用户名: 密码: 验证码:
埋地管道的防腐参数采集传输与防腐性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埋地管道在石油天然气工业乃至城市日常生产生活中占有重要的地位。埋地管道的腐蚀是引发管道失效的最主要的因素之一,因腐蚀原因造成的管道裂缝、穿孔等事故不仅影响了管道的正常运营,而且造成巨大的能源浪费和经济损失,还可能会引发泄漏,爆炸,窒息等安全事故,直接威胁着居民生命财产安全,并形成环境污染等严重后果。尤其对于那些服役时间较久的管道,及时掌握其腐蚀程度,进行管道的防腐级别评价是保证管道安全的重要环节。
     为了有效地对埋地管道的腐蚀防护系统进行安全评价,使腐蚀防护系统能最大限度地减小腐蚀对埋地管道造成的危害,从而减小国家财产的损失与消除安全隐患,本文分析了埋地管道的腐蚀成因以及防护措施。管道腐蚀是由管道所处环境的物理、化学等多因素作用所造成,由于管道受到电化反应、化学反应、杂散电流引起的电位差、微生物反应等作用,引起埋地管道与土壤环境之间形成电位差,造成电离子的移动,发生物理——化学变化,加速了管道的腐蚀速度。通常可以采用内防腐层、外防腐层以及添加阴极保护的方式进行防护,尤其针对埋地管道,由外防腐层和阴极保护电位构成的腐蚀防护系统成为当前防腐工作的主流方案。
     本文对当前工程常用的埋地管道腐蚀防护系统的各种检测方法的原理及技术特点进行了原理分析与总结。研究了管/地电位测量法,利用管道的电位分布模型,根据实测的管地电位曲线就可以对防腐层的缺陷进行定位,并分析了管地电位测量中的压降。研究了CIPS检测技术的原理和方法,并深入研究了CIPS方法的技术细节。给出了Pearson测试法和DCVG法的技术论证,阐述了压降关系。PCM(多频管中电流法)通过计算管道防腐层绝缘电阻来判断管道外防腐层的状态,在管道检测中得到较为广泛的应用。本文推导了PCM法的测量公式,并给出了测量步骤和适用范围。
     为控制埋地金属管道在土壤中的电化学腐蚀,公认的做法是采用外防腐层和阴极保护的联合防护措施。其中外防腐层是主要防腐手段,阴极保护作为防腐层防腐的补充手段,为防腐层缺陷处的管道外表面提供电化学保护。国内埋地管道防腐层阴极保护电位检测多数仍为人工逐点检测,不仅操作不便还容易造成误差。本文设计了一套基于单片机和GPRS模块的采集与无线传输系统,实现对阴极保护电位的采集及无线传输。本文介绍了无线数据采集系统的总体设计框架,对无线数据采集系统中电位采集部分及无线收发部分的硬、软件设计进行了详细说明。实测表明,本系统对信号的测定工作兼具稳定及准确度高的特点,并能够对测得阴极保护电位数据进一步处理分析,达到了预期要求。
     外防腐层的在役状态对保证安全生产和延长埋地钢质管道的使用寿命至关重要。为掌握埋地钢质管道外覆盖层的性能状态,必须适时对其进行检测、量化防腐层的状况,对安全程度进行有效的分级评价。
     为了分析判断管道外防腐层的使用寿命,有必要在现场检测的基础上,对管道防腐保温层的失效类型、破损程度进行诊断。然而,在对检测所得的数据进行分析评价的时候,由于一些影响因素具有随机性、模糊性和不完整性等特点,常规方法对管道防腐层的级别评定常常存在不适应性。人工神经网络具有高度非线性映射能力、大规模并行分布处理和良好的自适应学习机制,很适合求解传统模式识别方法难以建模解决的问题。本文主要针对管道防腐层防腐级别评价中的若干问题,应用了BP人工神经网络算法,为管道进行风险性评估与经营决策提供科学依据。
     BP神经网络算法容易陷入局部极值,其评价结果具有一定误差。本文结合遗传算法进行优化神经网络权值,建立了针对埋地管道腐蚀防护系统性能评价的遗传神经网模型。遗传算法是一种全局性的、稳健的搜索优化方法,可以有效克服神经网络训练过程中容易收敛于局部最小值的缺点。将遗传算法与神经网络相结合,可以使神经网络扩大搜索空间、提高计算效率以及增强神经网络建模的自动化程度。该综合评价模型使用遗传算法优化神经网络的连接权值,通过个体的不断进化,实现神经网络连接权值的优化。通过对检测数据、管道材质、环境因素等样本的学习,得到更加贴近管道运行真实状况的评价模型。使用该评价模型计算后续的检测数据,可以得出更加切合实际的管道腐蚀防护状况综合评价结果,实现了在缺乏普适明确计算公式的条件下,对复杂多变的埋地管道腐蚀防护状况进行准确评价。
Buried pipelines plays an important position in oil and gas industry and even in the city daily production and life.Corrosion of buried pipelines is one of the main factors leads to pipeline failure.Pipe crack or pipe perforation caused by corrosion not only affects the normal operation of the pipeline, but also cause the huge energy waste and economic losses, and may even cause Safety accident like leakage, explosion, suffocation and so on.It threats to residents' lives and property security directly,and it can also Formate serious consequences, such as environmental pollution. Especially for those who served for a long pipeline, grasping the degree of corrosion timely, evaluatingpipeline corrosion level is an important part of ensuring pipeline safety.
