development. We constructed an over expression and an antisense expression vectors carrying BnABP1coding sequence under the control of the CaMV35S promoter, and they were transformed into a ramie cultivar,'xiangzhu3', by an Agrobacterium-mediated transformation method. Transgenic plantlets were screened out by hygromycin resistance and four ABP1over expression plants were generated. The transgenic lines exhibited normal morphological phenotypes. PCR analysis showed that anti-ABP1gene was integrated into the ramie genome in four transgenic lines and the ABP1expression was repressed in ABP1antisense transgenic plantlets. The suppression of ABP1expression led to defects in plant growth including dwarf plant, and decreased apical dominance in the intact plant. In addition, ABP1antisense lines exhibited serious retard of leaf development involving small and twisted leaves, and sparse trichome. Though, the cell type in leaves of ABP1antisense plants was not changed, the cell in epidermis and palisade tissue growed smaller. Moreover, the decreased ABP1expression repressed the development of leaf venation. ABP1antisense lines developed an incomplete leaf venation, which became smaller and lacked in some regions of leaves. Though the cell arrangement was normal in midrib and lateral vein, cell size was decrease and some cell layers were missing in midrib. The alteration of petiole histology was similar to that of leaf histology. ABP1antisense plants had smaller stems, which appeared to be attributable to a decrease in cell size of stems. The decreased ABP1expression repressed the development of fiber. Fiber cells were decreased and smaller. The results showed that ABP1plays an important role in ramie fiber and cell development.
     In conclusion, the elongation of cotton fiber, as specialized ovule epidermal cell, may be influenced by many factors. It has no significant effect on fiber elongation by increasing either the auxin concentration or ABP1expression level in fiber cell. But the increase of ABP1expression level can has an effect on the development of leaf trichome.
     For ramie phloem fiber and cell, its development requires a minimum amount of ABP1expression. The over expression of the ABP1have no dose effect on its development. However, the fiber development is significant anomaly when the ABP1expression is below a certain threshold by antisense RNA. The differentiation and elongation of the fibers as well as other cells is affected apparently. It has shown ABP1should keep in an amount for the normal growth and development of ramie. ABP1is a major regulator for the phloem fiber cell differentiation and elongation.
     All expected cell types in leaves and stems of ABP1antisense lines are present, suggesting that suppression of ABP1gene does not repress primary morphogenesis of the tissues. However, the size and number of cells in the tissues is decreased, which has showed that ABP1can act on cell division and elongation. The mutant phenotypes of ABP1antisense lines are attributed to abnormality of cell division and elongation.
引文
[1]Paciorek T, Friml J. Auxin signaling. J Cell Sci,2006,119:1199-1202
    [2]Andrew W W, Bonnie B. Auxin:regulation, action, and interaction. Ann Bot-London,2005, 95:707-735
    [3]潘瑞帜.植物生理学(第5版).北京:高等教育出版社,2004
    [4]王家利,刘冬成,郭小丽,张爱民.生长素合成途径的研究进展.植物学报,2012,47(3):292-301
