用户名: 密码: 验证码:
大气气溶胶汞污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞及其化合物具有很强的生物毒性,汞危害问题已经引起国际环境、卫生界的极大关注。汞主要通过自然和人为排放而进入大气,其中燃煤排放是造成大气环境汞污染的重要因素。我国拥有丰富的煤炭资源,汞的储量也位居世界前列,因而对汞污染的研究更具紧迫性。以往的研究集中关注气态汞的行为,而对与气溶胶相联系的颗粒汞研究还显得非常薄弱,但是在某些情况下,颗粒汞是大气中汞的重要存在形式,而且在汞的区域性环境循环中具有重要的地位,加强颗粒汞的研究是汞污染研究的发展方向之一。
     环境问题的解决需要多学科的参与。应用地球物理和地球化学的原理和方法,可以研究有害元素的富集或亏损规律,预测环境的质量和变化,反映人类活动对地质介质的影响,为污染防治及资源的可持续利用提供对策。运用汞气测量和核物探相结合的物探方法进行颗粒汞的研究具有灵敏度和准确度高、多元素同时测定的特点,利于研究汞与其它污染元素之间的共伴生关系、追踪污染源,研究环境效应。
     本论文是在参加在国家自然科学基金项目“大气气溶胶中汞污染及环境效应”(编号:49974040)的基础上完成的。本文建立并运用环境物探方法,以城市工业区和高汞地球化学异常区等典型环境类型作为研究对象,详细研究其气溶胶汞污染特征,取得如下创新性成果及认识:
     (1)以汞气测量和环境核物探方法为主建立了气溶胶汞污染研究中的环境物探方法,论证了该方法运用于气溶胶汞污染研究的可能性,为该方法的成功运用打下坚实的基础。
     (2)分析了气溶胶富集因子计算中参比物质的选择问题,首次将地球化学基线理论引入到富集因子的计算当中,发展了一种新的富集因子计算方法。以建立的成都地区土壤的汞地球化学基线为基础,重新计算了大气飘尘样品的汞富集因子,使其能够更科学地评价人为活动对气溶胶汞含量所造成的影响。
     (3)应用环境物探方法对西南三省的部分煤炭样品、成都市燃煤电厂的燃煤及其燃烧产物进行了分析,进一步了解了本地区煤炭中有害有毒元素的含量水平,以及煤炭燃烧前后物质的组成变化特征,证实了Se、Sb、As等元素可以作为燃煤污染物的标志性元素,为颗粒汞污染源追踪的研究工作提供了依据。
     (4)对成都市工业区气溶胶汞污染的特征进行了详细的研究,内容包括颗粒汞的季节变化、昼夜变化以及在不同粒度的气溶胶中的分布,并运用因子分析等受体模型,研究了本工业区大气飘尘中汞含量的影响因素。研究表明,本工业区面临着严重的汞污染形势,气溶胶中汞含量远远超过颗粒汞的自然本底值,也高于国内外其他工业区的污染水平,并已成为本区域大气汞沉降的主要形式之一。气溶胶汞含量与气溶胶的质量浓度密切相关,并受到气象条件的严格制约,冬季污染程度高于夏季。大气飘尘的汞含量水平集中受到燃煤飞灰的控制,要降低大气飘尘中颗粒汞的含量,必须降低煤炭的消耗或者采取除汞技术。
    
     (5)通过贵州务川汞矿区及背景点的气溶胶汞污染研究表明,汞矿区气溶胶汞污染特1
    征与城市工业区明显不同。汞矿的冶炼活动本身产生的气溶胶汞污染的地域分布比较有限,
    但是其排放的气态汞会在气溶胶上产生严重的吸附作用,从而使得矿区气溶胶中的汞异常偏
    高。背景点大坪的气溶胶汞污染特征与矿区的汞污染特征有明显的差别,大坪气溶胶中的汞
    主要来源干风沙扬尘,受到汞矿冶炼和开采活动影响的较小。
As mercury and its compounds have strong biological toxicity, the environmentalists and hygienists have pay more and more attention about the problem of mercury hazards. The situation of mercury pollution is serious throughout the world, especially for the atmospheric mercury pollution caused by the combustion of coal. China has abundant resources of coal and mercury and faced more serious problem of mercury pollution. Former study mainly focus on the Hg? and the study of paniculate mercury is relatively poor and not systematical. But in some cases, particulate mercury is die important form of atmospheric mercury, and plays a notable role in the regional mercury cycle. There is a tendency to strengthen the study of particulate mercury.
