用户名: 密码: 验证码:
爆破法再生刨花性质及刨花板制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内日益重视对废弃物的处理与回收利用,随着我国城市化进程的加快和旧城改造项目的推进,每年产生大量的废旧木质材料;工业企业的生产以及日常生活也产生大量的废旧木质材料,将这些废旧木质材料回收和处理后重新使用,既可减少城市垃圾对环境带来的压力,同时又废物利用、变废为宝,缓解木材资源的紧缺。
     针对目前回收利用废旧刨花板时广泛使用的机械法制造再生刨花中出现的刨花形态损伤严重导致刨花板质量和加工性能差的问题,论文以废旧刨花板为研究对象,首次提出以爆破的方式处理废旧刨花板制造再生刨花,并对再生刨花的性质进行评价,同时使用再生刨花进行了刨花板制造实验,优化了热压工艺。
     实验选用不同的爆破工艺包括:蒸汽处理时间和蒸汽压力,通过电镜扫描(SEM)、傅立叶转换红外光谱(FTIR)、有机元素分析、化学成分分析、表面吸水率、筛分值等分析考察爆破处理对再生刨花微观构造、化学成分、物理性质的影响。采用正交试验设计,以刨花混合比例、施胶量、防水剂施加量、热压时间为因素,在不同的实验水平下进行再生刨花板制造,通过考察再生刨花板主要力学性能静曲强度(MOR)、弹性模量(MOE)、内结合强度(IB)、吸水厚度膨胀率(TS)衡量并优化工艺条件。以新旧刨花混合比例单因素为变量,通过对比的方法,考察机械法与爆破法对再生刨花板性能的影响。研究得到以下结论:
     1)爆破法处理废旧刨花板时,在保持刨花形态和产品质量方面具有明显优势,可以用于再生刨花的制造。
     2)对再生刨花性质的研究表明:爆破工艺对废旧刨花板产生两种效应:一是对胶粘剂的软化与破坏作用:从对再生刨花官能团以及有机元素含量的分析可以得出,爆破处理引起再生刨花中甲基、亚甲基、氨基数量的增减以及N元素含量变化,说明爆破处理对胶粘剂的分子结构产生很强的破坏作用。二是对木材产生影响,随爆破工艺的加剧,微观构造破坏加剧;在汽、热作用下,木材中的主要化学成分发生变化,半纤维素、木素含量降低,纤维素含量增加;纤维素结晶度相对增加。
     3)脲醛树脂胶粘剂的耐蒸汽处理能力远远低于木材,因此生产中可以实现蒸汽处理破坏胶粘剂并较好的保护原刨花形态。同时,对胶粘剂的破坏作用降低了再生刨花中甲醛含量,也有利于降低后期产品的甲醛含量。
     4)爆破法再生刨花制造刨花板时,产品的MOR、MOE、IB等优于机械法再生刨花制成的刨花板。再生刨花板优化工艺条件为:再生刨花比例:40%,施胶量:10%,石蜡乳液:0.7%,热压时间:35s/mm。
More and more people are paying attention to the recycling and reusing of the used wood around the word. A large amount of waste wood is generated from many natural, commercial and domestic sources each year in China. The recycled wood can not only decrease the impact to the environment, but also can produce attractive products and relieve the scarcity of wood resources.
     The used particle board is always regenertated by the mechanic method which results in the serious damage to the shaving shape, the low quality and the poor process ability of the regenerated particle board. So the steam explosion technology of regenerating particle was studied in the paper, the characteristics of the regenerated particle were evaluated, and the optimization of the hot process are also discussed in the paper.
     Different technological conditions were selected including the time of steam treatment and the steam pressure. SEM, FTIR, elemental analysis, water absorption, and the analysis of the chemical component were used to evaluate the effect of explosion on the microscopic structure, chemical composition and physical properties to evaluate the properties of the regenerated particles. Orthogonal experiments were designed to prepare the regenerated particleboard. MOR, MOE, IB, TS of the board were examined to optimize the conditions, the array is designated by the Orthogonal Test L16 (45) involving four factors:the percent of regenerated particles(A), glue content (B), wax content (C) and hot pressing time (D). The effect of mechanical process and explosion process on the properties of regenerated particleboard was investigated by using the different ratios of recycled wood shavings and fresh shavings to produce the particleboard; and the significant findings were as follows:
     1) It was found that the regenerated wood shavings were better in maintaining the original shape and the quality of the following products after the explosion treatment than that after mechanical process. So explosion treatment is useful in the process of recycling of waste particleboard.
