用户名: 密码: 验证码:
阻燃剂对杨木抑烟效果的研究和机理探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索阻燃工艺,获得良好的阻燃效果尤其是抑烟效果,同时改进无机阻燃剂吸湿性高和抗流失性能差的缺点,该研究使用氮磷系阻燃剂,选用不同的浸渍方法处理杨木,通过多种评价方法研究处理方式对杨木阻燃效果的影响。将不同浓度的氮磷系阻燃剂,添加不同比例的MH/ATH(Mg(OH)2/Al(OH)3)进行复配,采用微波加热后超声波浸渍的方法处理杨木,分析阻燃性能。采用纳米Si02溶胶对阻燃木材进行二次超声波浸渍,探究硅溶胶对杨木性能的改进效果。研究结果表明:
     (1)应用微波加热处理1.5min,微波功率850W,超声波浸渍30min,处理温度40℃,超声功率500W,液料比10:1,15%氮磷阻燃液的工艺对杨木进行阻燃处理,边材和心材载药量达到94kg/m3和76kg/m3,浸渍深度分别为10.0mm和9.7mm,氧指数达68.4%和66.8%,阻燃性能良好。
     (2)将氮磷阻燃剂与MH/ATH复配后,杨木的烟密度等级SDR均远小于75。20%和25%氮磷阻燃液添加10%的MH/ATH,有较好的抑烟效果。锥形量热仪测试表明,50kW/m2的辐射强度下,20%和25%氮磷阻燃液添加比例10%的MH/ATH能够明显降低阻燃木材的释热速率、释热总量、平均有效燃烧热和平均质量损失速率,质量损失速率最大降低60%,增加残炭量。环境扫描电镜分析,复配阻燃杨木燃烧后的炭层更加密实,残炭表面有熔融物覆盖,ATH与MH与氮磷阻燃剂的催化成炭作用相互辅助,有较好的阻燃协同作用。
     (3)为了改善氮磷系阻燃剂及复配阻燃剂吸湿性较高的缺点,提高抗流失性能,采用纳米SiO2溶胶进行二次超声波浸渍,结果表明SiO2溶胶使阻燃杨木吸湿率降至1.15%,抗浸提值LRV提高至98%。
     (4) TG-DTG热分析可得复配阻燃剂处理试件剩炭率可明显提高至35.5%。氮磷阻燃剂的催化脱水和催化成炭作用与MH/ATH分解氧化物膨胀隔氧和消烟作用具有良好的协同效果。ATH与SiO2结合后,在催化成炭方面优于MH。
     (5) FTIR分析可得,硅溶胶浸渍试样在800cm-1处出现CH2-Si-CH2-申缩振动吸收峰;在1050-1060cm-1处出现Si-O-C伸缩振动吸收峰;在1100cm-1处出现Si-O-Si特征吸收峰,表明纳米二氧化硅粒子和复合木材发生了有效的化学结合。
In order to explore the flame retardant technology, obtain good flame retardant effect especially smoke suppression effect and improve disadvantages such as high hygroscopicity and poor anti erosion performance of inorganic flame retardant, nitrogen-phosphorus flame retardant was used to impregnate Poplar with different treatment method. Fire retardant effect was evaluated through a variety of measurements. Different concentrations of nitrogen-phosphorus-boron flame retardant agent were added with different proportion of MH/ATH(Mg(OH)2/A1(OH)3) by ultrasonic impregnation treatment after microwave heating. Flame retardant properties were analyzed. Nano SiO2sol was impregnated on the crude material and fire retardant wood with the same ultrasonic method and the improved effect of silica sol on Poplar was studied. The results were showed as follows:
     There were significant differences between different treatment methods. The application of microwave heating time of1.5min at microwave power of850W and ultrasonic immersion30min at40℃with an ultrasonic power of500W was better for impreganation of poplar at the ratio of liquid to solid was10:1. Drug loading of sapwood and heartwood was up to94kg/m3and76kg/m3, while impregnation depth was respectively10.0mm and9.7mm when treated with15%nitrogen-phosphorus flame retardant liquid. Good flame retardant property was observed with oxygen index of treated Poplar up to68.4%and66.8%.
     When nitrogen-phosphorus-boron flame retardant was blended with MH/ATH, SDR of all samples was far less than75.20%NP+10%MH/ATH and25%NP+10%MH/ATH treated Poplar had good effect of smoke suppression. The cone calorimeter test showed that, with the radiation intensity of50kW/m, heat release rate, total heat release, average effective heat of combustion and average mass loss rate of20%NP+10%MH/ATH and25%NP+10%MH/ATH could be significantly reduced and the mass loss rate was decreased by60%as well as charcoal yield increased. Analysis of environmental scanning electron microscope indicated that structure of char after burning was denser after blended flame retardant treatment and surface of char was covered by molten layer, which showed that ATH and MH decomposed and formed expansion layer in combustion. Catalytic char forming effect of nitrogen-phosphorus-boron flame retardant had synergistic flame retardant effect with MH/ATH.