    The problem of environmental pollution calls for the multi-disciplinary research. With the principle of geochemistry and geophysics, peoples can understand how the hazard substances transform in the environment, so as to forecast the quality and change of the environment, to show the affects of human activity, and to provide the resolution for the sustainable utility of resources and prevention and cure of pollution. With the joint methods of measurement of mercury vapor and nuclear geophysics, one can do multi-element analysis with high sensitivity and accuracy, which is favorable to study the environmental effects and concomitance of mercury and other pollutants, to trace the pollution sources.
    With the support of project "Mercury Pollution in the Atmospheric Aerosols and its Environmental Effects " granted by National Science Funds of China, the paper development and utilize the methods of the environmental geophysics to study the characteristics of mercury pollution in the atmospheric aerosols of very typical environments including Chengdu industrial area and mercury deposits in Wuchuan of Guizhou province. The main researching results are as follows: (1) Based on die technology of measurement of mercury vapor and environmental nuclear geophysics, the paper established the environmental geophysical method used in the mercury pollution study of atmospheric aerosols, and demonstrate the feasibility of employment of such method, which provide the foundation for the later research.
    (2) The paper discussed the choice of references used in the computation of enrichment factor of aerosols, developed a new method to compute the enrichment factor with the theory of geochemical baseline. Based on the mercury baseline of soil in the Chengdu area, the mercury enrichment factors of suspended matter of Chengdu industrial area are computed again better to show the degree of particulate mercury pollution caused by the human activities.
    
    
    
    (3) With the application of environmental geophysical method, coal samples from Southwest of China, and combustion residue of coal and coal samples from Chengdu power plant are analyzed. It is proved that such elements as Se, Sb and As can be seen as the indicator of combustion pollutants of coal, which offer a better condition for the mercury pollution in the aerosols.
    (4) With the application of environmental geophysical method, the paper studied the characteristics of mercury pollution in the aerosols of Chengdu industrial area, which include both the seasonal, day and night variation of particulate mercury and the distribution of particulate mercury in the different grades of aerosols. Also the factor analysis model is used to determine the main factor affecting the mercury level of atmospheric suspending dust ( radius less than 10 n m). The results show that the industrial area is now facing the serious situation of mercury pollution, and the mercury level of aerosols is much higher than the background level of particulate mercury, and also higher than those of other industrial both inside and outside of the country. Particulate mercury has become one of the main form of atmospheric mercury deposition, which keeps good correlation with the mass level of aerosols and is restricted by the meteorological conditions with higher level in the winte