     In this paper, we analyze the causes of corrosion and protective measures aiming atevaluating the safety level of buried pipeline corrosion protection system, minimizing the corrosion to the damage of buried pipelines and reduce the loss of state property of and eliminating the safety hidden trouble.Pipeline corrosion is due to physical and chemical factors and other factor of the environment.For example when the pipeline reacts electrochemical,chemical,microbial reactions or potential difference caused by stray current, potential difference will be formed between buried pipeline and soil,so the moving lons leads physical or chemical changes causing the accelerating corrosion speed.To solve this problem we usually use the anti-corrosion layer, the outer coating and add cathodic metheds for protection.Now mainstream solution is corrosion protection system by external coating and cathodic protection potential.
     In this paper, the principle and technical characteristics of various detection methods in buried pipeline corrosion protection system are anslysised and summary. Tube/potential measurement method is studied, using a pipeline of potential distribution model to locate erosion resistant coating defects according to the measured pipe-to-soil potential curve, and then voltage drop of pipe-to-soil potential measurements is discussed.Then we deliberate the principle and technical characteristics of CIPS, in order to state the relation of voltage drop, the measurements of Pearson and DCVG are expounded and proved.PCM is widely used in pipeline inspection,it can estimate the state of outside the pipe coating by calculating pipeline anticorrosion layer for insulation resistance. Measure equation of PCM is deduced, so do the Measuring steps and applicable scope.
     In order to control of electrochemical corrosion of buried metal pipeline in soil, the combination of external anticorrosive coating and cathodic protection protective measures is widely adopted.The outside anticorrosion layer is the main anticorrosion method, and the cathodic protection for coating defect pipe outside surface electrochemical protection is supplement of anticorrosion layer.In China, Cathodic protection potential tests of buried pipeline anticorrosive coating is still artificial point detection, which is Not only inconvenience also easy to cause the error.So GPRS module acquisition and wireless transmission system based on MCU is designed.It achieves the protection of the cathode potential and wireless transmission. In this paper, the overall design of wireless data acquisition system is introduced and the potential acquisition part, the hardware and software design of wireless transceiver part in system are descripted in detail.Measurement work of the signal shows that this system has the characteristics of high accuracy and stability,and the measured data on cathodic protection potential can be further analysised.So It has reached the expected requirements.
     Outer coating in service of the state to ensure the safe production and prolong the service life of buried steel pipeline is crucial. In order to grasp the performance states of buried steel pipeline outer covering layer, the status of the coating must be tested and quantized timely and we should grad evaluation of safety degree effectively.
     In order to analyze the service life of the protective coating, it is necessary to diagnose the failure of pipeline anti-corrosion insulation type and the degree of damage on the basis of on site inspection.However,when we evaluate the tested data, conventional methods of pipeline anticorrosive layer level evaluation often is not adaptive due to some factors affecting such characteristics as randomness, fuzziness and incompleteness.Artificial neural network has highly nonlinear mapping ability, massively parallel distributed processing and good adaptive learning mechanism, so it is suitable for solving the problems which are difficult by using the traditional pattern recognition methods.
     Aiming at solving the problems in the evaluation of pipeline anticorrosion layer level, the BP artificial neural network algorithm is put into use. It provides a scientific basis for management decisions and pipeline risk assessment.