     In order to improve higher moisture absorption and worse anti-loss performance of nitrogen-phosphorus flame retardant agent and compound flame retardant, nano silica sol was used in this study with method of ultrasonic impregnation. It was found the SiO2sol could significantly improve the properties of flame retardant Poplar. Moisture absorption rate was decreased to1.15%and LRV reached as high as98%
     TG-DTG thermal analysis indicated char yield of blended flame retardant treatment samples significantly increased to35.5%. Fire retardance of Poplar was significantly improved by the blended flame retardant. Catalytic dehydration and catalytic carbon effect of nitrogen-phosphorus-boron flame retardant had good cooperative effect with the oxygen barrier and smoke suppression effect of the expansion oxide decomposition of MH/ATH. Catalytic charring effect of ATH combined with SiO? was better than that of MH.
     FTIR showed that small absorption in800cm-1wave number was CH2-Si-CH2stretching vibration in silica sol specimens, the1050-1060cm-1absorption peak was Si-O-C bond, the1100cm-1absorption peak was Si-O-Si bond. These confirmed nano silica particles and composite wood had effective chemical combination.
引文
[1]崔会旺,杜官本.木材阻燃研究进展[J].世界林业研究,2008,21(3):43-38.
    [2]陈玉,陈永强.杉木阻燃浸渍处理工艺的研究[J].中国农学通报,2010,26(22):121-125.
    [3]陈利芳,苏海涛,张燕君,等.木材阻燃剂SLB处理木材的阻燃性能研究[J].广东林业科技,2009,25(5):14-17.
    [4]陈琳.阻燃木材组分产烟性与其热解的关系[D].哈尔滨:东北林业大学,2007.
    [5]陈志林,纪磊,傅峰.磷酸三聚氰胺复配硼酸锌阻燃中密度纤维板的燃烧性能[J].木材工业,2011,25(5):5-8.
    [6]陈莲英,张明听,陈登龙.氮磷硼复合膨胀型木材阻燃剂改性木材的FTIR分析[J].科技资讯,2009,(6):52.
    [7]高黎,王正,张双保,等.木纤维/回收塑料复合材料的燃烧特性研究[J].北京林业大学学报,2007,29(6):176-180.
    [8]胡云楚.硼酸锌和聚磷酸铵在木材阻燃中的成炭作用和抑烟作用[D].长沙:中南林业科技大学,2006.
    [9]郝慧伶,于志明.BL-环保型阻燃剂对杨木单板吸湿性和尺寸稳定性的影响[J].山东林业科技,2010,40(5):10-13.
    [10]蒋明亮.国内外木材防腐新技术的开发与应用[J].木材工业,2006,20(2):23-25.
    [11]江涛,周志芳,王清文.高强度微波辐射对落叶松木材渗透性的影响[J].林业科学,2006,42(11):87-92.
    [12]姜维娜,曹文静,徐莉,等.硅溶胶改性杨木纤维的工艺及性能[J].南京林业大学学报(自然科学版),2011,35(1):75-78.
    [13]江进学.氮磷基阻燃剂处理木材的特性研究[D].北京:北京林业大学,2011.
    [14]李坚,等.木材波谱学[M].北京:科学出版社,2003:66-120.
    [15]李晓东,郝万新,齐向阳.超声波技术在木材阻燃浸渍处理过程中的应用[J].福建林业科技,2006,33(1):64-66.
    [16]李晓东.木材阻燃浸渍处理方法及新的技术[J].辽宁化工,2005,34(10):439-442.
    [17]李晓东.木材构造对木材化学阻燃浸渍处理方法的影响[J].广州化工,2005,33(5):57-61.
    [18]楼超超,钱晓倩,赖俊英.SiO2溶胶对杉木的阳[燃处理研究[J].低温建筑技术,2010,32(5):4-5.
    [19]梁基照,陈莹.PP/A1(OH)3/Mg(OH)2/ZB复合材料阻燃性能的研究[J].塑料科技,2010,38(6):53-57.
    [20]罗杰·罗威尔.实木化学[M].北京:中国林业出版社,1988:393-436.
    [21]秦特夫,吴玉章,黄洛华.木塑复合材料燃烧性能的研究[J].南京林业大学学报(自然科学版),2011,35(1):71-74.
    [22]谭惠芬,郭红霞,杜万里,等.有机/无机复合浸渍液对杨木的改性处理[J].木材工业,2009,23(4):40-42.
