用户名: 密码: 验证码:
海上钻屑脉冲热驱脱油技术的过程评价与脉冲管洗涤器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对海上钻屑处理的特殊性,提出了海上钻屑脉冲热驱脱油技术。其总体方案为:以轻质溶剂稀释和清洗岩屑,再将重质油(油基泥浆)与轻质溶剂分离,重质油可汇入振动筛下钻井液,溶剂循环使用。岩屑中所含轻质溶剂以高温干燥方式驱除,使岩屑中不含油与溶剂,可抛海处理,干燥出来的溶剂循环使用。该方法可在钻井平台的限定范围内安全进行,并达到环保排放标准,且经济效益显著。
     利用HYSYS化工流程模拟软件对提出的多个可行工艺方案进行了模拟计算,对海上钻屑脉冲热驱脱油技术中各工艺设备的物流与热力学参数进行了评价。从工艺的可实施性、耗能及技术性能指标情况综合考虑,确定了最佳工艺流程方案。最终流程方案中,整个工艺过程的能耗为300kW/h,溶剂消耗量为12kg/h。
     针对钻屑洗涤工艺过程,开发了新型混合洗涤设备—脉冲管洗涤器,并用Fluent6.2提供的欧拉多相流模型和RNG k-ε湍流模型对其进行了液固两相湍流流场的数值模拟。分析了脉冲管洗涤器内的流场和颗粒的运动情况。并对其性能进行了实验测试。结果表明:脉冲管洗涤器特殊的结构设计,增强了管内流体的湍动,增加了颗粒的停留时间,从而提高了混合沈涤的效果。
     对精馏过程进行了实验测试。测试结果表明:岩屑洗涤后的溶剂跟油基泥浆混合液可以顺利通过精馏过程分离。对精馏分离前后的油基泥浆和溶剂的色谱分析测试结果表明处理前后油基泥浆的成分基本没有变化,可以返回钻井过程循环使用;溶剂也可循环利用。
     经国家海洋局北海监测分局的检验结果表明:由实验得到的样品中钻屑中的含油量降至0.12%(重量百分比),生物毒性检验达标。目前国际上规定的钻屑可排海的最低含油量指标为1%。
Drilling cuttings was rock powder that was destroyed during the process of artesian well drilling and lifted to ground from underground across drilling mud circulation. Offshore drilling cuttings including oil have a great effect on ocean environment. Accordingly, treatment of offshore drilling cuttings was regarded as an international difficult problem that need to be solved as quick as possible.
     The author advanced technology of using impulse heat lustrate removing oil from offshore drilling cuttings according to particularity of treatment of offshore drilling cuttings. The scheme is first abstersion drilling cuttings use solvent, then drilling mud and solvent was separated by distillation. Drilling mud recycled into artesian well process and solvent circulated. Solvent included in drilling cuttings was lustrated by calefaction so that drilling cuttings can be directly threw into sea. Solvent gained by calefaction was circulated. The technology can be used on flat roof of offshore artesian well and drilling cuttings can be disposed according with environmental protection standard. The technology had prominent economy benefit.
     Simulation and evaluation of multi-feasible scheme were done by HYSYS software. Detailed data were obtained such as material stream, temperature, pressure, etc. Based on technics realizable, energy consume, technology performance, the author confirmed the most optimize technics flow. Energy consume of the most optimize technics flow is 280kw, solvent consume is 12kg/h.
     According with flow characteristic, the author designed a new type mixture abstersion equipment, which is called impulse pipe syringe. The experiment and simulation of flow field of impulse pipe syringe were carried out. The results showed that configuration design of impulse pipe syringe made turbulence intensity stronger and made residual time of particle longer, so mixture abstersion effect was better.
     The experiment tests were made on separation of distillation. The experiment results of distillation showed that mixture could be separated easily. The Chromatogram test results of mixture of drilling mud and solvent that was disposed showed that drilling mud components have not almost changed and can be recycled. Solvent which obtained through distillation can be circulated.
