用户名: 密码: 验证码:
基于数值模拟的规则梁桥墩柱的地震易损性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁是交通生命线系统中的重要枢纽结构。以易损性曲线为表达形式的地震易损性分析,作为风险评估的一条有效途径,越来越受到各国学者的关注。这些研究在一定程度上揭示了公路桥梁的破坏概率与地面运动参数之间的关系。在这样一种背景下,本文结合我国桥梁结构的特点,从构件的角度,系统地对规则梁式桥中最易损伤的部位墩柱的易损性进行了研究。综合起来,本文主要做了以下几部分的工作:
     1)在查阅大量国内外文献的基础上,对基于性能的抗震设计思想、地震易损性分析的发展和研究现状进行了系统的回顾和总结。
     2)对地震易损性分析中的两个重要指标:地震动强度指标和损伤指标的确定进行了探讨,确定以峰值地面加速度PGA作为地震动强度,并在参考文献的基础上,确定了桥墩在不同破坏形式下的损伤指标的计算方法。
     3)以规则连续梁桥为研究主体,对该类桥中在地震荷载作用下最易损伤的构件墩柱在纵向输入下的易损性进行研究,提出了基于数值模拟的一种建立地震易损性曲线的分析方法,给出了表示为地震加速度峰值PGA,假定为对数正态分布函数的地震易损性曲线。
     4)针对纵向地震激励下简化后的单墩体系,通过大量的参数分析,研究墩高、箍筋体积配箍率的变化以及支座形式的变化对易损性曲线的影响。
     5)对规则连续梁桥墩柱在横桥向的地震易损性进行研究。探讨在桥墩截面面积保持不变的情况下,单柱墩变为双柱墩后,两者之间易损性曲线的差异。同时,探讨横向输入下墩柱高度、截面尺寸以及墩柱间距变化对易损性曲线的影响。
     最后,关于进一步工作的方向进行了简要的讨论。
Bridges are the most seismically vulnerable structures in a highway system. While performing a seismic risk analysis, fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. According to bridge characteristics in China, this paper gives a systematic study on the fragility analysis of pier which is the most vulnerable member in a normal beam bridge based on numerical simulation. The main contents are as follows:
    · Such aspects of research are reviewed as performance-based seismic design philosophy and seismic vulnerability analysis, based on the comprehensive reading and understanding of related literature home and abroad.
    · The determination of strong motion parameter and damage index is studied. Peak ground acceleration (PGA) is chosen as strong motion parameter, and the calculation methods of pier's damage index under different failure modes are decided based on the references.
    · A comprehensive analytical study is conducted to assess the seismic vulnerability of normal beam bridge piers in the longitudinal direction under earthquake loads. An analytical approach is adopted to develop the fragility curves for piers based on numerical simulation. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of peak ground acceleration (PGA).
    · The fragility analysis is systematically studied for the simplified single pier system in the longitudinal earthquake excitation. Through a lot of parameter analysis, such as height of pier, transverse reinforcement ratio per unit volume and different kinds of bearing, the influences to the fragility curves are studied.
    · With the same approach in the longitudinal direction, the vulnerability analysis of piers in the transverse direction is studied. Based on the pier sections with the same areas, single pier is changed into two piers, and the difference between these two fragility curves is studied. At the same time, the influence of the pier height, section size as well as space between two piers to the fragility curves is researched.
    In the finality, the problems requiring further studies are discussed.
引文
[1] California Office of Emergency Services, Vision 2000: Performance Based Seismic Engineering of Buildings, Prepared by Structural Engineers Association of California, Sacramento, CA, 1995
    [2] 谢礼立,张晓志,周雍年.论工程抗震设防标准,地震工程与工程振动,Vol.16,No.1.1996,1-18
    [3] Moehle, J.P., Displacement-based design of RC Structures subjected to earthquake, Earthquake Spectra, Vol.8., No.3, 1992, 403-428
    [4] Kowalsky, M.J., Priestley, M.J.N. and Macrae, G.A., Displacement-based design of RC bridge column in seismic regions, Earthquake Engineering and Structrual Dynamics, Vol.24, 1995, 1623-1643
    [5] Kowalsky, M.J., Deformation limit states for circular reinforced concrete bridge columns, Journal of Structural Engineering ASCE, Vol. 126, No.8, 2000, 869-878
    [6] Park, Y.J. and Ang, A.H.-S., Mechanistic seismic damage model for reinforced concrete, Journal of Structural Engineering ASCE, Vol. 111, No.4, 1985, 722-739
    [7] Ang, A.H.-S., Kim, W.J. and Kim, S.B., Damage estimation of existing bridge structures, Structural Engineering in Natural Hazards Mitigation: Proceeding of ASCE Structrues Congress, 1993, Irvine CA, Vol.2, 1137-1142
    [8] 欧进萍等.钢筋混凝土结构基于地震损伤性能的设计.地震工程与工程振动,Vol.19,No.1,1999,21-30
    [9] 弓俊青,朱晞.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法.中国公路学报,Vol.14,No.4.,2001,42-46
    [10] Chopra, A.K. and Goel, R.K., Direct displacement-based design: use of inelastic vs. elastic design spectra, Earthquake Spectra, Vol. 17,No. 1,2001,47-64
    [11] Cornell, C.A. & Krawinkler, H. (2000). Progress and Challenges in Seismic Performance Assessment, http: //peer.berkeley.edu/news/2000spring/performance/html.febwetg4wt4.
