用户名: 密码: 验证码:
多功能隔热节能涂料研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕当前环境保护、建筑节能紧迫形势的需要,主要对适于建筑玻璃用的节能隔热、快速涂装的高性能纳米透明隔热涂料体系进行了研究。本文研究的主要内容为:一是选择制备适宜的涂料体系;二是研究制备节能隔热纳米功能材料。
     UV固化水性聚氨酯结合了UV固化的优点和水性聚氨酯的优点,是适于建筑玻璃用的高性能成膜物。本文用季戊四醇与丙烯酸直接酯化制备季戊四醇二丙烯酸酯单体,研究了二者不同摩尔比对单体结构的影响,得到了最佳配比;通过FTIR和~1HNMR谱证实了单体的结构。将季戊四醇二丙烯酸酯作为扩链剂,在聚氨酯分子链上引入双键,制得高性能UV固化水性聚氨酯预聚物。对研制的UV固化水性聚氨酯涂料进行了基本性能测试。
     本文以SnC1_4·5H_2O、CrC1_3·6H_2O和InCl_3·4H_2O为主要原料,采用共沉淀法制得了具有隔热性能的纳米功能粉体。运用X射线衍射(XRD)、扫描电镜(SEM)对制得的纳米功能粉体进行表征,分析了铬掺杂量、铟掺杂量、煅烧温度对纳米功能粉体的影响。分析结果显示,纳米功能粉体和SnO_2一样都是四方相金红石结构,Cr、In原子的掺杂并没有改变SnO_2的晶格结构,粉体形貌均一,粒径约20-30nm;二元纳米功能粉体中,随着Cr掺杂量的不断增加,XRD衍射峰强度逐渐减弱,粉体晶粒逐渐变小;三元纳米功能粉体中,固定铟的掺杂量不变,随着铬掺杂量的不断增加,粉体的XRD衍射峰强度逐渐减弱然后增强,粉体晶粒逐渐减小然后变大,固定铬的掺杂量不变,随着铟掺杂量的不断增加,粉体的衍射峰强度逐渐减弱然后逐渐增强,粉体晶粒逐渐减小然后逐渐增大。随着煅烧温度不断升高,二元纳米功能粉体XRD衍射峰的强度逐渐增加,晶粒尺寸逐渐增大。
     将纳米功能粉体分散在去离子水中制备纳米功能粉体水分散液,分析了不同的分散方法对水分散液的影响。该纳米功能粉体水分散液的适宜制备方法为:使用分散剂EFKA4550,调节体系pH值为9-10,以超声分散30min后,再球磨分散3h。其粒子在水中均匀分散,平均粒径为20-30nm。
     研制的UV固化水性聚氨酯预聚物,与分散稳定的纳米功能粉体水分散液复合,制备了UV固化水性聚氨酯透明隔热涂料,采用自制的隔热测试装置测试涂料的隔热性能。综合涂膜的性能、成本等因素考虑,选择纳米功能粉体含量4%,涂膜厚度15μm。涂膜玻璃的可见光透过率达76%。平衡时,涂膜玻璃的装置内腔温度比空白玻璃的低10℃左右,涂膜具有很好的硬度、耐磨性等基本性能。该涂料作为一种新型的节能环保涂料,符合当前涂料行业的发展趋势,具有较好的实用价值和应用前景。
This paper focus on pressing situation on the needs of the the current environmental protection and energy-saving on building, the energy-saving insulation and high performance nano transparent insulation coating system that suitable for the construction glass was studied. The main content of this paper is: 1. choose and prepare for a suitable coating system; 2. study and prepare for energy-saving insulation nano functional materials.
     The UV curing water-borne polyurethane will have a good development prospect in future because it combines the advantages of UV curing and waterborne polyurethane. In this dissertation , pentaerythritol diacrylate was prepared by esterificate directly with pentaerythritol and acrylic. The influence to the structure of the pentaerythritol diacrylate with the different mole ratio between pentaerythritol and acrylic was researched, and a best formula was gained, and the structure of the pentaerythritol diacrylate was analyzed with FTIR and 1HNMR spectrum. Pentaerythritol diacrylate was taken as chain extender, and the polyurethane chain was embed C=C bond, and high performance UV curing water-borne polyurethane resin was prepared. The basic performance of UV curing water-borne polyurethane coating was tested.
