用户名: 密码: 验证码:
大跨度结构多点抗震分析及程序研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于行波效应、非相干性效应以及局部场地效应等空间效应的影响,大跨度结构各地面支承点在地震过程中的地面运动是不同的。不同的支承点运动可使结构产生较大的内力,因此有必要对大跨度桥梁结构进行多点激励地震响应分析。目前,大跨度结构地震响应分析方法主要有:反应谱方法、时程分析方法和功率谱方法。本文对这三种分析方法进行了比较详细的介绍,分析了它们的优缺点和目前存在的问题。在多点功率谱方法(虚拟激励法)研究工作的基础上,重点研究了多点输入反应谱方法和多点输入地震波的生成,并在有限元程序BPEM的基础上进行了程序实现。本文的主要工作包括:
     1)介绍了大跨度结构在多支承激励作用下反应谱分析(MSRS)的数值过程,重点关注了该方法在大型有限元程序中的实现策略。在有限元程序BPEM的基础上,实现了大跨度结构在多支承激励作用下的反应谱分析功能。通过对互功率谱密度函数进行线性插值,探讨了求解互相关系数的积分表达式的简化计算方法。将MSRS法推广应用于沿水平方向传播的这三种类型的地震波(P波、SH波和SV波),推导了相应的计算公式。作为例子,对一两跨简支梁桥进行了多支承激励作用下的反应谱分析。该模型受到峰值地面加速度(PGA)值为0.5g的地震荷载作用,对三种荷载条件下的地震响应进行说明和比较,揭示了多支承激励作用下大跨度结构地震响应的一些特点。
     2)总结了多支承点输入的地震动合成的理论和方法,并且采用工程常用的三角级数方法编写地震动合成程序。在合成过程中,通过互功率谱密度函数考虑地面运动的空间相关性,将互功率谱密度函数矩阵分解成一个下三角阵,从而获得幅值表达式,最终合成具有非平稳性的地震动时程。最后,通过一个实例合成地震动,并且利用生成的地震动进行反应谱拟合来验证地震动的正确性。
     3)针对一个具体大跨度桥梁,在BPEM程序中使用三种方法(即功率谱方法、反应谱方法和时程分析方法)分别进行多点抗震分析,比较这三种方法所计算出来的响应结果,分析不同方法的特点,从而考核了所编制的程序。
It is known that,under realistic conditions,there are differences among supports of long span structures due to variations of the ground motion,including the wave passage, incoherence and local effects.The differences in the support motions can significantly influence the internal forces generated in the structure.It is necessary to investigate seismic responses of long-span structures subjected to multi-support excitations.Presently,a seismic analysis can be performed either by the response spectrum method,the time history method or by the power spectrum method.This paper introduces these three methods in detail and discusses their advantages and disadvantages.Based on the power spectrum method of multi-support excitation(Pseudo Excitation Method),the multi-support response spectrum method and the multi-point ground motion time histories are investigated especially,and the finite element based program BPEM is developed.This paper is mainly includes three aspects as following:
     1) A numerical procedure is described for the response spectrum analysis of long-span structures subjected to multi-support excitations,attention is devoted to the programming strategy of this algorithm.Based on a finite element program BPEM,it has been implemented to make response spectrum analysis of long-span structures under multi-support excitations. Additionally,a simplified method is developed to obtain the cross correlation coefficients by line interpolating of the cross power spectral densities.The MSRS method is extended to deal with three different types of earthquake wave propagating along horizontal direction(i.e.,P wave,SH wave and SV wave),the corresponding formula are also developed.An example of an application is shown regarding the seismic responses of a FE model of a two-span beam for multi-supported excitations.The model is subjected to an extreme multiple-support seismic loading having a PGA equal to 0.5g.The seismic behavior in the three loading situations is illustrated and compared,showing some facets,especially in terms of multi-support excitations for long-span structures.
     2) The multi-points ground motion simulation method is introduced and a corresponding program is developed using the common trigonometric series method to synthesis seismic waves.The cross power spectral density function is used for consider the spatially varying ground motions.The cross power spectral density matrix is a Hermitian matrix,which can be decomposed into the product of a lower triangular matrix and a upper triangular matrix,so the amplitudes can be expressed by lower triangular matrix,and non-stationary time history is synthesized.Finally,an example is verified to fit a standard response spectrum by generating the acceleration time histories.
     3) Multi-support excitation seismic response analysis of a long-span bridge is fulfilled by all the three methods(the power spectrum method,response spectrum and time history analysis method) in the program BPEM.The results are compared as well as the program is verified.
引文
[1]胡聿贤.地震工程学[M].北京.地震出版社,2006.
    [2]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用[M].科学出版社,2004.
    [3]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析现状[J].同济大学学报,2001,29(6):1213-1219.
    [4]Der Kiureghian A,Neuenhofer A.Response spectrum method for multi-support seismic excitations [J].Earthquake Eng And Struct Dyn 1992,21:713-740.