引文
白浚仁,刘风歧等.1990.煤质分析.北京:煤炭工业出版社
    陈乐恬,刘俊华,佟玉芹等.2000.北京地区大气中汞污染状况的初步调查.环境化学,19(4):358-361
    陈乐恬,佟玉芹.2001.扩散管技术在大气汞分析中的应用.环境科学与技术,24(1):36-38
    陈明,李金春.1999.化探背景与异常识别的问题与对策.地质与勘探,35(2):25-29
    成都市环保局科研所.1994.成都市区大气颗粒物来源贡献解析(科研报告)
    崔九思等主编.1997.大气污染监浏方法.北京:化学工业出版社
    董金泉,杨绍晋.1998.华北清洁地区气溶胶特征及其来源研究.环境化学,17(1):38-44
    方凤满,王启超,李东侠等.2001.长春市TSP与降尘中汞含量及其对地面汞贡献的比较研究.重庆环境科学,23(3):26-28
    方凤满,王启超,李东侠等.2001.长春市大气颗粒汞及其干沉降通量,环境科学,22(2):60-63
    冯新斌,洪斌.1998.两次金汞齐—冷原子吸收光谱测定雨水中不同形态的汞.环境化学,17(4):388-392
    冯新斌,洪业汤,倪建宇等.1998.贵州煤中汞的分布、赋存状态及其对环境的影响,煤田地质与勘探,26(2):12-14
    冯新斌,洪业汤.1996.酸沉降对人类的威胁之一:引起湖泊体系鱼体汞污染.地质地球化学,(5):50~53
    冯新斌.1996.贵州部分地区土壤挥发性汞释放通量及其影响因素.中国科学院贵阳地球化学研究所硕士论文
    顾永祚,叶毓琼,陈敦和等.1989.成都市大气颗粒物研究.四川环境,8(4):6-15
    贵州省人民政府.1994.贵州省农业区划丛书遵义地区卷:务川仡佬族苗族自治县综合农业区划.贵阳:贵州人民出版社
    何锦林、谭红、赵亚民等.1999.贵州梵净山自然保护区大气汞的沉降.环境科学学报,19(2):164-169
    花永丰.1985.万山地区风化环境中汞的行为探讨.地球化学,19(1):1-5
    《环境化学学科动向调研》小组.1996.环境化学发展新动向.环境化学,15(6):481-487
    黄文华,杨起.1999.燃煤过程中有害元素转化机理研究进展.地质科技情报,18(1):25-34
    贾文懿,方方.1999.氡及其子体向上运移的内因与团簇现象.成都理工学院学报,26(2).-171-175
    蒋红梅,王定勇.2001.大气可吸入颗粒物研究进展.环境科学动态,(1):11-15
    蒋自立译.1993.城市土壤重金属含量与大气污染程度的关系.环境科技情报,(2):10-11
    黎彤,倪守斌.1990.地球和地壳的化学元素的丰度.北京:地质出版社:84—85
    李祚泳,丁晶,张欣莉.2000.成都市大气颗粒物源解析的PPR法.环境科学研究,13(5):38-40
    李祚泳,彭荔红.2000.基于遗传算法的大气颗粒物的来源解析.环境科学研究,13(6):19-21
    刘俊华,王文华,彭安.1998.北京市二个主要工业区汞污染及其来源的初步研究.环境科学学报,5(3):331-336
    刘俊华,王文华,彭安.2000.降水中汞及其它源索来源的识别分析.环境科学,21(2):77-80
    刘俊华.北京市汞污染情况初步调查.中科院生态中心博士论文,1996
    刘平.1994.贵州主要汞矿床的微量元素特征.矿床地质.13(3):250-259
    刘应平,杨志荣,肖秀芳等.2001.成都平原土壤中的Hg异常分布特征及环境意义.地、物、化,遥在四川省资源与环境领域的应用——地,物,化,遥21世纪第一次学术研讨会暨纪念中国地质学会80周年论文集:122-125
    
    
    陆晓华,曾汉才,欧阳中华等.1995.燃煤电厂排放细颗粒中痕量元素的分布与富集规律.环境化学,14(6):489-493
    倪建宇,冯新斌,洪业汤.1998.贵州省原煤中微量元素的组成特征.环境化学,17(4):339-344
    彭荔红,李祚泳.2000.应用BP神经网络实现环境监测的优化布点.环境保护,(4):17-19
    任德贻、赵峰华、张军营等.1999.煤中有害微量元素富集的成因类型初探.地学前缘,6(增刊):17-22
    施为光.1995.成都市街道地表物中的重金属.城市环境与城市生态,8(3):25-29
    谭红,何锦林,Oliver Lindqvist等.1997.贵州汞的冶炼与散布.贵州科学,15(2):112-117
    谭红,何锦林,何听涛.1997.用Moss Bag富集研究汞矿附近元素汞的沉降,环境科学,18(6):71-72
    谭红,何锦林,花金兰等.1999.汞矿区大气汞的流通量与汞干湿沉降研究.环境化学,18(1):34-38
    谭红,梁琏.2000.中国贵州大气汞的沉降.贵州科学,18(1):34-42
    唐孝炎.1990.大气环境化学.高等教育出版社
    汪安璞.1994.我国大气污染化学研究进展,环境科学进展.2(3):1-16
    汪云亮,李巨初,周蓉生等,岩浆岩微量元素地球化学原理及其应用—兼论峨眉山玄武岩成因.成都:成都科技大学出版社,1993
    王启超,沈文国,麻壮伟.1999.中国燃煤汞排放量估算.中国环境科学,19(4):318~321
    王制渊,周来东,周其伦等.1994.成都市大气颗粒物来源数学解.生态与环境,18(2):27-32
    卫敬生,郑康乐.1995.单波长原子吸收测汞仪热解法分析固体样品汞量新技术.物探与化探,19(4):301-305
    卫敬生.地球化学测汞方法应用讨论.物探与化探,1998,22(6):21-27
    严钧平.1989.贵州汞矿地质.北京:地质出版社,
    杨永忠.1999.贵州环境异常元素的地球化学研究.贵州地质,(16):66-72
    游云飞.汞法找矿.北京:原子能出版社,1996
    张军营,任德贻,许德伟等.1999.煤中的汞及其对环境的影响.环境科学进展,7(3):100-104
    张乃明.2001.大气沉降对土壤重金属累积的影响.土壤与环境,10(2):91-93