    [5]Cohen J D, Slovin J P, Hendrickson A M. Two genetically discrete pathways convert tryptophan to auxin:more redundancy in auxin biosynthesis.Trends Plant Sci,2003, 8:197-199
    [6]Cheng Y F, Dai X H, Zhao Y D. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell,2007,19: 2430-2439
    [7]Zhao Y D, Hull A K, Gupta N R, Goss KA, et al. Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev, 2002,16:3100-3112
    [8]刘迪,李群,李冠.IAA合成关键基因iaaM研究进展.生物技术,2008,18(2):87-90
    [9]Ljung K, Hull A K, Celenza J, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell,2005,17:1090-1104
    [10]Weijers D, Sauer M, Meurette O, et al. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell,2005,17:2517-2526
    [11]Friml J, Vieten A, Sauer M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature,2003,426:147-153
    [12]Vanneste S. Friml J. Auxin:a trigger for change in plant development. Cell,2009,136: 1005-1016
    [13]Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellins response. Nature,2003,421:740-743
    [14]Dan Chen, Yujun Ren, Yingtian Deng, et al. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J Exp Bot,2010,61:1853-1867
    [15]Worley C K, Zenser N, Ramos J, et al. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Planta,2000,21:553-562
    [16]Marchant A, Bhalerao R, Casimiro I,et al. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell,2002,14:589-597
    [17]李运合,孙光明,吴蓓.植物生长素的极性运输载体研究进展.西北植物学报,2009,29(8):1714-1722
    [18]Zazimalova E, Krecek P, Skupa P,et al. Polar transport of the plant hormone auxin the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci,2007,64:1621-1637
    [19]Petrasek J, Mravec J, Bouchard R, et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science,2006,312:914-918
    [20]Geldner N, Friml J, Stierhof Y D, et al.Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature,2001,413:425-428
    [21]Friml J, Wisniewska J, Benkova E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature,2002,415:806-809
    [22]Friml J, Benkova E, Blilon I, et al.AtPIN4 mediates sink driven auxin gradients and patterning in Arabidopsis roots. Cell,2002,108:661-673
    [23]Mravec J, Skupa P, Bailly A, et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature,2009,459:1136-1140
    [24]Lau S, Jurgens G, Smet I. The evolving complexity of the auxin pathway. Plant Cell,2008, 20:1738-1746
    [25]Chapman E J, and Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet,2009,43:265-285
    [26]Steffen L, Smet I D, Martina K, et al. Auxin triggers a genetic switch.Nat Cell Biol,2011,13: 611-617
    [27]Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res,2003,116:483-505
    [28]Tromas A, Paponov I, Perrot-Rechenmann Catherine.AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Cell,2011,15(8):436-446
    [29]Jones A M, Venis M A. Photoaffinity labeling of indole-3-acetic acid-binding proteins in maize. Proc Natl Acad Sci USA,1989,86:6153-6156
    [30]Woo E J, Marshall J, Bauly J, et al. Crystal structure of auxin-binding protein 1 in complex with auxin. The EMBO J,2002,21(12):2877-2885
    [31]Yamagami M,Haga K,Napier R M,et al. Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol,2004,134:735-747
    [32]Steffens B, Feckler C, Palme K, et al. The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J,2001,27(6):591-599
    [33]Barbier-Brygoo H, Ephritikhine G, Klambt D, et al. Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant J,1:83-93