     BP neural network algorithm is easy to fall into local extremum, and the evaluation result has a certain error. In this paper the weights of neural network is optimized by combined genetic algorithm,and then we establish genetic neural network model for buried pipeline corrosion protection system performance evaluation.Genetic algorithm is a global and robust search optimization method, it can effectively overcome the problem that neural network training process is easy to converge to local minimum. Combining genetic algorithm and neural network can make the neural network to expand the search space and improve the computational efficiency, and enhance the automation of neural network modeling. The comprehensive evaluation model uses Connection weights of neural network optimized by genetic algorithm,and it optimies the connection weights of neural network through the evolution of individual.Based on testing data,pipe material,learning environmental factors such as sample, we get more close to the pipeline operation evaluation model of the real situation. Using the evaluation model to compute the follow-up testing data, more comprehensive evaluation results of practical pipeline corrosion protection will be obtained.So this system can evaluate state of complex corrosion protection for buried pipeline in the absence of a universal clear conditions.
引文
[1]杨永,何仁阳,杨剑锋等.埋地钢质管道腐蚀防护综合评价系统研究[J].管道技术与设备,2004,(2):11-14.
    [2]唐大全.管道阴极保护电位无线采集系统研制[D].北京:北京化工大学,2011.
    [3]曾剑雷,计雪松.埋地管道防腐涂料及防腐系统检测技术[J].上海煤气,2007,(6):1-5.
    [4]顾善多,刘立新,白广臣等.埋地钢质管道腐蚀防护系统的完整性评价方法的研究[J].管道技术与设备,2011,(5):42-56.
    [5]杨伟,平威华.PCM+埋地管道防腐检测技术及应用[J],中国石油和化工标准与质量,2011,(7):80.
    [6]赵鹏,何仁洋,杨永等.埋地钢质管道腐蚀防护检验检测技术组合方法及评价系统研究[J].化工设备与管道,2007,44(1):45-49.
    [7]周巍,宋晓琴.关于埋地金属管道防腐层地面检测技术的探讨[J].内蒙古石油化工,2007(8):45-46.
    [8]黄昌碧,陈晖,宋根才,周治江.管道防腐层检测技术现状及发展[J].石油仪器,2003,17(5):5-60.
    [9]宋秀丽.国内外管道防腐的现状与发展[J],山西建筑,2002,28(9):88-89.
    [10]司永宏,牛卫飞,王世来.交流电流衰减法(PCM)在埋地管道防腐层检测中的应用[J],化学工程与装备,2008,(10):99-101.
    [11]杨赫,刘彦礼.近年我国油气管道防腐技术的应用[J].化学工程师,2008,149(2):28-31.
    [12]张志坚,付立成,孙杰.埋地管道防腐层绝缘电阻与管道防腐层质量评价的关系[J].工程技术与产业经济,2010,(2):16-17.
    [13]俞树荣,李建华,李淑欣等.埋地管道腐蚀剩余寿命预测概率模型[J].中国安全科学导报,2008,18(6):11-15.
    [14]孙强,徐宏伟,申龙涉.埋地管道安全运行的综合评价[J].管道技术与设备,2008,(5):49-51.
    [15]刘合,王淑英,孙洪义.埋地管道防腐层不开挖检测技术探讨及应用[J],油气田地面工程,2000,19(1):48-51.
    [16]王红艳,马静.浅谈管道防腐[J].科学观察,2012,(2):80-81.
    [17]吴荫顺,曹备,杜志刚.城市地下管线阴极保护工程的应用实践与发展[J].管道技术与设备.1997,(4):9-13.
    [18]冯庆善,李荻.管道外防护涂层抗划伤性能评估研究[J].腐蚀与防护,2004,25(6):267-270.
    [19]刘书国,石荣满.影响钢质管道3PE防腐层性能的因素分析[J].焊管,2003,26(4):15-18.
    [20]刘振宏.地下输水管网阴极保护[J].石油化工设备技术.1995,16(4):52-56.
    [21] A.W.Peabody,吴建华,许立坤译.管线腐蚀控制[M].北京:化学工业出版社,2004.
    [22]黄昌碧,陈晖,宋根才,周治江.管道防腐层检测技术现状及发展[J].石油仪器.2003,17(5):5-7.
    [23] Maria Petrou, Isabel Gracia. Buried Pipeline Mapping from Satellite Images[J].Electronics&Communication Engineering Journal.2002,(8):143-154.
    [24] Jin Shijiu, Li Jian, Chen Shili, Xiao Kun, Song Shizhe. The Study of DetectionTechnology and Instrument of Buried Pipeline-Coating Defects[C]. Proceeding of the4thWorld Congress on Intelligent Control and Automation. Shanghai,2002:794-798.
