用户名: 密码: 验证码:
钢筋混凝土桥直接基于位移抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的设计方法相比,基于性能的设计方法在理论和实践上的考虑都更为科学合理。性能设计的重要参数很多,不仅限于结构构件的强度,还包括地震、风反应中的位移、耗能能力等。直接基于位移的设计概念清晰,研究深入,因而得到了很大的关注。本文在已有的研究基础上,应用直接基于位移的设计思想,改进了钢筋混凝土连续梁桥目标位移的确定方法,并给出了相应的设计流程,最终给出了结构有限元分析结果作为比较。本文的结构如下:
     第一章为绪论。介绍了各国地震工程抗震设计的发展情况,中国抗震规范的变化;传统设计方法的基本思想、采用的原则和设计过程以及局限性;简要地介绍了直接基于位移的抗震设计方法的基本思想、采用的原则和设计过程,与传统设计方法的不同,进而引出本文的研究方向和研究内容。
     第二章主要针对钢筋混凝土连续梁桥目标位移的确定,提出了一种考虑材料应变、截面曲率、桥梁结构体系以及桥体结构构件连接方式的改进方法。主要介绍了采用的材料本构关系,材料应变与截面曲率的关系,塑性铰模型以及推导求解目标位移的方程。包括不同条件下纵桥向目标位移的求解方程,以及求解横桥向目标位移的建议方法。
     第三章主要应用第二章的内容,并参考现有的研究成果,对某一钢筋混凝土圆形截面桥墩的连续梁桥进行直接基于位移的纵桥向抗震设计。其中包括纵桥向目标位移的确定;引用延性与阻尼间的关系,构建过阻尼折减后的弹性位移谱,计算替代结构的自振周期;确定替代结构的等效刚度,拟定结构的强度需求,并给出结构构件截面的配筋量。
     第四章主要根据第三章的截面设计建立相应的有限元模型,并进行非线性静力分析以及弹塑性时程分析。通过非线性静力分析,根据控制截面的材料应变,估计了结构的位移能力;通过弹塑性时程分析,得出了给定峰值地面加速度情况下桥体结构的位移响应。检验结果能够满足设计要求。
Compared with classic design method, performance-based design is theoretically and practically appropriate. Not only the strength of structural component but also the capacity of displacement and energy-dissipation of structure under seismic and wind hazard are important parameters of performance-based design. Displacement-based seismic design is paid much attention to with easy concept and wide study. The main points of this dissertation are to present the improved method of assessing the target displacement of RC continuous bridge with circular section, review the procedure of DDBSD design method incorporating the improved method to calculate target displacement, and establish the FEA model to implement the nonlinear static analysis and nonlinear time-history analysis. The layout of the paper is as follows:
     The chapter1is the introduction of the development of seismic design in earthquake engineering around the world and improvement of seismic code in China; The basic concept, the principle in use and the design procedure of the classic design method;The brief basic concept, the principle in use and the design procedure of the DDBSD method, and the difference between the classic and the new. In addition, this chapter illustrates the main research content of dissertation.
     In chapter2A new improved method of assessing the target displacement of the RC continuous bridge is established based on material strain and curvature of the cross section of the pier taking account of the structure system and the relation of components of the structure. The stress-strain relation, strain-curvature relation and plastic hinge model are introduced to construct the target displacement function. Function of longitudinal target displacement of the bridge under different conditions and suggestions of calculating transversal target displacement are given.
     In chapter3, applying the content of chapter2we consider a design example to illustrate the procedure of a given circular section RC bridge of DDBSD method. It involves the determination of the longitudinal target displacement of the RC bridge. According to the relation of ductility and damping, the elastic over-damping displacement spectrum is established to calculate the natural period of substitute structure; Calculate the equivalent stiffness and then the strength demand to decide the desisn of the section.
     In chapter4Construct the FEA model of designed bridge according to the calculation of chapter3to implement nonlinear static analysis and nonlinear time-history analysis. On monitoring the strain of the critical section of piers of the bridge, the displacement capacity of the bridge is evaluated using nonlinear static analysis. With the nonlinear time-history analysis, the displacement response of the bridge structure under different PGA is given. The result can meet the need of the requirement.
引文
[1]李泫鑑,金森博雄,Paul, C.J.国际地震与工程地震学手册[M].美国学术出版社,2002-2003.
    [2]谢毓寿.中国地震历史资料汇编[M].北京:科学出版社,1983.
    [3]GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [4]汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9.
    [5]TJ11-78工业与民用建筑抗震设计规范[S].北京:中国建筑工业出版社,1978.
    [6]GBJ11-89建筑抗震设计规范[S].北京:中国建筑工业出版社,1989.
    [7]GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [8]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析:原理模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [9]ATC-40, Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council (ATC),1996.
    [10]FEMA273, NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA, Washington, D. C.,1996.
    [11]FEMA274, NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA, Washington, D. C.,1996.
    [12]International Code Council, International Building Code[S]. Thomson Delmar Learning,2006,663p.
    [13]Shibata A and Sozen M. Substitute structure method for seismic design in reinforced concrete. Journal of Structural Engineering[J]. ASCE,1976,102(1):1-18.
    [14]Clough, R. W. and J. Penzien. Dynamics of structures [M]. McGraw-Hill Book Company, New York,1975.
    [15]Chopra, A. K.. Dynamics of Structures A Primer[M]. Earthquake Engineering Research Institute, Berkeley, California,1995.
    [16]Priestley, Calvi and Kowalsky. Displacement-based seismic design of structure[M]. Pavia:IUSS PRESS,2007.
    [17]Kowalsky M J. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal of Structural Engineering, ASCE,2000,126(8):869-878.
    [18]Priesfley M J N, Seible F and Calvi G M. Seismic design and retrofit of bridges[M]. New York:John Wiley&Sons,1996.
    [19]Park Y J and Ang A H-S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Enginering, ASCE,1985,111(4):722-739.
    [20]Aug A H—S, Kim W J and Kim S B. Damage estimation of existing bridge structures[C]. Structural Engineering in Natural Hazards Mitigation:Proceedings of ASCE Structures Congress.1993, Irvine CA, Vol.2,1137-1142.
    [21]Hose Y D and Seible F. Performance evaluation database for concrete bridge components and systems under simulated seismic loads[R]. Report No. PEER-1999/11, Pacific Earthquake Engineering Research Center, University of California, Berkeley,1999.
    [22]Mander, J. B., Priestley, M. J. N. and Park, R. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Enginering, ASCE,1988,114(8): 1827-1849.
    [23]Priestley, M.J. N, Seible, F. and Calvi GM., Seismic Design and Retrofit of Bridges[M]. Wiley, New York,1996,686p.
    [24]Priestley M J N and Calvi G M. Direct displacement-based seismic design of bridges[C]. ACI Special Seminar on Seismic Design of Bridges, San Diego,2003.
    [25]柳春光.桥梁结构地震响应与抗震性能分析[M].北京:中国建筑工业出版社,2009.
    [26]李廉锟.结构力学[M].北京:高等教育出版社,2004.
    [27]Alvarez J C. Displacement based design of continuous concrete bridges under transverse seismic excitation[D]. MSc Thesis, Rose School, IUSS, Pavia,2004,99.
    [28]王太川,金宗官.多个集中载荷作用下简支梁的挠曲线.鞍山钢铁学院学报,1991,14(1):36-42.
    [29]Xtract-A computer program for moment-curvature analysis.
    [30]Opensees-A computer program for structural analysis.
    [31]SeismoSoft, SeismoSignal-A computer program for processing earthquake wave.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700