     The analyzed results of North china sea branch of the state oceanic administration indicated that the amount of oil in drilling cutting of the experiment sample using technology of using impulse heat lustrate remove oil from offshore drilling cuttings could fall to≤0.12% and biological toxicity detection according with release criterion of government and region. At present the lowest amount of oil in drilling cuttings that can be released into sea at international laws is 1%.
引文
[1] 易绍金,向兴金,肖稳发.海上钻井含油钻屑处理技术,中国海上油气(工程),2001.12,Vol.13 No.6,52~54
    [2] 李永棋,丁美丽.海洋污染生物学,北京:海洋出版社,1991
    [3] Bland, R. G. et al. Toxicity of drilling fluids using photobacteria and mysid shrimp bioassays, SPE 16689, 1987.
    [4] 向兴今,易绍金,戴向东等.海上钻井废弃物排放的法规与对策,1996,Vol.6 No.3,31~35
    [5] Morrish D P J, et al. Drilling Fluids Economics and Planning to Achieve Environmetal Targets, SPE 27112
    [6] Jones F V, et al. Alternate Enviromental Testing of Drilling Fluids, An International Perspective, SPE 20889
    [7] 姜伟.辽东湾集中快速钻丛井表层技术,钻采工艺,1997,20(3),24~26
    [8] 赵雄虎,王凤春.废弃钻井液处理研究进展,钻井液与完井液,2004.3,Vol.21 No.2,43~48
    [9] 徐光会,钟蓉.浅谈钻井废弃泥浆的最终处置,重庆环境科学,1995.2,Vol.17 No.1,58~60
    [10] 周迅.废钻井液的处理技术综述,油气田环境保护,2001,Vol.11 No.4,10~12
    [11] 龙安厚,孙玉学.废钻井液无害化处理发展概况,西部探矿工程,2003年第3期,165~168
    [12] 邓浩,马廷雷等.《石油工业环境保护》,北京:石油工业出版社,2000.5
    [13] Getiff J M, et al. Waste Management and Disposal of Cuttings and Drilling Fluid Waste Resulting from the Drilling and Completion of Wells to Produce Orinoco Very Heavy Oil in Eastern Venezuela. SPE 46600, 1998. 6
    [14] Minton R C, et al. Annular Reinjection of Drilling Wastes. SPE 25042
    [15] Malachosky E, et al. Offshore Disposal of Oil Based Drilling Fluid Waste, An Enviromentally Acceptable Solution, SPE 23373
    [16] 陈效红.可解决环境问题的钻屑回注技术,国外石油动态,2000,Vol.23 No.85,12~10
    [17] 安文忠,陈建兵,牟小军等.钻屑回注技术及其国内油田的首次应用,石油钻探技术,2003.2,Vol.31 No.1,22~25
    [18] Lloyd E Deuel, Jr. george, H Holiday. Observed Contamiant Migration from an Instrumented Reserve Pit, SPE64637, 2000. 11
    [19] Jean S Wingarten, Michael L Bill, Donald E Andrews. Confinemen to Wastes Injested Below Thawed Pemafrost, A 12 Year Update from the North Slope O Alaska, SPE610098, 2000. 6
    [20] 马廷雷.钻屑、废钻井液无害化处理技术研究,大连海事大学硕士论文,2003年
    [21] 贺吉安.钻屑、钻井液固化处理及对环境的影响分析,油气田环境保护,2002.9,Vol.12 No.3,37~40
    [22] 王中华.对中国钻井液处理剂及液体系发展的认识,钻井液与完井液,2001,Vol.18 No.4, 32~35
    [23] B.A.西肖夫等.SU 1222672A.
    [24] B.A.西肖夫等.SU 1240783A.
    [25] A.B.布特列可夫等.SU 1076434A.
