用户名: 密码: 验证码:
白鹤滩水电站多层位复杂介质坝基岩体结构特征及岩体质量分级研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白鹤滩水电站层位众多、岩性复杂,建基岩体直接利用层位包含亚层9层、岩性小层50层,主要岩性有:斜斑玄武岩、含斑玄武岩、隐晶玄武岩、微晶玄武岩、柱状节理玄武岩、杏仁玄武岩、含杏仁玄武岩、角砾熔岩、凝灰岩等近11种,介质类型体系复杂。不同岩性岩体在表观块度、纵波波速、力学性质等多个方面出现非常明显的差异,最为明显的是柱状节理玄武岩和角砾熔岩,表观结构与力学属性反差巨大,按现行规范或通用方法划分岩体结构和岩体质量,力学属性最好的柱状节理玄武岩被判定为坝基最差的岩体,而力学性质最差的角砾熔岩却成为坝基最好的岩体,划分结果不能反映岩体真实的工程地质性质。同时,众多的层位、复杂的岩性、不同岩性岩体各方面性质明显的差异,使坝基岩体在岩体结构划分、岩体质量评价及力学参数取值等方面遇到了较大的难题和挑战,对这种多层位、多岩性复杂坝基岩体开展工程地质评价,准确表征表观结构与力学性质反差巨大的岩体真实的工程地质条件,研究在理论和工程实践上均具有重要意义。论文以白鹤滩水电站多层位、多岩性的坝基岩体为研究对象,重点开展复杂坝基岩体岩体结构划分和岩体质量评价的研究,主要取得了以下成果:
     (1)通过分析坝基多层位、复杂岩性、结构体特性与结构面发育程度差异明显的岩体基本特征,在现场大量结构面调查、声波测试、现场及室内试验的基础上,论述分析了当前单一块度指标划分岩体结构的有关问题,以及结构体性质和结构面效应对岩体结构的影响,确定了岩体结构划分的参评因素和主要指标,并针对坝址区岩体岩性多样、结构体性质差异明显、本底波速不同的典型特征,创新性的提出了完整程度划分指标—同质完整性系数和不同结构类型的统一比较指标—标准结构系数,建立了考虑结构体性质和结构面效应的岩体结构划分方案,划分结果能够准确体现表观结构与力学性质反差巨大的岩体真实的工程地质条件。
     (2)对坝基岩体风化、卸荷特征进行了研究,采用波速比、单元面积裂隙总条数和现场判断等定性定量指标对坝基岩体水平和铅直两个方向进行了风化分带,分析了不同岩性岩体的风化特点;利用张开结构面数量和钻孔吕荣值对坝基岩体开展了卸荷带划分。
     (3)现场开展了数量较多的岩体变形试验,重点研究了柱状节理玄武岩变形特征,并综合不同岩性岩体中开展的原位波速同步、应力同向变形试验,获得了相关性良好的岩体纵波波速与模量的关系式。
     (4)统计分析结构体性质、岩体纵波波速、结构面间距、单元面积裂隙条数等岩体特征指标,对特征指标一致或接近的岩体视为有效相近岩体,据此对坝基11种岩性进行综合处理,合并为杏仁玄武岩、隐晶玄武岩、柱状节理玄武岩和角砾熔岩这四个类似岩性层。
     (5)根据坝基岩体的典型特征,确定了岩体质量分级的主要参评因素及量化指标为岩体结构、风化、卸荷、结构体强度、刚度、岩体纵波波速、洞壁地震波纵波波速、变形及强度参数,建立了岩体质量划分方案。
     (6)采用类似岩性层资料共享和联用的方法,根据岩级划分方案对坝基50层小层(岩性层)岩体岩级进行了划分,在此基础上对小层岩体进行并层处理,利用理论公式计算获得了并层后大层(岩流层亚层)岩体的综合模量和综合波速,最终对大层岩体开展了岩级划分。
     (7)论文通过建立的相关关系式对各小层不同岩级的岩体力学参数进行了取值,并根据理论公式对并层后大层岩体不同岩级开展了力学参数取值研究。
     (8)从岩体结构、风化、卸荷、岩体质量等多个方面对坝基岩体工程地质条件进行评价,并按岩体质量分级结果确定了建基面位置。
Baihetan Hydropower Station is featured by multiple stratums and complex lithology, whose construction of foundation rock directly applies stratums containing 9 sub-layers and 50 small layers of lithology. The main lithology include nearly 11 species, such as porphyritic basalt, aphanitic basalt, micro-crystalline basalt, columnar joints basalt, amygdaloidal basalt, amygdaloid-contained basalt, breccia lava, tuff, etc. made up of complex media type systems. Such lithology of rock has presented very distinct differences in respect to the apparent lumpiness, longitudinal wave velocity, mechanical property and other aspects. The most obvious presentations have been involved in columnar-jointed basalt and breccia lava, whose apparent structure and mechanical property have presented huge contrast. According to existing norms or general methods for the classification of rock structure and rock mass, the columnar-jointed basalt with the best mechanical property has been judged to be the worst rock mass for the dam foundation while the breccia lava with the worst mechanical property has become the best rock mass of the dam foundation. Therefore, the classification results haven’t reflected the true geological nature of the engineering. Meanwhile, distinct differences in relation to various aspects, such as multiple stratums, complex lithology, different lithology of different rock mass have created problems and challenges faced by the classification of rock structure of dam foundation, the quality classification of rock mass, the