    张志强.1997.国际科学界跨世纪的重大研究主题——国际全球变化研究实施十年进展于现状.地学前缘,4(1):255-260
    章澄昌,周文贤.1995.大气气溶胶教程.北京:气象出版社,
    章晔.1997.核地球物理勘查技术发展概况.物探与化探,21(5):321-330
    赵峰华,任德贻,张均营等.1999.煤中有害有毒元素的研究现状及其对环境保护的意义.煤矿环境保护,12(2):20-23
    赵振华.微量元素地球化学原理.北京:科学出版社,1997.
    中国环境地球物理学会环境地球物理专业委员会.1997.环境与地球物理.北京:地震出版社
    中国科学院地球化学研究所.1998.高等地球化学.北京:科学出版社,16-50
    中国科学院高能物理研究所中子活化分析实验室.1992.中子活化分析在环境学、生物学和地学中的应用,北京:原子能出版社,
    周来东.1994.大气颗粒物来源解析数学模型评述.城乡生态环境,18(2):11-20
    周来东.1995.成都春季大气飘尘目标转换因子分析.四川环境,14(3):12-15
    周蓉生,[俄]Л.А.瓦冈洛夫.1994.核方法原理及应用,地质出版社,
    周蓉生,方方,马英杰等.2001.放射性地球物理方法在地学及环境科学中的应用.“第三届海峡两岸三地及世界华人地质科学研讨会”文集:475-479
    
    
    周蓉生,侯新生,П.А..瓦冈洛夫.1994.核地球物理方法在大气环境中的应用.中国地球物理学会年刊:452-453
    周蓉生,侯新生,方方等.1996.环境地球物理中的放射性方法.《理工科技新进展》,四川科学技术出版社:190-194
    庄国顺、郭敬华,ZHOU Q等.2001.核分析技术在大气环境研究中的重要作用.核技术,24(9):770-775
    Amez M, Gullu G, Olmez I. 1998. Atmospheric mercury in the vapor phase and in the free and coarse particulate matter at Perch River, New York. Atmospheric Environment, 32(5): 865-872
    Bauer I, Bor J. 1995. Lithogen, geonene und anthropogene Schwermetallghalte von Lobboden an den Beispielen von Cu, Zn, Ni, Pb, Hg und Cd. Mainzer Geowiss Mitt, 24:47-70
    Bloxam R. 1994. The CIRAC/AWMA-Os Joint International Conference on Atmospheric Chemistry: Atmospheric pathways for toxic Substances. Toronto, Ontaro
    Carpi A. 1994. Mercury from combustion souces: a review of the chemical species emitted and their transport in the atmosphere. Water, Air and Soil Pollution, 98:241~254
    Chukwuma C S. 1996. Evaluating baseline data for trace elements, pH, organic matter content and density in agriculture soils in Nigeria Water, Air and Soil Pollution, 86(1/4): 13-34
    Devies B E. 1997, Heavy metal contaminated soils in an old industrial area of Wales, Great Britain: source identification through statistical data interpretation. Water, Air and Soil Pollution, 94( 1-2): 85-98
    Downs S G, Macleod C L and Lester J N. 1998. Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water, Air and Soil Pollution, 108(1-2): 149-187
    Ebinghaus R, Jennings S G, Schroeder W H. et al., 1999. International field inter-comparison measurement of atmospheric mercury species at Mace Head, Ireland. Atmospheric Environment, 33(6): 3063-3073
    Fitagerald W F, F. Engstrom D R, Manson R. 1998. The case for atmospheric mercury contamination in remote areas. Environment Science & Technology, 32(1): 1-7
    Fitzgerald W F, Mason R P and Vandal G M, 1991, Atmospheric cycling and water exchange of mercury over mid-continental lacustrine regions, Water Air and Soil Pollution, 56:746-767
    Hall B. 1995. The gas phase oxidation of elemental mercury by ozone. Water ,Air and Sol Pollution, 80:301~315
    Hopke K, Hwang,C S, Kathryn G,Severin P. 1984. A comparison of R- and Q- models in target transformation factor analysis for resolving Environmental data. Atmospheric Environment, 18(2): 345-352
    Hutter K M, Hermberger V R D. 1997. Testing a source rate estimation method by application to a dispersion experiment Atmospheric Environment., 31(20): 3283-3290