    [26] 屈玉成,梅平等.钻井废弃泥浆固化研究,湖北化工,2001,Vol.18 No.1,16~17
    [27] 肖楠,黄福田.油田钻井废泥浆无害化处理技术研究,环境保护科学,1998,Vol.24 No.5,25~28
    [28] 崔之健,梅宏.XG-泥浆固化剂在井场的实际应用,新疆石油学院学报.1999,11(2),26~27
    [29] 杨力文等.《废钻井液固化处理技术》,辽河石油勘探局钻井所,1990.1(内部资料)
    [30] 朱墨等.《废弃聚丙烯酞胺淡水钻井液的固化处理》,石油大学,1993.5(内部资料)
    [31] 宋明全,蔡利山,刘四海.钻井废浆液固化剂BH—1的研制与应用,石油钻探技术,2001,29(3),53~55
    [32] Morillon A-Jeanmaire, et al. Salted Cuttings Stabilization. SPE 73922, 2002. 3
    [33] 蔡利山,刘四海.CX170—1井钻井废水及废钻井液处理技术,油气田环境保护,2001.12,vol 11 No.12,26~30
    [34] Antonio J Delgado, S A and Per Sorehsen. Low Temperature Distillation Technology, SPE 46601, 1998. 6
    [35] Shaw M G. et al. Removing Oil from Drilling Cutting, An Offshore Sdudon, SPE 19242
    [36] R. Bruce Eldridge. Oil Contaminant Removal from Drill Cuttings by Supercritical Extraction, Ind. Eng. Chem. Res., 1996, 35, 1901-1905
    [37] 杨星.废弃钻井固液分离技术研究,钻井液与完井液,2004.5,Vol.21 No.3,19~22
    [38] 尹栋超,贾朝敬等.废钻井液固液分离处理用化学剂性能评价,油气田环境保护,第12卷 第4期,2002,13~15
    [39] Wojtanowicz A K. Enviromnental Control Potential of Drilling, Engineering An Oveaview Existing Technologies, SPE 21954
    [40] Thurman N P, et al. A Microbial Approach to Cleaning UsedOil Based Drilling Muds, SPE 23061
    [41] Pherie F H, et al. Biological Treatment of Drilling Waste, SPE 29695
    [42] 李晓群.2000年世界石油环保科技发展的趋势及我们的对策,世界石油工业,1995(4):58~61
    [43] 许海彬等.泥浆利固化材制成的泵房,中国专利,专利号:2466286.2001-12-19
    [44] Vidrio, et al. Process for converting well drill cuttings into raw materials for the production of cement compositions obtained therefrom, Unite States Patent: 6361596, 2002-03-26
    [45] Vei J A, Johson N, Ford J K. Restoration of Coastal Wetlands Using Traeted Drill Cuttings. SPE 61097, 2000, 6
    [46] 籍国东,隋欣等.封闭式芦苇湿地处理钻井泥浆的可行性研究,环境科学学报,2001,21(4),426~430
    [47] 吴达华,黄柏宗等.新型钻井固井液工艺和技术,钻井液与完井液,2002,Vol.19,No.3,1~6
    [48] 国外油田工程,Foreign Oilfield Engineering,Vol.17 No.9,2001.9
    [49] 安全、环境和健康,2001.11,Vol 1 No.22
    [50] 江先雄.美国海上CleanCut闭式钻屑清除系统,石油机械,2002,Vol.30 No.11,59~60
    [51] 马军志等.MTC固井技术在中原油田的现场应用,西南石油学院学报,2001,23(2):50~52
    [52] 李建中.废弃钻井液的治理与利用,油气田环境保护,1996,6(4):21~23
    [53] 张林森等.废弃水基钻升液的利用—固井技术,油气田环境保护,1997,7(2):3~5
    [54] 杨友麒.化工过程模拟,化工进展,1996,(3):1~7
    [55] 张锴,邓蜀平.浅析化工过程模拟,山西能源,1994(4):38~44
    [56] 张建候.化工过程分析与计算机模拟,北京:化学工业出版社,1989
    [57] 胡克林,罗金生.化工过程模拟技术进展与趋势,新疆工学院学报,1997,18(4):254~257
    [58] 杨友麒.化工过程系统模拟新进展,化学工程,1992,20(2):72~79
    [59] 李文波,毛鹏生等.化工流程模拟技术的现状与发展,化工时刊,1998,12(6):3~6
    [60] 彭秉璞.化工系统分析与模拟,北京:化学工业出版社,1990
    [61] 陆恩锡,张慧娟.化工过程模拟及相关高新技术—(Ⅰ)化工过程动态模拟,化工进展,2000,1:76~78
    [62] 陈晓春,马桂荣.动态模拟技术与化学工程,现代化工,2002,22(3):14~17
    [63] 尹敬东.专家系统在化工中的应用展望,云南化工,1993,3:53~55
    [64] Linnhoff B, Townsend D W, Boland B, et al. A User Guide on Proess Integration for the Efficient Use of Energy [M]. Rugby: The Institution of Chemical Engineers, 1982. 1. [5] Linnhoff March Corp. Introduction to Pinch by Linnhoff March [EB/OL].