evaluation of mechanical parameters, etc. The present research would provide great significance in both theory and engineering practice for the engineering geological evaluation of this kind of complex dam foundation of multi-stratum and multi-lithology and the accurate characterization of the true engineering geological conditions having great contrast between the apparent structure and mechanical property. Taking the Baihetan Hydropower Station’s dam foundation rock mass featured by multi-stratum and multi-lithology as the objective of study and focusing on the classification of the complex structure and the evaluation of of the dam foundation rock mass, the major results have been achieved as follows:
     (1) By analyzing the basic characteristics of the rock mass featured by multi-stratum, complex lithology, the distinct differences between the textinite characteristics and structural surface developmental extent, based on a large number of onsite structural surface investigations, acoustic measurements as well as field and laboratory tests, related issues on the current classification of rock structure using single lumpiness indicators as well as the textinite nature and structural surface effect impacting the rockmass structure have been discoursed and analyzed. In addition, the factors and key indicators participating in the evaluation of rockmass structure classification have been put forward. Besides, considering the typical characteristics, including the diversity of the rock lithology of dam site, distinct varied structures, different velocity of the background, the integrated extent indicators for classification- identical quality integrality coefficient and the unified indicators for different structural types- normal structure coefficient has been established. and rock mass structure classification schemes based on the consideration of textinite characteristics and structural surface effect have been established, by which the classification result can accurately reflect the true engineering geological conditions of rock featured by huge contrast between the related apparent structure and mechanical property.
     (2) The weathering and unloading features of dam foundation rock have been studied using velocity ratio, the total number of cracks per element area, on-site judging and other qualitative and quantitative indicators to hold weathering zoning of the dam foundation rock mass in horizontal and vertical directions and to analyze the weathering characteristics of different rock lithology. Besides, the volume of open structural surfaces and the Drilling Lu-Rong Value have been used for the unloading classification of the dam foundation rock.
     (3) A large number of onsite rock mass deformation tests have been carried out, focusing on the deformation characteristics of columnar joints basalt. Besides, tests of situ velocity synchronization and homonymous stress deformation on rock mass of different lithology have been integrated to obtain the relationship between the longitudinal wave velocity and the modulus by satisfactory correlation.