    [5]E H Zavoni,E H Vanmarcke,Seismic Random Vibration Analysis of Multi-supported Structural Systems[J].ASCE J.of Engineering Meehnalcs.1994,vol.120:1107-1128.
    [6]Lee M,Penzien J,Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations[J].Earthquake Engineering and Structural Dynamics.1983,11:91-110.
    [7]Lin Y K,Zhang R,Yong Y.Multiply supported pipeline under seismic wave excitations [J].Journal of Engineering Mechanics.1990,116:1094-1108.
    [8]Perotti Federieo.Structural response to non-stationary multiple-support random excitation[J].Earthqua-ke Engineering & Structural Dynamics,1990,19:513-527.
    [9]Carassal L,Tubino F,Solari G,Seismic Response of Multi-supported Structures by Proper Othogonal Decomposition[R].In:Proceeding international Conference on Advances in Structural Dynamics (ASD2000),HongKong:Elsevier Science Ltd,2000,827-834.
    [10]R Betti,Abdel-Ghaffar A M,Niazy A S,Kinematic soil-structure interaction for long-span cable-supported bridges[J].Earthquake Engineering & Structural Dynamics,1993,22:415-430.
    [11]Dumanoglu A A,Severn R T Stochastic response of suspnesion bridges to earthquake of forces[J].Earthquake Engineering and Structural Dynamics,1990,19:133-152.
    [12]胡聿贤,周锡元,弹性体系在平稳和平稳化地面运动下的反应[M].中国科学院土木建筑研究所地震工程研究报告集(第1集).北京:科学出版社,1962:33-50.
    [13]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动,1994,14(1).
    [14]欧进萍,王光远.结构随机振动[M].高等教育出版社,1998.5.
    [15]林家浩,张亚辉随机振动的虚拟激励法[M].科学出版社,2004.
    [16]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-93.
    [17]林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,2000,21:(1):29-36.
    [18]李建俊,林家浩,张文首,等.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-451.
    [19]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].力学学报 1995,27(5):567-576.
    [20]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [21]Yamamura N,Hiro shi Tanaka.Response Analysis of Flexible MDF Systems for Multiple Support Seismic Excitation.EESD.1990,19:345-357.
    [22]Berrah M,Kausel E.Response Spectrum Analysis of Structure Subjected to Spatially Varying Motions [J].Earthquake Eng.Srtuet.Dyn.1992,21:461-470.
    [23]王淑波.大型桥梁抗震反应谱分析理论与应用研究:[D].上海:同济大学,1997.
    [24]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报,2005,38(3):17-22.
    [25]叶继红,孙建梅 多点激励反应谱法的理论研究[J].应用力学学报2007 21(3):47-51.
    [26]赵东升 时程分析方法的几点思考 长春工程学院学报 2006 17(1):22-24.
    [27]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993,(1):30-36.
    [28]Ghaffar A Mubin Ⅱ.Suspension Bridge Response to Multiple Support Excitations[J].ASCE Journal of Engineering Mechanics,1982,108:419-434.
    [29]Nazmy A S,Abdel-Ghaffar A M.Non-Linear Earthquake Response Analysis of Long-Span Cable-Satyde Bridges:Theory[y].Earthquake Engineering&Structural Dynamics,1990,19:45-62
    [30]梁嘉庆.大跨空间结构在非一致输入下的弹性响应分析[D].硕士学位论文,南京:东南大学土木工程学院,2004.
    [31]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].人民交通出版,2001.
    [32]陈幼平,周宏业.斜拉桥地震破坏的计算研究[J].地震工程与工程振动,1995,15(1):61-68.
    [33]项海帆.斜拉桥在行波作用下的地震反应[J].同济大学学报,1983(2):1-9.
    [34]Abdel-Ghaffar A M,Rubin Ⅱ.Suspension Bridge Response to Multiple Support Excitations[J].ASCE Journal of Engineering Mechanics,1982,108:419-434
    [35]Nazmy A S,Abdel-Ghaffar A M.Effects of Ground Motion Spatial Variability on the Response of the Cable-Stsyde Bridges[J],Earthquake Eng.Struct.Dyn.1992,21:1-20
    [36]刘吉柱.大跨度拱桥地震反应的行波效应分析[D].上海:同济大学桥梁工程系,1987.
    [37]王前信,伍国朋,李云林.拱式结构对地震多点输入的反应.地震工程与工程振动,1984,4(2):48-81.
    [38]Houser G W.Characteristic of Strong motion earthquakes.Bull.Seism.Soc.Am,1947,37:17-31.
    [39]Kanai K.An Empirical Formula for the spectrum of strong Earthquake Motions[R].Bull.Earthquake Res.Int,Univ.Tokyo,1961,39(1):85-95.
    [40]欧进萍,牛获涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动,1991,11(3):45-53.
    [41]Ruiz P,Penzien J.Probabilistic study of the behavior of structures during earthquakes[R],Earthquake Eng.C,UCB,CA,Report No.EERC 69-03,1969.