     2) The study on the characteristics of the regenerated wood shavings revealed that the explosion treatment caused two results to the used particleboard. On one hand, the adhesive was softened and destroyed, which can been seen from the amount changes of functional group including methyl, methylene and amino-group and the element N of the regenerated shavings; on the other hand, the explosion treatment had influence on the wood, the microscopic structure was destroyed with the increasing of the intensity of explosion. The content of semi-cellulose and lignin decreased, the content of cellulose and crystallinity of cellulose increased after the explosion treatment.
     3) The urea-formaldehyde resin of waste particle board could be destroyed and the shaving shapes could keep perfect under the certain explosion conditions because the stability of urea-formaldehyde resin to the steam was less than that of the wood. At the same time, the content of formaldehyde decreased with the damage of the urea-formaldehyde resin adhesive, which was benefit for the decreasing of the formaldehyde of the following products.
     4) The MOR, MOE and IB of the particleboard prepared from the recycled wood shavings using explosion process were better than that using mechanical process. The optimum conditions were as follows:the percent of regenerated particles 40%; adhesive content 10%; wax content 0.7% and hot pressing time:35s/mm.
引文
1.鲍甫成,熊满珍.我国木材及林产品供需平衡研究[J].林产工业,2005,32(4):3-5
    2.陈洪章,陈继贞,刘健,等.麦草蒸汽爆碎处理的研究Ⅰ.影响麦草蒸汽爆碎处理因素及其过程分析[J].纤维素科学与技术,1999,7(2):602-267
    3.陈水合.我国纤维板和刨花板业的现状和发展[J].中国人造板,2007,(1):38-40
    4.成俊卿.木材学[M].北京:中国林业出版社,1985:9
    5.程瑞香,王炼.我国废旧木质材料的回收利用途径[J].林产工业,2006,33(4):8
    6.崔会旺,杜官本.木材废料和农作物秸秆在木材加工方面的应用[J].林业机械与木工设备,2007,5(35):6-8
    7.崔积瑺,郭萌.关于建立城市木材废弃物回收利用通道的思考[J].中国人造板,2006,(11):13-16
    8.崔积瑺,郭萌.我国城市木材抛弃物亟待重视--关于废旧木质材料资源再生利用的建议[J].中国林业,2004,(9B):30
    9.崔积瑺,郭萌.我国的城市木材废弃物亟待开发利用[J].中国人造板,2004,(9):30-31
    10.陈绪和,郝颖.国际人造板工业发展趋势[J].中国人造板,2006,(1):5-9
    11.段新芳,熊满珍,陈志林,叶克林,赵戈.发展我国循环型人造板工业的问题与对策(续)[J].中国人造板,2006,(3):25-27
    12.段新芳,赵昭霞.漫话“第四种森林”[J].森林与人类,1994,(6):6
    13典平鸽,杜玲枝.废旧塑料的综合利用[J].浙江化工,2006,37(3):28-31
    14.国家林业局.2006年中国林业发展报告[M].北京:中国林业出版社,2006:20
    15.何泽龙.人造板工业应尽快提升产业水平[J].人造板通讯,2003,(4):3-4.
    16.胡孙跃,向仕龙,唐忠荣.废旧刨花板循环利用技术的研究[J].木材工业,2007,21(1):21-23.
    17.胡孙跃,向仕龙.废旧木质家具材料的循环回收利用[J].木材加工机械,2006,(1):32-35
    18胡孙跃,杨凌云,陈桂华.循环经济与木材资源的循环利用.中国资源综合利用,2006,24(4):32-34
    19.黄慧筹.循环经济与价值转化工程[J].生产力研究,2006,(9):11-13
    20.黄在华,袁滨,董小岛.利用废旧刨花板及其制品生产再生刨花板[J].林业科技,2004,29(5):40-41
    21.黄在华,王永利.利用废旧人造板及其制品生产刨花板技术的研究[J].林产工业,2005,32(4):16-19
    22.何翠芳,周晓燕,朱亮.蒸爆法棉秆无胶纤维板热压工艺初探[J].林产工业,2009,36(1):15-17
    23.贺小翠,穆亚平.废旧人造板资源的回收与再利用[J].木材加工机械,2008,(1):50-52
    24.金星国,国长理.对我国人造板工业发展趋势的探讨[J].林业勘察设计,2004,(3):63-64
    25.姜岩.废弃塑料和木材的再次利用[J].应用科技,1999,(6):35
    26.蒋建新,刘圣英,马雅琦.蒸汽爆破预处理对沙柳组成及纤维结构性能影响研究[J].现代化1,2008,28(2):49-51
    27.赖文衡,樊永明,殷宁,潘定如.爆破法制浆技术研究[J].北京林业大学学报,1995,17(1):72-82.