    [34]倪迪安,王凌健,许智宏,夏镇澳.转正义和反义abp基因烟草原生质体质膜超极化特性及其培养.中国科学(C辑),1998,28(5):393-397
    [35]Gehring C A, McConchie R M, Venis M A. Auxin-binding-protein antibodies and peptides inuence stomatal opening and alter cytoplasmic pH. Planta,1998,205:581-586
    [36]Sauera M, Kleine-Vehnb J.AUXIN BINDING PROTEIN1:The outsider. Plant Cell,2011, 23(6):2033-2043
    [37]Jing-Hua Shi, Zhen-Biao Yang. Is ABP1 an auxin receptor yet? Molecular Plant,2011,29:1-6
    [38]David K M, Couch D, Perrot-Rechenmann C,et al. Does auxin binding protein 1 control both cell division and cell expansion? Plant Signaling & Behavior,2007,2:376-377
    [39]Bauly J M, Sealy I M, Macdonald H, et al. Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol,124:1229-1238
    [40]Jones A M, Im K H, Savka M A, et al.Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science,1998,282:1114-1117
    [41]Chen J G, Shimomura S, Sitbon F, et al.The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J,2001,28(6):607-617
    [42]Braun N, Wyrzykowska J, Muller P, et al.Conditional repression of AUXIN BINDING PROTEIN 1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and Tobacco. Plant Cell,2008,20(10):2746-2762
    [43]Tromas A, Braun N, Muller P, et al. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS ONE,2009,4(9):1-11
    [44]David K M, Couch D, Braun N, et al. The auxin-binding protein 1 is essential for the control of cell cycle. Plant J,2007,50:197-206
    [45]Chen J G, Ullah H, Young J C, et al.. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev,2001,15:902-911
    [46]张碧玉,苏良辰,孙叙卓.拟南芥生长素输入载体AUX1研究.亚热带植物科学,2010,39(1):88-91
    [47]于胜楠,崔继哲.PIN蛋白在生长素极性运输中的作用.生物技术通报,2009,3:20-24
    [48]Paciorek T, Zazi'malova'E, Ruthardt N, et al. Auxin inhibits endocytosis and promotes its own efflux from cells.Nature,2005,435:1251-1256
    [49]Xu T D, Wen M Z, Nagawa S, et al. Cell surface and Rho GTPase-Based auxin signaling controls cellular interdigitation in Arabidopsis.Cell,2010,143:99-110
    [50]Pan J, Fujioka S, Peng J,et al.The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant cell, 2009,21:568-580
    [51]Ste'phanie R, Kleine-Vehn J.Barbez E,et al.ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell,2010,143:111-121
    [52]Chen X, Naramoto S, Robert S, et al. ABP1 and ROP6 GTPase Signaling Regulate Clathrin-Mediated Endocytosis in Arabidopsis Roots. Curr Biol,2012,22:1-7
    [53]Paulick M G, Bertozzi C R. Theglycosylphosphatidylinositol anchor:a complex membrane anchoring structure for proteins. Biochemistry,2008,47:6991-7000
    [54]Jasdanwala R T, Singh Y D, Chinoy J J. Auxin metabolism in developing cotton hairs. J Exp Bot,1977,28:1111-1116
    [55]陈良兵,李永起.棉花纤维发育的分子研究进展.分子植物育种,2004,2(1):105-111
    [56]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育.棉花学报,2000,12(4):212-217
    [57]张辉,汤文开,谭新,龚路路,李学宝.棉纤维发育及其相关基因表达调控研究进展.植物学通报,2007,24(2):127-133
    [58]刘继华,杨洪博,曹鸿鸣.棉纤维的加厚发育与脱水成熟.中国棉花,1995,22(8):37-39
    [59]Saxena I M, Brown R M, Dandekar T. Structure-function characterization of cellulose synthase:relationship to other glycosyltransferases. Phytochemistry,2001,57(7):1135-1148
    [60]张文静,周治国.次生壁加厚过程中影响棉纤维合成的主要生理机制.中国农学通报,2008,24(9):117-121
    [61]Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypiwn hirsutum L.). Mol Gen Genet,1999,261:660-670
    [62]Pu L, Li Qun, Fan X P, Yang W C, Xue Y B. A R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics,2008,180(2):811-820