    [23]文瑞芝,胡云楚,袁莉萍.阻燃杨木粉热解过程的红外谱图分析[J].中南林业科技大学学报,2011,31(2):100-102.
    [24]武伟红,屈红强,李娜,等.硅酸盐阻燃木材的阻燃性能和热性能研究[J].化学工程师,2010, (10):10-13.
    [25]王喜明,薛振华,石丽慧,等.微波改性木材的初步研究[J].木材工业,2002,16(6):16-19.
    [26]王梅,胡云楚.木材及木塑复合材料的阻燃性能研究进展[J].塑料科技,2010,38(3):104-109.
    [27]王清文,李坚,李淑君,等.用CONE法研究木材阻燃剂FRW的抑烟性能[J].林业科学,2002,38(6):103-109.
    [28]王清文,李坚.木材阻燃工艺学原理[M].哈尔滨:东北林业大学出版社,2000:1-175.
    [29]王奉强,张志文,王清文,等.膨胀型水性改性氨基树脂木材阻燃涂料的阻燃和抑烟性能[J].林业科学,2007,43(12):117-121.
    [30]徐建中,武红娟,武伟红,等.酚醛树脂/K2CO3复合阻燃剂对木材的阻燃处理及热性能研究[J].化学工程师,2011,8:22-25.
    [31]杨晓飞,韩英磊.杨木资源的高效利用[J].木材加工机械,2011,5:36-38.
    [32]余丽萍,李光沛,张璐.BL环保阻燃剂处理云杉的工艺研究[J].中国人造板,2006,8:14-16.
    [33]余丽萍,李光沛,崔军辉.三种木材阻燃剂的对比研究[J].林业机械与木工设备,2006,34(9):24-27.
    [34]姚春花,卿彦,吴义强.磷-氮-硼复合木材阻燃剂配方优化及处理工艺[J].林业科技开发,2010,24(5):91-93.
    [35]杨文斌.木材阻燃过程中的渗透性及阻燃机理[J].南京林业大学学报(自然科学版),2001,25(2):33-34.
    [36]杨星,姜维娜,周晓燕,等.杨水纤维/无机纳米Al2O3复合材料的阻燃性能[J].林业科技开发,2010,24(2):58-61.
    [37]叶箐箐,赖俊英,钱晓倩,等.碳酸钾与硅溶胶复合对木材阻燃改性研究[J].新型建筑材料,2011,38(9):24-27.
    [38]朱长庆,张建,庄期应,等.工艺条件对杉木微波处理后渗透性能影响的研究[J].林业机械与木工设备,2009,37(11):18-21.
    [39]张耀丽,苗平,庄寿增,等.微波、冷冻预处理对改善尾巨桉木材十燥性能的影响[J].南京林业大学学报(自然科学版),2011,35(2):61-64.
    [40]张志军,陈成,王清文.水基型木材阻燃剂吸湿性评价[J].林产工业,2007,34(2):28-30.
    [41]赵殊,赵英璧,周什贤.抗流失性木材阻燃剂的研究(1)[J].东北林业大学学报,1994,22(1):57-62.
    [42]张冬梅,杨亮庆.速生杨木改性研究进展[J].林业机械与木工设备,2012,,40(3):16-20.
    [43]张清辉,郑水林,张强,等.氢氧化镁/氢氧化铝复合阻燃剂的制备及其在EVA材料中的应用[J].北京科技大学学报,2007,29(10):1027-1030.
    [44]Athina Pappa. K. Mikedi, N. Tzamtzis, M. Statheropoulos. TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components[J]. Journal of Thermal Analysis and Calorimetry,2006,84(3):655-661
    [45]Bruno S. Souza · Ana Paula D. Moreira · Ana Maria R. F. Teixeira. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues[J]. J Therm Anal Calorim,2009,97:637-642
    [46]B. Schartel, T. R. Hull. Development of fire-retarded materials interpretation of cone calorimeter data[J]. Fire Mater,2007,31:327-354.
    [47]Carlos A. Giudice, Andrea M. Pereyra. Silica nanoparticles in high silica/alkali molar ratio solutions as fire retardant impregnants for woods[J]. Fire Mater,2010,34:177-187.
    [48]D. C. O. Marney, L. J. Russell, R. Mann. Fire performance of wood (Pinus radiata) treated with fire retardants and a wood preservative[J]. Fire Mater,2008,32:357-370.
    [49]D. Bakirtzis, M.A. Delichatsios, S. Liodakis, W. Ahmed. Fire retardancy impact of sodium bicarbonate on ligno-cellulosic materials[J]. Thermochimica Acta,2009,486:11-19
    [50]Erich Hugi, Marcel Wuersch, Walter Risi, Karim Ghazi Wakili. Correlation between charring rate and oxygen permeability for 12 different wood species[J]. J Wood Sci,2007,53:71-75.