    Iverfeldt A. Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water, Air and Soil Pollution, 1991, 56:553-564
    Keeler G J, Glinsen G and Pirrone N, 1995. Particulate mercury in the atmosphere: its significance, transportation and source. Water ,Air and Sol Pollution,, 80:159-168
    Kvietkus M. 1995. The particulate mercuty study with denuder-based sampling equipments. Water, Air and Soft Pollution, 80:173-180
    Lamburg C H, Fitsgerald W F, Vandal G M. 1995. Atmospheric mercury in Northern Wisconsin: sources and species. Water, Air and Soil Pollution, 80(1): 189-198
    Leonhardt J W. 1991. Protection of the environment by application of nuclear technique in energy and mineral
    
    process. Nuclear Technique in the Exploration and Exploration of Energy and Mineral Resources.
    Lepeltier C. 1969. A simplified treatment of geochemical data by graphical representation. Environment Geology, 64: 538-550
    Lindqvist O K, Johansson M, Astrup A, Anderson L, et al., 1991. Mercury in the Swedish environment-recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution, 55:1-261
    Lindqvist O, Jernelov A, Johansson K, et al. 1984. Mercury in the Swedish environment global and local sources, SNV PM 1816, Swidish Environment Protection Board, S-171 85, Solna, Sweden
    Lindqvist O, Jernelov A, Johansson K, et al. 1991. Mercury in Swidish environment: recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution, (55) : 23-32
    Lu J Y and Schroeder W H. 1997. Sampling and determination of particulate mercury in the ambient air: a review. Water ,Air and Sol Pollution. 98:279-295
    Lu J Y, Schroeder W H, Berg T, et al. 1998. A new device for determination of particulate mercury. Analytical Chemistry, 60: 2043-2048
    Lu J Y, Schroeder W H. 1999. Comparison of conventional filtration and a denuder-based methodology for sampling of particulate-phase mercury in ambient air. Talanta, 49: 15-24
    Matsullat J, Ottenstein R, Reimann C, 2000. Geochemical background-can we calculate it ? Environmental Geology, 39(9) : 990-1000
    Meili M. 1991. Fluxes, pool and turnover of mercury in Swedish forest lakes. Water, Air and Soil Pollution, 56: 719-727
    Munthe J. 1993, Report prepared for the workshop on emission and modeling of persistent organic pollutants and heavy metals. Duham, Caolina
    Nenning T. A. 1992. Increase rates of atmospheric mercury: deposition in Mid-continental north America. Science, 257: 7-16
    Niki H, Maker P D, Savage C M. et al., 1983. A long path fourier transform study of kinetics and mechanisms for the HO-radical initiated oxidation of dimethyl mercury. Journal of Physics and Chemistry, 87: 4978-4981
    Nriagu J O and Pacyna J M. 1988. Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature, 333: 134-139
    Olmez L Ames M R, 1997. Atmospheric mercury: how much do we really know? Pure and Applied Chemistry, 69(1) :35-40