     In this paper, raw materials is SnC1_4·5H_2O, CrC1_3·6H_2O and InCl_3·4H_2O. The thermal insulation functional nanopowder have been prepared by chemical co-precipitation method. XRD, SEM were applied to token the functional nonopowders. We have studied the effect on the functional nonopowder with Cr doping content, the In doping content and calcined temperature. The results is the functional nonopowder have tetragonal phase crystal structure with the same as SnO_2 when Cr and In was doped to it. The size of the powder particle that have homogeneous morphology is about 20-30nm. In binary functional nonopowder, with the Cr doping content increasing, the XRD diffraction peak intensity gradually weakened and the size of powder particle decreases. In ternary functional nonopowder, keep the amount of In doping content unchanged, with the Cr doping content increasing, the XRD diffraction peak intensity gradually weakened then increased and the size of particle decreased then increased; and keep the amount of Cr doping content unchanged, with the In doping content increasing, the XRD diffraction peak intensity gradually weakened then increased and the size of powder particle decreased then increased. In binary functional nonopowder, as the calcinations temperature increasing, the XRD diffraction peak intensity gradually increased, the size of powder particle increased.
     The functional nonopowder aqueous suspension was prepared by the method of functional nanopowder was scattered into deionized water. The influences of the different method of dispersion were discussed. The fitting preparation condition of the stable functional nonopowder aqueous suspension is as flowing: EFKA4550 used as dispersing agent, pH is 9-10, ultrasonic dispersion for 30min and then milling 3h. The average size of powder particle in the aqueous suspension is 20-30nm.
     The synthesized UV curing water-borne polyurethane resin was complexed with functional nonopowder aqueous suspension and the UV curing water-borne polyurethane curable transparent thermal insulation coatings have been prepared and the thermal insulation performance was tested with homemade thermal insulation test device. Considering from general performance, cost and some other factors of coating, the best content of functional nonopowder is 4.0 %, and the best thickness of the coating is 15μm. The visible light transmittance of the coating glass is 76%. When achieve equilibrium, the coating glass can reduce the temperature about 10℃than the blank glass. The coating have much good basic performance, such as hardness, wear-resistant and so on. As a new kind of energy saving and environmental friendly coating, it accord the development trend of coating, and it has certain practical application value and market prospect.
引文
[1] Chen Yan BAI, Xing Yuan ZHANG, Jia Bing DAI. Synthesis of a Novel UV Curable Aqueous Dispersion Polyurethane PDHA-PEDA-PU and the Properties of Cured Film[J]. Chinese Chemical Letters, 2006, 17(3): 369-372.
    [2]李红强,曾幸荣.紫外光固化水性涂料的研究进展[J].中国涂料, 2007, 22: 28-33.
    [3]黄凤岐.水性紫外光固化涂料的研究进展[J].天津化工, 1999, 12: 6-8.
    [4] Anila Asif, Wenfang Shi, Xiaofeng Shen, et al. Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number[J]. Polymer, 2005, 46: 11066-11078.
    [5]艾照全,周雪松.紫外光固化水性涂料综述[J].涂料技术与文摘, 2007, 28(2): 1-4.
    [6]魏杰,金养智.光固化涂料[M].北京:化学工业出版社, 2005.
    [7]杨建文,曾兆华,陈用烈.光固化涂料及应用[M].北京:化学工业出版社, 2005, 266-284.
    [8]魏杰,金养智.光固化涂料[M].北京:化学工业出版社, 2005.
    [9]傅明源,孙酣经.聚氨醋弹性体及其应用北京[M].北京:化学工业出版社, 2006.
    [10]白晨艳.基于PEDA的可UV固化水性聚氨酯[D].中国科学技术大学博士学位论文, 2008: 1-17, 32-38, 46-49.
    [11]许戈文.水性聚氨酯材料[M].北京:化学工业出版社, 2007.
    [12]徐伟萍.水性涂料[M].北京:化学工业出版社, 2006.
    [13]刘国杰.纳米材料改性涂料[M].北京:化学工业出版社, 2008.
    [14]栾野梅,安茂忠.半导体纳米材料的性质及化学法制备[J].光电半导体, 2003, 24(6): 382-385.
    [15]柯扬船,皮特·斯壮.聚合物-无机纳米复合材料[M].北京:化学工业出版社, 2003.
    [16]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社. 2002.
    [17]王彦斌,祝钧,周磊.复合半导体纳米材料的研究与制备[J].化工新型材料, 2005, 33(11): 11-13.
    [18]代淑芬.纳米材料的特性和发展[J].无锡南洋学院学报, 2008, 7(4): 49-53.
    [19]李晓俊,刘丰,刘小兰等.纳米材料的制备与应用研究[M].山东:山东大学出版社, 2006,7.
    [20]周冰.浅谈纳米材料的化学制备方法[J].黑龙江科技信息, 2008, 7: 14-15.
    [21]施利毅等.纳米材料[M],上海:华东理工大学出版社, 2007, 01.
    [22]席玉生.浅谈纳米材料在化工领域中的应用[J].科技创新导报, 2008, 2: 91-92.
    [23]闫洪.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社, 1999.
    [24]吴崇浩,王世敏.化工新型材料[J]. 2002, 30(7): 1-5.