    [63]Suo J F, Liang X E, Pu L, Zhang Y S, Xue Y B. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). BBA-Gene Structure and Expression,2003, 1630(1):25-34
    [64]Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell,2004,16:2323-2334
    [65]于晓红,朱勇清,卢山,张天真,陈晓亚.陆地棉徐-142种子无毛突变体的比较研究.中国科学C辑,2000,30(5):517-522
    [66]Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell,2003, 15:952-964
    [67]Yang S S, Cheung F, Lee J J, Ha M, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J,2006,47:761-775
    [68]Smart L B, Vojdani F, Maeshima M, Wilkins TA. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol,1998,116:1539-1549
    [69]Li X R, Wang L, Ruan Y L. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. J Exp Bot,2010, 61(1):287-295
    [70]Ruan Y L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell,2001,13:47-60
    [71]Wan C Y, Wilkins T A. Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol,1994, 106:394-395
    [72]Wilkins T A. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol,1993,102:679-680
    [73]Haigler C H, Ivanova-Datcheva M, Hogan P S, et al. Carbon partitioning to cellulose synthesis. Plant mol Biol,2001,47:29-51
    [74]杨佑明,徐楚年.棉纤维发育的分子生理机制.植物学通报,2003,20(1):1-9
    [75]Shimizu Y, Aotsuka S, Hasegawa O,et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol,1997,38:375-378
    [76]Lee J, Burns T H, Light G, et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta,2010 232:1191-1205
    [77]Ji S G, Lu Y C, Li J, et al. Aβ-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophy Res Co,2002,296: 1245-1250
    [78]Kawai M, Aotsuka S, Uchimiya H.Isolation of a cotton CAP gene:a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation. Plant cell physiol,1998 39:1380-1383
    [79]John M E. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Bio,1996,30:297-306
    [80]Ma D P, Liu H C,Tan H, et al. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells. BBA-Lipids and Lipid Metabolism,1997,1344: 111-114
    [81]Yang YM, Xu C N, Wang B M, Jia J Z. Effects of plant growth regulators on the secondary wall thickening of cotton fiber. Plant Growth Regul,2001,35(3):233-237
    [82]Potikha T, Collins C, Johnson D I, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol,1999,119:849-858
    [83]Pear J R, Kawagoe Y, Schreckengost W E, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA,1996,93:12637-12642
    [84]Seagull R W. The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in development cotton fibers. Protoplasma,1990,159:44-59
    [85]Seagull R W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci,1992,101: 561-577
    [86]Delmer D P, Pear J R, Andrawis A, Stalker D M. Genes for small GTP-binding proteins analogous to mammalian Rac arehighly expressed in developing cotton fibers. Mol Gen Genet,1995,248:43-51
    [87]Ramsey J C, Berlin J D. Ultrastructural spects of early stages in cotton fiber elongation. Amer J Bot,1976,63 (6):868-876
    [88]Sonal, Vrinda. Physiological and biochemical changes associated with cotton fiber development, IX:Role of IAA and PAA. Field Crop Res,2002,77:127-136
    [89]韩焕勇,罗宏海,勾玲,张旺锋,韩春丽.棉纤维发育过程中内源激素含量和过氧化物酶活性的变化及其与纤维素累积和纤维比强度关系的研究.石河子大学学报(自然科学版),2006,24(5):529-533.
    [90]Yu X H, Zhu Y Q, Lu S, et al. A comparative analysis of a fuzzless-lintless mutant of Gossypium hirsutum L. cv. Xu-142. Science China,2009,43(6):623-630
    [91]白玉林,勾玲,张旺锋.棉纤维发育中激素和相关酶活性与棉花品质形成的研究[J].新疆农业科学,2008,45(6):1002-1006