    28.廖双泉,马凤国,廖建和.蒸汽爆破处理对剑麻纤维组分分离的影响[J].热带植物学报,2003,24(3):27-29
    29.李跃,Robert Loth,董双文,郭东升.利用废旧木料生产人造板用高质量的木片[J].林产工业,2003,30(6):47.
    30.李治仁.我国纤维板与刨花板设备的现状及发展.国际木材工业[J],2000,(11):15-18
    31.刘国信.美国废旧塑料木材制成复合包装材料[J].再生资源研究,2001,(2):41-42.
    32.刘元,聂长明.蒸汽爆破法在林产工业中应用的进展[J].世界林业研究,1993,(5):47-51
    33.罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005,(1):53-55
    34.陆仁书,郭东升.废弃木材加工的新技术[J].人造板通讯,2003,(7):14-16
    35.陆仁书,花军.木材节约的重要途径:城市废弃木材利用.木材工业,2006,20(3):69-71
    36.陆志华,刘玉喜,张培杲.杨树花培植株染色体自然加倍的研究[J].林业科学,1985,21(3):227-233
    37.马清相.浅析入世后我国人造板工业发展前景[J].林产工业,2005,32(1):62-63
    38.苗平,薛伟,徐柏森.蒸汽爆破预处理对柞木微观结构的影响[J].林业科技开发,2007,21(4):51-53
    39.潘永康.现代干燥技术[M].北京:化学工业出版社,1992:579-1021
    40.宋先亮,殷宁,潘定如.爆破法制浆技术的研究现状[J].北京林业大学学报,2003,25(4):77
    41.孙云丽,段晨龙,左蔚然等.电子废弃物的资源循环研究[J].中国资源综合利用,2007,25(3):35-38
    42.孔启祥.从生命周期角度评估木材的环境友好性[J].安徽农业大学学报,2001,28(2):170-175
    43.沈锡勇.废旧沥青路面材料再生利用技术的推广应用.交通节能与环保,2006,(4):46-47
    44.陶以明.我国废旧木材回收利用存在的问题及其解决对策[J].中国人造板,2008,(2):5-7
    45.汤小平.关于我国发展循环经济的分析[J].商丘师范学院学报,2006,(6):131-133
    46.涂平涛,秦沂兵.人造板在建筑业的市场前景及其性能要求[J].墙材革新与建筑节能,2003,(4):29-33
    47.王凤鸣.纤维板断面密度分布的控制[J].林产工业,996,(4):27-32
    48.王贵涛,董双文,郭东升,Kleinschmidt.剖面密度测定与人造板质量控制.木材工业,2005,19(1):38.
    49.王贵涛.剖面密度测定与人造板质量控制[J].木材工业,2005,(1):37-39
    50.王姗姗,孙芳利,段新芳等.废弃木质材料的循环利用技术及我国未来的研究重点.西北林学院学报,2005,20(2):183-185
    51.王新男,岳群飞.从我国木材资源的变化看普通刨花板的发展[J].林业机械与木工设备,2005,33(3):5.
    52.王正,郭文静.中国人造板生产现状及其技术发展趋势[J].中国林业出版社,1998,(5):30-35
    53.维美德人造板部.利用城市废弃木质材料作为人造板工业的原料来源—分级清选系统解决了以城市废弃木材生产刨花板时的砂尘污染[J].林产工业,2000,5(27):44-46.