    [25]张艳辉.纳米材料在化工领域的应用[J].内蒙古石油化工, 2008, 5: 35-36.
    [26]汶秀玲.浅谈纳米材料的特性及应用[J].中国新技术新产品, 2008, 8: 94.
    [27]张敬.纳米材料在涂料/精细化工生产中的应用[J].内蒙古科技与经济, 2008, 9:116.
    [28]曾繁伟.纳米材料在化工生产中的应用[J].科技咨询导报, 2007, 20: 81.
    [29]陈冲.纳米材料及其应用领域[J].中国科技信息, 2008, 10: 33-34.
    [30]李霞,彭蜀晋,张云龙.纳米材料在生物医学领域的应用[J].化学教育, 2006, 11:10-12.
    [31]郭雪峰,张凤涛.纳米材料及其在纺织领域中的应用[J].现代纺织技术, 2005, 2: 54-55.
    [32]崔会旺,杜官本.纳米材料在木材工业中的应用[J].中国人造板, 2008, 1: 5-8.
    [33]徐彬士.纳米表面工程[M].北京:化学工业出版社, 2004, 25-27.
    [34]匡勤.金属氧化物(ZnO、SnO2)半导体纳米材的制备、表征及其应用[D].厦门大学博士学位论文, 2008.
    [35]闫福安.水性树脂与水性涂料[M].北京:化学工业出版社, 2010.
    [36]葛新石.太阳能利用中的光谱选择性涂层[M].北京:化学工业出版社, 1980.
    [37]洪晓,潘新华.纳米透明隔热涂料在建筑节能中的应用[J].化工技术与开发, 2009, 38(2): 39-40.
    [38]陆洪彬,陈建华,冯春霞等.新型太阳热反射隔热涂料的研制[J].太阳能学报, 2009, 29(12): 1522-1526.
    [39]肖璐,熊军南.建筑节能玻璃浅析[J].江西建材, 2006, 4: 8-9.
    [40]杨茜.我国节能玻璃的品种及其发展[J].中国住宅设施, 2006, 06: 30-33.
    [41]张永进,赵石林.聚氨酯纳米ATO透明隔热涂料的研制[J].化学建材, 2004, 12: 18-19.
    [42]张永进.纳米ATO隔热涂料的制备及其CPVC研究[D].南京工业大学硕士学位论文, 2005.
    [43]付金栋.纳米氧化锢锡制备透明隔热涂料的研究[D].南京工业大学硕士学位论文, 2003.
    [44]李宁,孟庆林,王鹏.水性纳米隔热涂料的研制[J].热带建筑, 2007, 5(3): 22-24.
    [45] Harish C.Barshilia, N.Selvakumar, G.Vignesh, et al. Optical properties and thermalstability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings[J]. Solar Energy Materials & Solar Cells, 2009, 93: 315-323.
    [46] G.M.Wallner, R.W.Lang, H.Schobermayr, et al. Development and application demonstration of a novel polymer film based transparent insulation wall heating system[J]. Solar Energy Materials & Solar Cells, 2004, 84: 441-457.
    [47] M.J.Alam, D.C.Cameron. Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities [J]. Thin Solid Films, 2002, 420: 76-82.
    [48] I.L.Wong, P.C.Eames, R.S.Perera. A review of transparent insulation systems and the evaluation of payback period for building applications[J]. Solar Energy, 2007, 4(4): 1-14.
    [49] Shailesh K.Dhoke, Rohit Bhandari, A.S.Khanna. Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties[J]. Progress in Organic Coatings, 2009, 64 : 39-46.
    [50]范志新.透明导电薄膜最佳掺杂含量的理论计算[J].半导体学报, 2002, 6: 489-491.
    [51]范志新,孙以材,陈玖琳.氧化物半导体透明导电薄膜的最佳掺杂含量理论计算[J].半导体学报, 2001, 11: 1382-1386.
    [52]袁留芳.铟锡锑多元金属氧化物的制备[D].南京理工大学硕士学位论文, 2010.
    [53]杨春光,乔爱平,侯金飚等.纳米粉体团聚的原因及解决方法[J].山西化工, 2003, 23(1): 56-58.
    [54]冯拉俊,刘毅辉,雷阿力.纳米颗粒团聚的控制[J].微纳电子技术, 2003, (7, 8): 536-539.
    [55]崔洪梅,刘宏,王继杨等.纳米粉体的团聚与分散[J].机械工程材料, 2004, 28(8): 38-40.
    [56]王智,孙策,蒋小花等.马来酸酐在聚羧酸盐减水剂合成中的应用[J].材料导报, 2009, 23(3): 55-57.
    [57]杜正帅.水性UV节能环保涂料的研究和应用[D].江南大学硕士学位论文, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700