    [92]John M E, Crow L J. Gene expression in cotton fiber:cloning of the mRNAs.Proc Natl Acad Sci USA,1992,89:5769-5773
    [93]朱勇清,许可香,陈晓亚.棉花li突变体生长素极性运输的减弱.植物生理与分子生物学学报,2003,29(1):15-20
    [94]杜雄明,陈金桂,张天真,潘家驹,汪若海.5个棉花纤维突变体胚珠内源激素差异及对纤维 分化和前期生长的影响.棉花学报,1998,10(1):43-51
    [95]Zhang M, Zheng X L, Song S Q, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat biotechnol,2011,29(5): 453-458
    [96]Kim H J, Triplett B A.Characterization of GhRacl GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers.BBA-Gene Structure and Expression,2004,1679(3):214-221
    [97]李先碧,肖月华,罗明,侯磊,李德谋,罗小英,裴炎.两个棉花Rac蛋白基因的克隆与表达分析.遗传学报,2005,32(1):72-78
    [98]Ji S J, Lu Y C, Feng J X, Zhu Y X,et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acid Res,2003,31(10):2534-2543
    [99]孙焕良,邝秀明.苎麻韧皮纤维发育规律研究.中国麻作,1994,16(3):13-16
    [100]晏春耕,曹瑞芳.苎麻韧皮纤维三维结构与生长发育特性的研究.广西农业科学,2006,37(3):224-227
    [101]晏春耕.苎麻韧皮纤维超微结构的研究.湖南农业大学学报,2000,26:31-33
    [102]朱爱国,喻春明,唐守伟,郭运玲.苎麻主要品质性状研究进展.中国麻业,2002,24(6):8-12
    [103]孙焕良,周清明,郭清泉.苎麻韧皮纤维农艺变性刍论.中国麻业,2002,24(4):21-25
    [104]钟安华,谭远友,王成国,黄翠蓉,邹桦.苎麻生长期对纤维结构及品质的影响.纺织学报,2005,26(5):20-22
    [105]邹园秀,廖志强,赖占钧.中国苎麻属野生植物的搜集与研究进展.江西农业学报,2008,20(1):17-20
    [106]柳红,陈继吾.高品质苎麻生物化学联合脱胶技术研究.中国麻业科学,2009,31(4):248-251
    [107]陈建荣,郭清泉.苎麻4-香豆酸辅酶A连接酶-1基因的克隆与分析.中国农学通报,2008,24(10):83-87
    [108]陈建荣,郭清泉,张学文.苎麻CCoAOMT基因全cDNA克隆与序列分析.中国农业科学,2006,39(5):1058-1063
    [109]刘峰,黄妤,郭清泉,张学文,李良勇,邓晶,谢玲玲.苎麻UDPGDH基因cDNA克隆及表达分析.中国农业科学,2008,41(11):3542-3548
    [110]黄好,刘峰,郭清泉,张学文.苎麻生长素结合蛋白ABP1基因cDNA的克隆及表达.作物学报,2008,34(8):1358-1365
    [111]田志坚,易蓉,陈建荣,郭清泉,张学文.苎麻纤维素合成酶基因cDNA的克隆及表达分析.作物学报,2008,34(1):76-83
    [112]黄春琼,郭安平,章霄云,刘国道.苎麻COMT基因的克隆及序列分析.中国农学通报, 2008,24(5):386-391.
    [113]刘建新,喻春明,唐守伟,朱爱国,王延周,朱四元,马雄风,熊和平.苎麻果胶合成关键酶GalAT基因的克隆及表达.中国农业科学,2009,42(2):425-433
    [114]刘建新,喻春明,唐守伟,朱爱国,王延周,朱四元,马雄风,熊和平.苎麻果胶合成重要酶UGlcAE基因的克隆及组织表达.作物学报,2008,34(11):1938-1945
    [115]佘玮,邢虎成,揭雨成,陈信波.苎麻茎皮cDNA文库的构建.中国麻业科学,2007,29(1):16-19
    [116]佘玮,邢虎成,秦占军,罗中钦,揭雨成.苎麻茎皮表达序列标签(ESTs)分析.热带作物学报,2008,29(2):198-201
    [117]Wang B, Liu L J, Wang X X, et al.Transgenic ramie [Boehmeria nivea (L.) Gaud.]:factors affecting the efficiency of Agrobacterium tumefaciens-mediated transformation and regeneration. Plant Cell Rep,2009,28:1319-1327
    [118]Ma X F, Yu C M, Tang S W, et al.Genetic transformation of the bast fiber plant ramie (Boehmeria nivea Gaud.) via Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult,2010, 100:165-174
    [119]宫本贺,熊和平,马雄风,喻春明,王延周.基因枪介导法转化苎麻获得转基因植株的研究.作物杂志,2010,1:87-90
    [120]曾维爱,谭济才,崔国贤,罗中钦,肖红松,黄艳宁.植物生长调节剂对苎麻茎秆抗倒伏性的影响[J].中国农业科学,2005,38(12):2577-2581
    [121]崔国贤,曾维爱,黄艳宁,李跃平,王中友,杨廷良,罗中钦.复合生长调节剂对苎麻纤维品质的影响[J].中国麻业,2004,26(2):70-75
    [122]梁雪妮,刘飞虎,张耐根,黄油生,张寿文,曾晓春,刘隆旺.复合生长调节剂对芒麻增产增质的机理初探[J].中国麻作,1999,21(1):32-36
    [123]刘竹青.苎麻嫩枝浸绿色植物生长调节剂液扦插育苗.中国麻作,2001,23(1):7-8
    [124]孟庆杰,王光全.植物激素及其在农业生产中的应用.河南农业科学,2006,(4):9-12
    [125]Tuominen H, Puech L, Fink S, Sundberg B. A radial concentration gradient of Indole-3-Acetic Acid is related to secondary xylem development in Hybrid Aspen. Plant Physiol,1997,115:577-585
    [126]Hannele T, Sitbon F, Jacobsson C, et al. Altered growth and wood characteristics in transgenic Hybrid Aspen express in g Agrobacferium fumefaciens T-D NA lndoleacetic Acid-biosynthetic genes. Plant Physiol,1995,109:1179-1189
    [127]Nilsson J, Karlberg A, Antti H, et al. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell,2008,20:843-855.