    54.吴娟,于志明,陈天全.大片刨花板热压的传热过程[J].北京林业大学学报,2005,(2):92-95
    55.吴章康,周定国,封维忠.热磨处理对秸秆原料酸碱性和表面自由基的影响[J].南京林业大学学报,2002,26(4):51-53
    56.吴章康,周定国,张宏健.木质人造板剖面密度分布的意义与研究进展.木材工业,2001,15(4):3-5
    57.享耳.市场呼唤废旧木质材料加工机械[J].中国林业,2006,(9B):20
    58.熊哲文.中外循环经济立法比较研究[J].特区实践与理论,2006,(1):25-27
    59.肖小兵,张忠涛.我国废旧木质材料回收利用需要解决的问题[J].林产工业,2006,33(1):3-4
    60.徐妙珍.山杨组织培养的研究.刘培林主编.山杨育种研究[M].哈尔滨:黑龙江科学技术出版社,1993:50-62.
    61.徐信武,周定国.废旧木质材料在人造板生产中的利用[J].中国人造板,2006,(9):15-16.
    62.徐咏兰,张贵麟.工艺因素对纤维板板性的影响[J].林业科技开发,1997,(4):42-44.
    63.杨静蓉摘译.从刨花板中回收刨花和再生板的试制[J].人造板通讯,2001,(1):4-6.
    64.杨宗颖,胡琼玲.浅议我国林业的可持续发展[J].台声·新视角,2005,(11):36-37.
    65.杨文斌,刘一星,李坚.再生木塑复合材料的研究进展[J].世界林业研究,2001,14(5):26-29
    67.叶克林,于文吉,曲岩春.水热处理对废弃刨花板的刨花形态及其再循环利用性能的影响[J].木材工业,1998,12(6):7-9.
    68.叶克林.人造板行业发展趋势谈[J].中国人造板,2010,(3):5-7
    69.于赫,于志明,张扬.热压参数对纤维板断面密度分布的影响[J].中国人造板,2008,(2):14-16
    70.于文吉,阎昊鹏,叶克林.废弃刨花板制成的再生刨花中己固化树脂的分布及其活性[J].木材工业,1997,11(5):3-5
    71.于文吉.我国人造板行业发展现状及“十二五”科技需求分析[J].全国商品林高效利用技术研讨会,2008,(10):37-48
    72.于志明,吴娟,陈天全.人造板热压过程中板坯内部环境的研究进展[J].北京林业大学学报,2004,(5):81-84
    73.于志水,金红,苘胜军等.黑杨派杨树高效组培再生系统的研究[J].辽宁林业科技,2002,(6):11-13.
    74.原义涛,陈洪章.蒸汽爆破技术在麻黄碱提取中的应用[J].中国医科大学学报,2005,36(5):414-416.
    75.张齐生,周定国.浅议我国从人造板大国迈向人造板强国的途径[J].林产工业,2005,32(1):3-6
    76.张德衍.利用废弃木质材料制作刨花板[J].林业机械与木工设备,2000,9(28):33.34.
    77.张德荣,于志明,李建章.染色与阻燃处理单板生产单板层积材的工艺研究.北京林业大学学报,2005,27(3):83-86
    78.张德荣,李文军,李建章.改性丁苯胶乳制造刨花板的研究[J].北京林业大学学报,2004,26(4):66-68
    79.张德荣,于志明,冯富贵.爆破法再生刨花性能研究[J].木材加工机械,2010,21(1):5-7
    80.张德荣,张颖,金小娟.爆破法刨花再生及再生刨花板制造技术[J].北京林业大学学报,2009,31(1):136-139
    81.张宏健,赵立.PF-纤维板剖面密度分布特征的研究[J].北京林业大学学报,1991,(1):66-68.
    82.张扬,于志明.纤维板断面密度分布力学性能的初步研究[J].中国人造板,2008,(10):5-7.
    83.张扬,于志明.纤维板弹性模量预测模型的研究[J].北京林业大学学报,2009,(1):39-41.
    84.张扬,于志明.纤维板断面密度分布的研究进展[J].山东林业科技,2008,(4):78-81.
    85.张兆好.深挖废旧木材利用潜力缓解木材资源供需矛盾-关于废旧木材回收再利用的思考.木工机床,2007,(4):6-8
    86.张久荣.木材循环利用在欧洲蓬勃发展[J].中国林业产业,2005,(10):30-33
    87.赵昭霞,孟水平.城市废弃木质材料的循环利用技术[J].中国资源综合利用,2005,(11):36-38.
    88.郑全连.用城市回收废木料生产刨花板[J].中国人造板,2005,(6):34.