    [25]王志强,杨德芹,王淑英.大庆杏北油田埋地钢质管道检测技术探讨[J].全面腐蚀控制.2001,15(5):44-48.
    [26]赵忠良.大庆油田管道在线防腐检测技术[J].石油规划设计.2002,(3):21-22.
    [27]黄桂柏.大庆油田埋地管道外防腐层检测技术[J].管道技术与设备.2001,(3):32-36.
    [28]耿铂,余越泉,王健健.PCM管道电流检测系统介绍及应用[J].腐蚀与防护.2002,23(1):21-23.
    [29]徐巍,张业鹏,文昌俊.基于GA的模糊神经网络控制[J].湖北工业大学学报.2005,20(5):104-107.
    [30] Lawson, K. Pipeline Corrosion Risk Analysis-An Assessment of Deterministic andProbabilistic Methods[J]. Anti-Corrosion Methods and Materials.2005,52(1):3-10.
    [31] Kania, Richard. Non-destructive Techniques for Measurement and Assessment ofCorrosion Damage on Pipelines[C]. Proceedings of the International Pipeline Conference.1998,(1):309-313.
    [32] Caleyo, F. A Study on the Reliability Assessment Methodology for Pipelines withActive Corrosion Defects[J]. International Journal of Pressure Vessels and Piping.2002,79(1):77-86.
    [33]王淑英,张宏奇,曹立民.大庆杏北油田埋地管道腐蚀与防护信息系统(CPGIS)的建立[J].全面腐蚀控制.2001,15(2):26-28.
    [34] A. Amirat, A. Mohamed-Chateauneuf, K. Chaoui. Reliability assessment ofunderground pipelines under the combined effect of active corrosion and residual stress[J].International Journal of Pressure Vessels and Piping.2006,83:107-117.
    [35]刘会娟.大庆油田天然气埋地管道泄漏的防护[J].油气田地面工程,2012,31(2):69.
    [36] Hongbin Du, Huihe Shao, and Pingjing Yao. Adaptive Neural Network Control for aClass of Low-Triangular-Structured Nonlinear Systems[J]. IEEE TRANSACTIONS ONNEURAL NETWORKS.2006,17(2):509-514.
    [37] S.S.Ge, C.C.Hang, Tao Zhang. Adaptive neural network control of nonlinear systemsby state and output feedback[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, ANDCYBERNETICS–PART B.1999,29(6):818-828.
    [38]蒋奇.基于小波神经网络的管道腐蚀缺陷定量识别研究[J].钢铁.2005,40(10):48-51.
    [39]王永涛,牟海维,韩建.基于小波包与神经网络的长输油管道泄漏检测方法[J].大庆石油学院学报.2006,30(4):129-131.
    [40]谢兴红,林凡强,吴雄英.MSP430单片机基础与实践[M].北京:北京航空航天大学出版社,2008.
    [41] Itertz J, Krogh A, Palmer R G. Introduction to the theory of neural computation[M].Addison-Wesley Publishing Company,1991.
    [42]董文,邓子辰,刘东常,梁亚平.基于遗传-神经算法的圆柱壳结构外压稳定性研究[J].西北工业大学学报.2006,24(1):119-123.
    [43]徐佳佳,李帆.人工神经网络在埋地燃气管道腐蚀评价的应用[J].煤气与热力,2007,27(10):43-45.
    [44]韩钟琴,刘建伟,李建忠等.埋地管道外腐蚀的控制管理与评价系统研制[J].石油化工腐蚀与防护,2007,24(2):4-6.
    [45]张波,刘胜辉.基于遗传BP神经网络的数据挖掘技术[J].控制理论与应用.2005,24(9):4-6.
    [46]刘万林,张新燕,晁勤.MATLAB环境下遗传算法优化工具箱的应用[J].新疆大学学报(自然科学版).2005,22(3):357-360.
    [47]蔡自兴,孙国荣,李枚毅.基于改进遗传算法的多示例神经网络优化[J].计算机应用.2005,25(10):2387-2412.
    [48]程婧容,何琳,谈振藩.标准遗传算法的收敛性分析及其趋近稳态的速度估计[J].电机与控制学报.1999,3(4):241-248.
    [49]高玮.改进的快速遗传算法及其性能研究[J].系统工程与电子技术.2003,25(11):1427-1430.
    [50]高龙士,邱丽芳,史铁军.混合编码遗传算法在机构参数优化中的应用[J].山东农机.2005,(6):5-6.