    [128]Aloni R, Tollier M T, Monties B. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiol, 1990,94:1743-1747
    [129]程超华,王学德,姚艳玲.IAA和GA3对棉花短纤维突变体纤维长度的离体诱导作用.作物学报,2005,31(2):229-233
    [130]Graaff E, Boot K, Granbom R, et al. Increased endogenous auxin production in Arabidopsis thaliana causes both earlier described and novel auxin-related phenotypes. J Plant Growth Regul,2003,22:240-252
    [131]Alekseeva V V, Rukavtsova E B, Bobreshova M E, et al. Production and analysis of tobacco transgenic plants expressing the Agrobacterial gene for tryptophan monooxygenase. Russ J Plant Physl,2004,51(4):541-546
    [132]Mezzetti B,Landi L,Pandolfini T,Spena A.The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry.BMC Biotechnology,2004,4:1-10
    [133]Chen Z J, Guan X Y. Auxin boost for cotton.Nat biotechnol,2011,29:407-409
    [134]John M E,Crow L J.Gene expression in cotton (Gossypium hirsutum L.) fiber:cloning of the mRNAs.Proc Natl Acad Sci USA,1992,89:5769-5773
    [135]Yong Hui Shi, Sheng-Wei Zhu, Xi-Zeng Mao, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell,2006,18:651-664
    [136]Larkin J C, Brown M L, Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol,2003, 54:403-430
    [137]Chen J G,Wang S.Lazarus C M,et al.Altered expression of auxin binding protein 1 affects cell expansion and auxin pool size in tobacco cells.J Plant Growth Regul,2006,25:69-78
    [138]Avsian-Kretchmer O, Cheng J C, Chen L J,et al.Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol,2002, 130:199-209
    [139]Tsvi S. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol,2000,41(6):649-656
    [140]Harper R M,Stowe-Evans E L,Luesse D R,et al.The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757-770
    [141]Pekker I, Alvarez J P, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.Plant Cell,2005,17:2899-2910
    [142]李林川,瞿礼嘉.生长素对拟南芥叶片发育调控的研究进展.植物学通报,2006,23(5):459-465
    [143]Clay N K, Nelson T. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol,2005,138:767-777
    [144]Nelson T. Dengler N. Leaf vascular pattern formation.Plant Cell,1997,9:1121-1135
    [145]Dengler N, Kang J. Vascular patterning and leaf shape. Curr Opin Plant Biol,2001,14: 50-56
    [146]Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. Evolution and function of leaf venation architecture. Ann Bot,2001,87:.553-566
    [147]Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol,2003,131:1327-1339
    [148]Scarpella E, Marcos D, Friml J, Berleth T.Control of leaf vascular patterning by polar auxin transport.Genes Dev,2006,20:1015-1027
    [149]Gaiweiler L, Guan C, Muiier A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science,1998,282:2226-2230
    [150]Effendi Y, Rietz S, Fischer U and Scherer G. The heterozygous abpl/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J,2011,65:282-294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700