    [51]Eylem Dizman Tomak, Mark Hughes, Umit C. Yildiz, Hannu Viitanen. The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 1:Boron leaching, thermogravimetric analysis, and chemical composition[J]. J Mater Sci,2011,46:598-607.
    [52]Ergu"n Baysal-Mustafa Kemal Yalinkilic. A comparative study on stability and decay resistance of some environmentally friendly fire-retardant boron compounds[J]. Wood Sci Technol,2005,39: 169-186.
    [53]FANG SH L, HU Y, SONG L, et al. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber[J]. J Mater Sci,2008, 43:1057-1062.
    [54]GAO M, SUN C Y, ZHU K. Thermal degradation of wood treated with guanidine compounds in air flammability study[J]. Journal of Thermal Analysis and Calorimetry,2004,75:221-232.
    [55]HU Y CH, ZHOU P J, QU S SH. TG-DTA studies on wood treated with fire-retardants[J]. Holz als Roh-und Werkstoff,2000,58:35-38.
    [56]Jozef Martinka, Danica Kac (?)kova, Emi lia Hroncova', Juraj Ladomersky. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions[J].J Therm Anal Calorim,2012,19::DOI 10.1007/s10973-012-2261-2
    [57]Jiang Jinxue, Yang Yonglin, Li Cheng, Li Jianzhang. Effect of three boron fire retardants on thermal curing behavior of urea formaldehyde resin [J]. Journal of Thermal Analysis and Calorimetry, 2011
    [58]Mohammed A. Bahattab, Jaroslav Mosna cek, Ahmed A. Basfar, et al. Cross-linked poly(ethylene vinyl acetate) (EVA)/low density polyethylene (LDPE)/metal hydroxides composites for wire and cable applications[J]. Polym. Bull,2010,64:569-580.
    [59]Mingzhu Pan,Changtong Mei,and Yuxuan Song. A novel fireretardant affects fire performance and mechanical properties of wood flour-high density polyethylene composites [J]. "Flammability of composites," BioResources,2012,7(2),1760-1770
    [60]P. Rousset, P. Perre, P. Girard. Modification of mass transfer properties in Poplar wood (P. robusta) by a thermal treatment at high temperature[J]. European Journal of Wood and Wood Products,2004, 62:113-119.
    [61]Peter Y.S. Chen, William T. Simpson. Effects of ultrasonic cavitation on rate of heat propagation and longitudinal permeability of three U.S. hardwoods[J]. FOREST PRODUCT JOURNAL,1992, 42(4):55-58.
    [62]QU H Q, WU W H, WU H J,et al. Thermal degradation and tire performance of wood treated with various inorganic salts[J]. Fire Mater,2011,35:569-576.
    [63]QU H Q, WU W H, WU H J.et al. Investigation on the thermal decomposition and tire retardancy of wood treated with a series of molybdates by TG-MS[J].J Therm Anal Calorim,2011,105:269-277.
    [64]Qingfeng Sun· Haipeng Yu· Yixing Liu· Jian Li.et.al. Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method[J]. J Mater Sci,2010, 45:6661-6667
    [65]Roger Pedieu.Ahmed Koubaa.Bernard Riedl-Xia-MingWang.et.al. Fire-retardant properties of wood particleboards treated with boric acid[J]. Eur. J. Wood Prod.2012,70:191-197
    [66]S. Liodakis, I. Antonopoulos, V. Tsapara. Forest fire retardancy evaluation of carbonate minerals using DTG and LOI[J]. Journal of Thermal Analysis and Calorimetry,2009,96(1):203-209.
    [67]Song-Yung Wang, Te-Hsin Yang, Li-Ting Lin, Cheng-Jung Lin, et.al. Fire-retardant-treated low-formaldehyde-emission particleboard made from recycled wood-waste[J]. Bioresource Technology, 99,2008:2072-2077
    [68]Toshiro Harada · Hiroshi Matsunaga · Yutaka Kataoka · Makoto Kiguchi. Weatherability and combustibility of fire-retardant-impregnated wood after accelerated weathering tests[J]. Journal of Wood Science,2009,55:359-366
    [69]Wojciech Lukasz Grze'skowiak. Evaluation of the effectiveness of the fire retardant mixture containing potassium carbonate using a cone calorimeter[J]. Fire Mater,2012,36:75-83.
    [70]WANG Q W, LI J, Jerrold E. Winandy. Chemical mechanism of fire retardance of boric acid on wood[J]. Wood Science Technology,2004,38:375-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700