    [12] 李鸿晶,冯启民,王中生.平面框架结构地震易损性的简化分析方法.地震工程与工程振动,1997,17(4):18-25.
    [13] 常业军,吴明友.建筑物结构易损性分析及抗震性能比较.山西地震,2001(1):23-25,29.
    [14] 张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析.地震工程与工程振动,2002,22(1):49-55.
    [15] 尹之潜,赵直,杨淑文.建筑物易损性和地震损失与地震加速度谱值的关系(上).地震工程与工程振动,2003,23(4):195-200.
    [16] 孙振凯,邹其嘉.公路桥梁地震易损性和震后恢复过程.华南地震,1999,19(2):62-70.
    [17] H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报,2004,37(6):47-51.
    [18] 徐龙军,章倩.铁路桥梁地震震害预测.山东建筑工程学院学报,2003,18(1):27-31.
    [19] 张海燕.基于位移的概率地震需求分析与结构抗震设计研究:[博士学位论文].湖南长沙,湖南大学土木工程学院,2005
    [20] Kiremidjian A. S. and Bosoz, N. (1997). Evaluation of bridge damage data from recent earthquakes. NCEER Bulletin 11 (2): 1-7.
    [21] Basoz, Nesrin, and Kiremidjian, Anne S. (1997). Risk assessment of bridges and highway systems from the Northridge earthquake. Proceedings of the National Seismic Conference on Bridges and Highways: "Progress in Research and Practice". Sacramento, California: 65-79.
    [22] Mander, J.B., and Basoz, N. (1999). Seismic fragility curve theory for highway bridges. Proceedings of the 5~(th) U.S. Conference on Lifeline Earthquake Engineering. Reston, Virginia: 31-40.
    [23] Singhal, A., and Kiremidjian, A. (1998). Bayesian updating of fragilities with application to RC frames. Journal of Structural Engineering, ASCE, 124(8): 922-929.
    [24] Shinozuka M., Feng, M.Q., Lee, J., and Naganuma, T. (2000a). Statistical Analysis of Fragility Curves. Journal of Engineering Mechanics, ASCE, Vol. 126, No.12, December, 2000, p1224-1231.
    [25] Yamazaki, F., Motomura, H., and Hamada, T. (2000). Damage assessment of expressway networks in Japan based on seismic monitoring. Proceeding of the 12~(th) World Conference on Earthquake Engineering. Upper Hurt, New Zealand, Paper No.0551.
    [26] Fukushima.S., Kai,Y., and Yashiro,K.(1996). Study on the fragility of system -part I: structure with brittle elements in its stories. Proceedings of the 11~(th) World Conference on Earthquake Engineering. Pergamon, EIsever science ltd., Oxford, United Kingdom,1,Paper No.333.
    [27] Kai,Y.,and Fukushima, S.(1996). Study on the fragility of system—part 2: system with ductile elements in its stories. Proceedings of the 11~(th) World Conference on Earthquake Engineering. Pergamon, Elsever Science Ltd., Oxford ,Uk,1,Paper No.334
    [28] Shinozuka M., Feng, M.Q., Kim, H., and Kim, S. (2000b). Nonlinear Static Procedure for Fragility Curve Development. Journal of Engineering Mechanics, Vol.126,No.l2, ASCE,December,2000,P1287-1295.
    [29] Karim, K.R., and Yamazaki, F. (2001). Effect of earthquake ground motions on fragility curves of Highway Bridge piers based on numerical simulation. Earthquake Engineering and Structural Dynamics. 30(12):1839-1856.
    [30] Karim KR and Yamazaki F. A simplified method of constructing fragility curves for highway bridges. Earthquake Engineering and Structural Dynamics.2003; 32:1603-1626.
    [31] Hwang, H.H.M., and Huo, J-R.(1998). Probabilistic Seismic Damage Assessment of Highway Bridges. The 6~(th) U.S. National Conference on Earthquake Engineering, Seattle, Washington, June, 1998.
    [32] Gardoni P., Der Kiureghian A., Mosalam K. M. (2002). Probabilistic Capacity Models and Fragility Estimates for RC Columns Based on Experimental Observations. Journal of Engineering Mechanics, ASCE, accepted for publication.
    [33] Gardoni P. Probabilistic models and fragility estimates for bridge components and systems. Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley. 2002.
    
    [34] Choi E. Seismic analysis and retrofit of mid-America bridges. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Georgia Institute of Technology, 2002.
    
    [35] Choi E., DesRoches R., Nielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures 26(2004): 187-199.
    [36] Desroches R., Choi E., T.Leon R., and A.Pferifer T.. Seismic response of multiple span steel bridges in central and southeastern United States. Ⅱ: retrofitted. Journal of Bridge Engineering, Vol.9, No.5, September 1, 2004.