    89.中国科学院上海植物生理研究所细胞室.植物组织和细胞培养[M].上海:上海科学技术出版社,1978:21-89.
    90.钟锦标,牛永亮,吕建.韦春蒸汽爆破处理对剑麻纤维/酚醛树脂复合材料力学性能的影响[J].塑料工业,2006,(34)7:53-55
    91.Ahuja M R.Short note:a commercially feasible micropropagation method for aspen[J]. Silvae Genetica,1984,33(5):174-176
    92.Ashby,M F. The mechanical properties of cellular solids[M].Metal Ttans,1983:1755-1769
    93. Seppo Andersson, Ritv Serimaa. Crystallinity of wood and the size of cellulose in Norway spruce[J]. Wood Science,2003,49:531-537
    94.Bodig J.Mechanics of Wood and Wood Composites[M].New York:Van Nostrand Reinhold Co,1982:11-712
    95.Christopher A.Lenth.Investigations of Flakeboard Mat Consolidation[J]. Wood and Fiber Science, 1996,28 (3):309-319
    96.Composites. Part II.Methodology of Vertical Density Formation under Dynamic Conditions[J].Wood and Fiber Science,2000,32 (2):220-238
    97.C. Y. Hse, J. Wang. Bonding of Agrofibers-Based Composition panels [C]. SUAF Proceedings,2001,(5):34-41
    98.Dai C. Compression behavior of randomly flake mat [J].Wood and Fiber Science,1994, 25(4):239-358
    99.Dingguo Zhou. The development of utilizing agricultural straws in China [C]. Proceedings for symposium on utilization of agricultural and forestry residues,2001,(8):1-11
    100.Fan YM, Lai WH, Pan D R,et al. Study on the bleachbility of exploded pulp from wheat straw[J]. Journal of Beijing Forestry University,1997,6 (1):79-86
    101.Hishiyama S, SduoK. Degradation mechanism of lignin by steam explosion.;木材学会志,1992,38(10):944-949
    102.Hua X, Kaliaguine S, Kokta B V, et al. Surface analysis of explosion pulps by ESCA. Part 2 · Oxygen (Is) and sulfur (2p) spectra[J]. Wood Science and Technology,1993,(28):1-8
    103.Hua X, Kaliaguine S, Kokta B V, et al. Surface analysis of explosion pulps by ESCA. Part 1 · Carbon (Is) spectra and oxygen to carbon ratios[J]. Wood Science and Technology,1993, (27):449-459
    104.Karina M, Ueno N, Tanahashi M, et al. Degradation mechanism of lignin by steam explosion:steam treatment of syringly type lignin model compounds.Journal of Japan Wood Research Source,1994,40(9):950-957
    105.Keil B. New Forest feeds producer needs[J].Wood Based Panels International,1994, (7):27-29
    106.K.K. PANDEY. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy [J]. Journal of Applied Polymer Science,1999, (71):1969-1975
    107.Sharma A K, Forester WK, Shriver EH. Physical and optical properties of steam exploded laser printed paper [J]. Tappi Journal,1996,79 (5):211-221
    108.Tansey P.valentins way [J].Wood Based Panel International,1994, (5):30-33
    109.Thmas E.G. Harless. A Model to Predict the Density Profile of Particle-board [J]. Wood and Fiber Science,1987,19(1):81-92
    110. Wei Xu. Influence of Vertical Density Distribution on Bending Modulus of Elasticity of Wood Composites Panels:a Theoretical Consideration [J]. Wood and Fiber Science,1999,31 (3):277-282
    111.Winistorfer P M. Fundamentals of Vertical Density Profile Formation in Wood Composites. Part I. In-situ Density Measurement of the Consolidation Process [J]. Wood and Fiber Science,2000,32 (2):209-219
    112.X.Colom, F. Carrillo. Comparative Study of Wood Sampies of the Northern Area of Catalonia by FTIR[J]. Journal of Wood Chemistry and Technology,2005,(25):1-11.
    113.Yang J, Chang J, Lim B, et al. Utilization of lingo-cellulosic biomass:Ac-id hydrolysis of exploded wood after delignification [J]. J TAPPIK,1997,29 (4):18-27
    114.Kokta B V, Ahmed A. Explosion pulping of eucalyptus:a comparison with CTMP and CMP[J]. Wood Science and Technology,1993, (27):271-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700