    [65] Linnhoff March Corp. Introduction to Pinch by Linnhoff March [EB/OL]. http://www.Linnhoffmarch.com/pdfs/pinchintro.pdf, 2003-10-24.
    [66] Matijasevia L, Otmaeia H. Energy Recovery by Pinch Technology [J]. Appl. Therm. Eng., 2002, 22: 477-484.
    [67] Linnhoff March Corp. The Methodology and Benefits of Total Site Pinch Analysis [EB/OL]. http://www.linnhoffmarch.com/pdfs/Total-SliteMethodology.pdf, 2003-10-24.
    [68] 冯霄.过程系统节能夹点技术介绍[J].油田节能,2000,(3):1~6
    [69] Hallale N. Burning Bright Trends in Process Integration [J]. Chem. Eng. Progr., 2001, (7): 30~41
    [70] Tekes. Competitiveness with New Planning and Optimisation Methods [EB/OL]. http://akseli.tekes.fi/Resource.Phx/bike/pi/en/publications.htx.Doc.doc.O.ppt, 2003-10-24.
    [71] Fraga E, Perries T. Whole Process Synthesis and Integration: Scope & Vision [EB/OL]. http://cape-alliance.ucl.org.uk/CAPE_Applications_etc/Initiatives_and_Networks/A bout_CAPENET/Key_Research_Areas/WPSI_Main_Directory/WPSI_Scope_and_Vision.pdf, 2003-10-24.
    [72] Smith R State of the Art in Process Integration [J]. Appl. Therm. Eng., 2000, 20: 1337~1345
    [73] Zhu X X, Vaildeewaran L. Recent Research Development of Process Integration inAnalysis and Optimisation of Energy Systems [J]. Appl. Therm. Eng., 2000, 20: 1381-1392
    [74] 杨友麒.可持续发展时代的过程系统集成[J],化工进展,1999,(3):15~19,30.
    [75] 杨友麒,石磊.环境影响最小的化工过程综合[J],化工学报,2001,52(2):95~102.