    Olmez L Amez M, Gullu G. 1998. Canadian and U. S. Sources impacting the mercury levels in fine atmospheric particulate matter across New York State. Environment Science & Technology, 32: 3048-3054
    Olmez L, Ames M R and Gullu G 1998. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch river, New York. Atmospheric Environment, 32 (5) : 865-872
    Pin-one N and Keeler G J, Dry deposition of trace elements to lake Michigan: A hybrid-receptor deposition modeling approach. Environment Science & Technology. 1995,29(8) : 2112-2122
    Pirrone N, Glinsom G, and Keeler G J. 1995. Ambient levels and dry deposition fluxes of mercury to lake Huron, Erie and St Clair. Water, Air and Soil Pollution., 80:179-188
    Porcella D B, Ramel C and Jernelov A. 1997. Global mercury and the role of gold mining: an overview. Water, Air and Soil Pollution, 97:205-207
    
    
    Porcella D B, Chu P and Allan M A. 1996. Inventory of North America Hg emissions to the atmosphere: relationship to the global cycle. In Regional and Global Mercury Cycles: Sources, Fluxes and Mass Balances, ed. Baeyens W, Ebinghaus R and Vassiliev, O, 17-190. Kluwer Dordrecht, Netherlands
    Reinmann and Filzmoser, 2000. Normal and Lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39(9) : 1001-1014
    Ren D Y, Zhao F H, Wang Y Q. 1999. Distribution of minor and trace elements in Chinese coals. Coal Geology, 45(12) : 2048-2053
    Richmen L A. 1988. Facts and fallacies concerning uptake by fish in acid stressed lakes (review article). Water, Air and Soil Pollution, 37: 465-473
    Salminen R, Gragorauskiene V. 2000. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Applied Geochemistry, 15:647-653
    Salminen R, Tarvainen T, 1997. The problem of defining geochemical baselines: A case study of selected elements and geological materials in Finland Geochemical Exploration, 60(1) : 91-98
    Schroeder W H and Munthe J. 1998. Atmospheric mercury-an overview. Atmospheric Environment, 32(5) : 809-822
    Schroeder, W H and Fanaki F H. 1988a, Field measurements of water-air exchange of mercury in the freshwater systems. Environmental Technology Letters, 9:369-374
    Seigneur C, Wreol J, and Constantinou E, 1994. A chemical kinetic mechanism for atmospheric inorganic mercury., Environmental Science and Technology, 28:1589-1597
    Sheppard D. S. Mercury content of antarctic Iceland-snow: further results. Atmospheric Environment, 1991, 25A, 16578-1600
    Siegel F R. 1995. Environmental Geochemistry in development planning: an example from the Nile delta, Egypt Geochemical Exploration, 55(2) : 265-273
    Swain D J, Goodazzi F. 1995. Environment aspects of trace elements in the coal. Kluwer Academic Pubvlishers
    Volgelsang D. 1995. Environmental Geophysics, Berlin: Springer-Veriag,
    Ward S. H. 1990. Geotechnical and Environmental Geophysics, Vols-III, SEG,
    Xiao Z, Munthe J, Lindqvist O. 1991. Sampling and determination of gaseous a gaseous and particulate mercury in atmosphere using a gold-coated denuders. Water, Air and Sol Pollution, 56:141-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700