    [42]杜修力,陈厚群。地震动随机模拟及其参数确定性方法[J]。地震工程与工程振动,1994,14(4):1-5.
    [43]杜修力。水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J]。地震工程与工程振动,1998,18(4):46-81.
    [44]Kaul M K.Stochastic Characterization of Earthquakes Through Their Response Spectrum[J].Earthquake Engineering &Structural Dynamics,1978,6(5):497-509.
    [45]J.T.Christian.Generating seismic design power spectral density.earthquake spectra.1989,5:351-368.
    [46]张亚辉,林家浩,陈艳等。桥梁抗震随机响应分析及输入功率谱研究[J]。大连理工大学学报,2007,47(6):786-792.
    [47]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time,[J].Eng.Mech.ASCE,1986,112(2):154-175.
    [48]Vanmarcke E H,Fenton G A.Conditioned simulation of local fields of earthquake ground motion[J]Structural Safety,1991,10:247-264.
    [49]Loh C H.Spatial variability of seismic waves and its engineering application[J],Structural Safety,1991,10:95-111.
    [50]Loh C H,Yeh Y T.Spatial variation and stochastic modeling of seismic differential ground movement[J],Earthquake Eng.Struct.Dyn.,1988,16(5):583-596.
    [51]Oliveira C S,Hao H,Penjien J.Ground motion modeling for multiple-input structural analysis[J],Structural Safety,1991,10:79-93.
    [52]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(2):1-8.
    [53]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [54]Der Kiureghian A,Keshishian P,Hakobion A.Multiple support response spectrum analysis of bridges including the site-response effect & the msrs code[R]UCB/EERC-97/02.Berkeley:Earthquake Engineering Research Center University of California February,1997.
    [55]Kiureghian A D,Neuenhofer A.A response spectrum method for multi-support seismic excitations[R].UCB/EERC291/08.Berkeley:Earthquake Engineering Research Center University of California 1991:66.
    [56]R.W.Clough and J.Penzien.Dynamics of structures McGraw-Hill,New York 1975.
    [57]Nakamura,Y.,A.Der Kiureghian,and D.Liu(1993).Multiple-suppport response spectrum analysis of the golden gate bridge[R].No.UCB/EERC-93/05,Earthquake Engineering Research Center,University of California,Berkeley,CA,May.
    [58]张亚辉 结构动力学基础[M]大连理工大学出版社 2007.
    [59]建筑抗震设计规范(GB50011--2001).中国建筑工业出版社,2002.
    [60]张翠然,陈厚群.工程地震动模拟研究综述[J].世界地震工程,2008,Vol.24 No.2:150-157.
    [61]宋雅桐.人造地震波的研究[J].南京工学院院报,1980,No.2:80-88.
    [62]黄朝光,彭大文.人工合成地震波的研究[J].Natural Science,1996.8:82-88.
    [63]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J]地震工程与工程振动,1986,6(2):37-50.
    [64]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,Vol.22 NO.1:32-38.
    [65]杨庆山,姜海鹏,陈英俊.基于相位差谱的时-频非平稳人造地震动的生成[J].地震工程与工程振动,2001,Vol.21 No.3:10-16.
    [66]张瑾.地震动加速度模拟软件的开发与应用[D].北京交通大学,2006.
    [67]梁建文.非平稳地震动过程模拟方法(Ⅰ,Ⅱ)[J].ACTA SEISMOLOGICA SINICA 2005,Vol.27No.2:213-218.
    [68]梁建文,肖迪.平稳随机过程模拟的一个谱表示方法[J].应用概率统计,2005,21(2):375-386.
    [69]李英民,赖明.工程地震动模型化研究综述及展望:概述与地震学模型[J].重庆建筑大学学报,1998,Vol.20 No.2:73-80.
    [70]李英民,赖明.工程地震动模型化研究综述及展望:平稳模型及均匀调制过程[J].重庆建筑大学学报,1998,Vol.20 No.4:111-116.
    [71]李英民,赖明 工程地震动模型化研究综述及展望:其它工程学模型与展望[J].重庆建筑大学学报,1998,Vol.20 No.5:108-113.
    [72]曾珂,牛荻涛.基于时变ARMA序列的随机地震动模型[J].Earthquake Resistant Engineering and RetrofiRing,2005,27(3):81-86..
    [73]蔡宏红.小波分析方法模拟地震动的研究[D].2008
    [74]Hao H,Oliveira CS,and Penzien J(1989) Multiple-station ground motion processing and simulation based on SMART-1 array data[J],Nucl.Eng.Des.111,293-310.
    [75]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动,1998,Vol.18,No.1:8-15.
    [76]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)合成实例[J].地震工程与工程振动,1998,Vol.18,No.2:25-32.
    [77]夏友柏,王年桥,鄢常舒.多点地震动时程人工合成[J].解放军理工大学学报(自然科学版),2002,Vol.3 No.3:50-53.
    [78]刘先明,叶继红,李爱群.空间相关多点地震动合成的简化方法[J].工程抗震,2003,3(1):31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700