    [37] Kim S.H. Fragility analysis of bridges under ground motion with spatial variation. PH.D. Dissertation, Department of Civil Engineering, University of California, Irvine, 2002.
    [38] Kim S.H. and Feng M.Q. Fragility analysis of bridges under ground motion with spatial variation. International Journal Of Non-Linear Mechanics 38(2003): 705-721.
    [39] Kim S.H., and Shinozuka M. Development of fragility curves of bridges retrofitted by column jacketing. Probabilistic Engineering Mechanics 19 (2004): 105-112.
    [40] Basoz, N. I, Kiremidjian, A. S., Kring, S.A., and Law, K.H. (1999). Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake. Earthquake Spectra, EERI, Vol. 15, No.1, February, 1999, P25-53.
    [41] 王亚勇,刘小弟,陈民宪.建筑结构时程分析法输入地震波的研究.建筑结构学报,1991,Vol.12(2):51-60
    [42] 宋雅桐,朱继澄.满足规范设计谱的人造地震波及若干结构反应.建筑结构学报,1983,4(3):43-54
    [43] 陈水祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波.建筑结构学报,1981,4(1):34-43
    [44] 江近仁,洪峰.功率谱与反应谱的转换和人工地震波.地震工程与工程振动,1984,4(3):1-11
    [45] 李建华,李杰.考虑反应谱变异特性的人工合成地震波.同济大学学报,2002,30(9):1038-1043
    [46] 王京哲,朱睎.近场地震速度脉冲下的反应谱加速度敏感区.中国铁道科学,2003,24(6):27-30
    [47] 王东升,冯启明,瞿桐.近断层地震动作用下钢筋混凝土桥墩的抗震性能.地震工程与工程振动,2003,23(1):95-102
    [48] Improved Seismic Design Criteria, Visionl.1. Sacramento, California: California Department of Transportation (CALTRANS), Division of Structures, 1999
    [49] 范立础,卓卫东.桥梁延性抗震设计,人民交通出版社,1999.
    [50] Stone, W.C., and Taylor, A.W.(1993). Seismic performance of circular bridge columns designed in accordance with AASHTO/CALTRANS standards. Rep.BSS-170, National Institute of Standards and Technology, Gaithersburg, Md.
    [51] Hwang, H.H.M., Jernigan, J.B. and Lin, Y.W. (2000a). Evaluation of Seismic Damage to Memphis Bridges and Highway Systems. Journal of Bridge Engineering, Vol.5, No.4, ASCE, November, 2000, P322-330.
    [52] Yael D.Hose, Frieder Seible. Performance Evaluation Database for Concrete Bridge Components and Systems under Simulated Seismic Loads. Pacific Earthquake Engineering Research Center, PEER Report 1999/11.
    [53] Priestley M.J.N., Brief Comments on Elastic Flexibility of Reinforced Concrete Frames and Significance to Seismic Design, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol.31, No.4, 1998, p246-259
    [54] Caltrans, Seismic Design Criteria, Version 1.2, Sacramento, California: California Department of Transportation (CALTRANS), December 2001.
    [55] M.J.N.普瑞斯特雷,F.塞勃勒等著,袁万城等译.桥梁抗震设计与加固,人民交通出版 社,1997.
    [56] Seismic Retrofitting Manual for Highway Bridges (1995). Publication No.FHWA-RD-94-052, Office of Engineering and Highway Operations R&D, Federal Highway Administration, McLean, VA.
    [57] 杜晓雷,桥梁抗震设计性能指标合理取值的研究,同济大学硕士学位论文,2004,3
    [58] 叶爱君,桥梁抗震,人民交通出版社,2002.
    [59] OpenSees Command Language Manual, Pacific Earthquake Engineering Research Center, University of California, Berkeley, OpenSees version 1.6.0. 2005.
    [60] 聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析,工程力学,Vol.21 No.3:15-20
    [61] Mari, Scordies. Nonlinear geometric material and time department analysis of three dimension reinforced and prestressed concrete frames. Department of Civil Engineering, University of California, Berkeley, SEMS Report 82-12.
    [62] Mahasuveradcha. Inelastic analysis of piping and tubular structures. Earthquake Engineering Research center University of Califomia Berkeley. EERC report 82-27, 1982.
    [63] Mander J B, Priestly M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineer, ASCE, 1988, 114(8): 1806~1826.
    [64] 范立础,李建中,王君杰.高架桥梁抗震设计,人民交通出版社,2001.
    [65] Dimitrios Vamvatsikos C, Allin Cornell. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 491~514.
    [66] 范立础,王志强.桥梁减隔震设计,人民交通出版社,2001.
    [67] 范立础.桥梁抗震,同济大学出版社,1996.
    [68] 郭磊,桥梁结构基于位移的抗震设计方法研究,同济大学博士学位论文,2006.
    [69] 公路工程抗震设计规范(JTJ004-89),中华人民共和国交通部,1990.
    [70] H. Hwang, J.B.Liu & Y.H.Chiu, Seismic Fragility Analysis of Highway Bridges, Mid-Ameirica Earthquake Center Technical Report, MAEC-RR-4 Project, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700