    [76] S.V.帕坦卡.传热与流体流动的数值计算,科学出版社,1981
    [77] 钟英杰,都晋燕,张雪梅.CFD技术及在现代工业中的应用,浙江工业大学学报,Vol.31,No.3,June 2003
    [78] 尹晔华,王运东,费维扬.计算流体力学(CFD)在化学工程中的应用,石化技术,2000,7(3):166~169
    [79] 姚征,陈康民.CFD通用软件综述,上海理工大学学报,Vol.24 No.2 2002 137~144
    [80] 周雪漪.计算水力学 北京:清华大学出版社,1995
    [81] 陶文铨.数值传热学(第二版)。西安:西安交通大学出版社,2001
    [82] 王福军.计算流体动力学分析 北京:清华大学出版社,2004.9
    [83] J.D.Anderson.Computational Fluid Dynamics:The Basic with Application.McGrawHill,1995,清大学出版社,2002
    [84] 周力行.湍流气粒两相流动利燃烧的理论与数值模拟,科学出版社,北京,1994
    [85] Rollet-Miet P., Laurence D., Ferziger J., LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow, 20(3): 241-254, 1999
    [86] Hinze J. O. Turbulence. McGraw-Hill, New York, 1975
    [87] 黄克智,薛明德,陆明万.张量分析,清华大学出版社,2003
    [88] T. H. Shin, W. W. Liou, A, Shabbir, Z. G. Yang, J, Zhu, A new k-e eddy viscosity model for high Reynolds number turbulenct flows. Comput Fluids. 24(3): 227~238, 1995
    [89] Rodi W. Turbulence Models and Their Application in Hydaulics. 2nd Reviseded. Netherlandds: IAHR, 1984. 9~46
    [90] Rutledge J, Sleicher C A. Int. J. N umer. Mech. Fulids, 1993, 16: 1051~1078
    [91] McLaughlin J B. Int. J. Multiphase Flow, 1994, 20 (Suppl.): 211~232
    [92] 项先忠.旋风流场的大涡模拟与粉尘运动行为,青岛科技大学研究生学位论文,2006年
    [93] Wang Q, Squires Kyle D. Phys. Fluids, 1996, 8: 1207~1223
    [94] Utijttewaal W S J, Oliemans R V A. Phys. Fluids, 1996, 8: 2590~2604
    [95] Dust F, Milojevic D, Schonung B. Appl. Math. Modelling, 1984, 8(April): 101~115
    [96] Liu Dayou. Fluid Dynamics of Two - phase Systems. Beijing: Higher Education Press, 1993
    [97] Gidaspow D. Multiphase Flow and Fluidization- Continuum and Kinetic Theiry Descriptions. New York: Academic Press, 1994
    [98] 刘明侯,陈义良,易蔚卿.颗粒轨道模型对粉煤湍流燃烧计算结果影响的研究,燃烧科学与技术,Vol.5 No.114-20,1999
    [99] 罗培成,程易等.液-液快速混合设备研究进展,化工进展,2005,No.12 Vol 24,1319~1326
    [100] Jones SC. Static mixers for water treatment [D]. Georgia instituteof technology, 1999. 11
    [101] 郑四仙.静态混合器简介及选用[J],化工生产与技术,2000,7(2):33235.
    [102] Hinze J O. Turbulence. New York: McGraw - Hill Book Company, 1975
    [103] 刘永兵,陈纪忠,阳永荣.管道内固液浆液输送的数值模拟,浙江大学学报,Vol.40 No.5 May 2006 858~863
    [104] 陆慧林,刘文铁,赵广播等.管内稠密气固两相流数字模拟计算:颗粒动力学方法[J].,化工学报,2000,51:31~38
    [105] 沈荣春,束忠明,黄发瑞等.气升式环流反应器内气液两相流动计算流体力学的模拟 华东理工大学学报(自然科学版)Vol.32 No.1 2006-01 7~11
    [106] Fluent Inc., FLUENT User's Guide. Fluent Inc., 2003
    [107] M. Syamlal and T. J. O'Brien. Computer Simulation of Bubbles in a Fluidized Bed. AIChE Symp. Series, 85: 22-31, 1989.
    [108] C. Y. Wen and Y. H. Yu. Mechanics of Fluidization. Chem. Eng. Prog. Symp. Series, 62: 100-111, 1966.
    [109] D. Gidaspow, R. Bezburuah, and J. Ding. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In Fluidization Ⅶ, Proceedings of the 7th Engineering Foundation Conference on Fluidization, pages 75-82, 1992.
    [110] S. Ergun. Fluid Flow through Packed Columns. Chem. Eng. Prog., 48(2): 89{94, 1952.
    [111] 魏志军.某旋风式燃气精过滤器内流场研究〔D].北京:北京理工大学,2000,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700