    [51] K. A. Macdonald,A. Cosham. Best Practice for the Assessment of Defects Inpipelines-Gouges and Dents[J]. Engineering Failure Analysis.2005,(12):720-745.
    [52]李耀群,杨德钧,俞洪英,张延东,孙冬柏,李夏喜,张滨.北京地下天然气管道土壤腐蚀的试验研究[J].油气储运.1998,17(1):44-46.
    [53] Kacicnik, A. Stray Current Mapping Enhances Direct Assessment Of An UrbanPipeline[J]. Materials Performance.2004,43(6):26-32.
    [54]齐公台,郭雅弧,楚喜丽.宝浪油田土壤中阴极保护基本参数的测定[J].油气田地面工程.1993,18(2):38-39.
    [55]王玉梅,李莉.90年代国内外管道外防腐层技术[J].油气储运.1997,16(9):22-28.
    [56] Tong Qiuhong, Xu Huizhi, Wang Yumin. Application of genetic algorithm in the BPneural network structure design of intelligence analysis system of lubricated oil[J].Lubrication Engineering.2006,(6):127-132.
    [57] Ou Jian, Sun Caixin, Hu Xuesong, Liao Ruijin, Wang Keke. BP neural networkbased on genetic algorithm for vibration fault diagnosis of turbine-generator set[J]. HighVoltage Engineering.2006,32(7):46-68.
    [58] Yang Lei, Wang Peng, Jiang Yi-lin, Xia Bing. QSAR for toxicities of phenols usingimproved genetic algorithm combined with BP artificial neural network[J]. Journal of theHarbin Institute of Technology.2006,38(2):216-218.
    [59] Chen Shouyu, Guo Yu, Wang Dagang.Use of engineering fuzzy sets BP neuralnetwork and genetic algorithm for intelligent decision-making[C]. Proceedings of the WorldCongress on Intelligent Control and Automation.2006,3052-3056.
    [60] Zhou Yan, Jin Yuan-Qiang, Yang Li-Jian, Zhang Guang-Yu. Research of thetechnological parameters of manufacturing superfine quartz powder based on GA-BP neuralnetwork[J]. Material Science and Technology.2007,15(1):55-63.
    [61] Zhao Xuehong,Zhang Laibin,Fan Jianchun. Prediction of wear trend using combinedBP neural network based on genetic algorithm.2005,(5):40-42.
    [62] Jenkins W.M. A neural network trained by genetic algorithm[J]. Advances inComputational Structures Technology.1996:77-84.
    [63] Fukumi M, Omatu S. Designing an architecture of a neural network for coinrecognition by a genetic algorithm[J]. Transactions of the Institute of Electrical Engineers.1993,113-D(12) Part D:1403-1409.
    [64] H.M.Deitel,P.J.Deitel,J.P.Liperi,C.H.Yaeger. Visual C++.Net How To Program[M].北京:清华大学出版社,2004.
    [65]谈可莉.埋地钢质管道腐蚀与防护评价技术的数学方法[J].油气田地面工程,2006,25(9):8-9.
    [66]李自力,尚兴彬,赵仲慧等.埋地管道防腐蚀层评价方法[J].腐蚀与防护,2012,33(12):1104-1107.
    [67]李永年,李晓松,姚学虎等.埋地管道综合参数异常评价法的应用效果[J].地球物理学进展,2003,18(3):487-492.
    [68]刘剑锋,王文娟,马健伟.埋地管道腐蚀机理及应对措施[J].石油化工腐蚀与防护,2006,23(6):20-22.
    [69]蒋玉卓,于方涌.埋地管道防腐技术浅析[J].内蒙古石油化工,2012,(10):95-96.
    [70]武维胜,黄小美,臧子璇等.埋地管道腐蚀检测与评价技术[J].煤气与热力,2012,32(10):B37-B41.
    [71]张其敏,杨怡恒.埋地管道腐蚀损伤评价[J].管道技术与设备,2004,(3):39-41.
    [72]韩文礼,林竹.埋地管道防腐蚀技术的现状与展望[J].焊管,2008,31(3):9-13.
    [73]赵月华.连续低压重整装置埋地管道防腐蚀措施探讨[J].石油化工腐蚀与防护,2012,29(3):41-59.
    [74]于润桥,邓贤远,胡博等.探头参数对瞬变电磁法检测埋地管道腐蚀的影响[J].四川兵工学报,2012,33(1):83-85.
    [75]李影,李国义,马文鑫.我国油气管道建设现状及发展趋势[J].中国西部科技,2009,8(14):6-8.
    [76]李世荣,宋艾玲,张树军.我国油气管道现状与发展趋势[J].油气田地面工程,2006,25(6):7-8.
    [77]彭星煜,张鹏,孙德青等.基于灰色GM_1_1_模型埋地金属管道腐蚀速率预测[J].管道,2009,23(4):30-31.
    [78]秦治国.防腐技术应用实例[M].北京:化工工业出版社,2004.
    [79]秦先勇,王立辉,梁晓飞.埋地管道防腐层缺陷检测技术及其应用[J].科学技术与工程,2006,6(2):181-186.
    [80]王益敏,张礼敬,陶刚等.基于模糊理论的埋地管道交流干扰腐蚀安全性研究[J].工业安全与环保,2011,37(9):47-49.
    [81]秦国治.管道防腐蚀技术[M].北京:化学工业出版社,2009.
    [82]王德增.管道防腐涂层防腐性能优化研究[D].北京:中国石油大学,2009.
    [83]万德立,朱殿瑞,董家梅.石油管道、储罐的腐蚀及其防护技术[M].北京:石油工业出版社,2006.
    [84]金小军,董训长,张扬.埋地钢管外防腐层腐蚀检测方法及应用[J].油气储运,2001,20(7):34-35.
    [85]胡晓莉.埋地管道安全检测若干技术的研究[D].天津:天津大学,2005.
    [86]李健,陈世利,靳世久.埋地管道防腐层的DCVG与CIPS技术组合检测[J].管道技术与设备,2003,12(l):38-39.
    [87]吴荫顺,曹备.阴极保护和阳极保护原理、技术及工程应用[M].北京:中国石化出版社,2007.
    [88]石仁委.埋地管道壁厚的瞬变电磁检测技术研究[J].石油化工腐蚀与防护,2007,24(2):10-22.
    [89]胡士信.管道阴极保护技术现状与展望[J].腐蚀与防护,2004,25(3):93-101.
    [90]田志.管道防腐技术[M].北京:化学工业出版社,2003,23-24.
    [91]崔之健,史秀敏,李又绿.油气储运设施腐蚀与防护[M].北京:石油工业出版社,2009.
    [92]中国石油天然气总公司.GB/T21246-2007埋地钢质管道阴极保护参数测试方法[S].北京:石油工业出版社,2008.
    [93]李言涛,吴茂涛,姜信德,孔德生.管线阴极保护在线监测评价系统的研究进展[J].材料保护,2010,43(9):50-53.
    [94]孙维明,石江宏,陈岳林.可编程RF收发器CC1100的原理及开发[J].国外电子元器件.2007,9:40.
    [95]王丽丽,孙建.埋地管道阴极保护方法探讨[J].现代商贸工业,2010,(3):3-13.
    [96]王浩鸣.常用无线数据通讯技术比较[J].计算机与现代化,2002,(9):35-42.
    [97]杨文东.IEEE802.11无线局域网标准发展历程及其发展方向[J].电信工程技术与标准化,2002,(6):54-59.
    [98]李文华.蓝牙技术与红外、I EEE802.11b和Home RF的比较[J].江西通信科技,2003,4(12):15-17.
    [99]刘凯,马丽敏,陈志东等.埋地管道的腐蚀与防护综述[J].管道技术与设备,2007,(4):36-42.
    [100]李朝青.无线发送/接收IC芯片及其数据通信技术选编[M].北京:北京航空航天大学出版社,2003.
    [101]马明建,周长城.数据采集与处理技术[M].西安:西安交通大学出版社,2005.
    [102]曹英杰,路克杰,梁志国.模拟量数据采集系统的计量测试现状及其前景[J].航空科学技术,1998,(l):25-28.
    [103]王朝晖,石永春,朱欢勤.管道检测技术[J].管道技术与设备,1999,15(1):40-41.
    [104]熊信勇,黄长辉,郑斌.阴极保护智能化监测、检测和控制技术[C].中国国际腐蚀控制大会论文集,2002,251-256.
    [105]孙冬柏,张秀丽,魏忻.长输管道防护层缺陷及检测技术[J].石油化工腐蚀与防护,1998,15(3):50-53.
    [106]孔凡军,李际平,杨伏华.基于CC1100的无线数传系统设计与实现[C].中国通信学会第五届学术年会论文集,南京:中国通信学会,2008:676-679.
    [107]张朝龙,江巨浪.基于MSP430的无线采集系统设计[J].安庆师范学院学报(自然科学版),2009,15(2):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700