     (4) Statistical analysis of textinite characteristics, longitudinal wave velocity , spacing of structural surface, number of structural sruface per element area and other indicators of rock mass characteristics has been conducted, by which those rock mass whose characteristic indicators is identical or similar have been judged as effective similar rockmass. According to the said status, 11 kinds of rockmass of the dam foundation have been comprehensively treated into four similar lithologic layers of amygdaloidal basalt, aphanitic basalt, columnar joints basalt and breccia lava.
     (5) According to the typical characteristics of dam foundation rock mass, it has determined that the main factors participating and quantitative indicators in the rock quality classification should be include rock mass structure, weathering, unloading, structural strength, stiffness and longitudinal wave velocity, longitudinal wave velocity of seismic wave, deformation and strength parameters. The rock quality classification schemes have been established as well.
     (6) Methods of sharing and jointly using of information about similar lithologic layers have been applied, according to rock quality classification schemes, the quality of 50 small layers (lithologic layers) of the dam foundation have been classified based on which small layers of rock mass have received a layer-joining treatment. Using the theoretical formula to obtain the comprehensive modulus and integrated velocity of the large layer (sub-layers of rock) after the layer-joining treatment, the large layer of rock has been finally treated with a rock-level classification.
     (7) The present thesis has established related relationships to take the values of mechanical parameters of rock mass in respect to various small layers of each level and theoretical formula has been used to study the value-taking of mechanical parameters of large layers in different levels after the layer-joining treatment.
     (8) Evaluation of rock mass of dam foundation in relation to structure, weathering, unloading, rock quality and other aspects of engineering geological conditions has been carried out and rock quality classification has been held for the identification of the basic construction surface location according to the classification results of rock mass.
引文
[1]中国水力发电工程[M].中国电力出版社,2000.
    [2]李淑华,王继业.中国水电发展概况[J].水电站机电技术.2009.32(3):105-107.
    [3]潘家铮,何璟.中国大坝50年[M].中国水利水电出版社,2000.
    [4]中国电力企业联合会.水力发电工程地质勘察规范(GB50287-2006)[S].北京:中国计划出版社,2006.
    [5]中华人民共和国水利部.混凝土拱坝设计规范SL282-2003[S].北京:中国水电出版社,2003.
    [6]国家电力公司华东勘测设计研究院.混凝土重力坝设计规范DL5108-1999[S].北京:开明出版社,2000.
    [7]王思敬,黄鼎成.中国工程地质世纪成就[M].北京.地质出版社.2004.
    [8]谷德振.岩体工程地质力学基础[M].北京.科学出版社,1979.
    [9]孙广忠.岩体结构力学[M].北京.科学出版社,1988.
    [10]孙广忠.论―岩体结构控制论‖[J].工程地质学报.1993年创刊号:14~18.
    [11]王清玉.应用弹性波法对岩体结构分类及有关问题解析[J].四川水力发电.1994(1):49~54.
    [12]周小平,邓梦等.声发射凯塞效应结合岩体结构分析测量地应力的新进展[J].重庆建筑大学学报.2001,23(6):109~113.
    [13]邓荣贵.地震物探在高速路堑边坡岩体结构研究中的应用[J].辽宁工程技术大学学报(自然科学版).2001,20(4):463~465.
    [14]常旭,刘伊克等.基于波速与衰减成像的岩体结构分析[J].科学通报.2000,45(4):416~420.
    [15]徐卫亚,赵立永.坝基工程岩体结构分类分数维研究[J].武汉水利电力大学(宜昌)学报.1999,21(1):7~10.
    [16]秦四清等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993.
    [17]秦四清等.节理岩体的分形特征及工程地质意义[J].工程地质学报.1993.11(2).
    [18]袁宝远,杨志法.岩体结构要素分形几何研究[J].工程地质学报.1998,6(4):355~361.
    [19]徐卫亚,赵立永,梁永平.工程岩体结构类型定量划分问题研究[J].武汉水利电力大学学报.1999,32(2):8~11.
    [20]丁多文.岩体结构分形及应用研究[J].岩土力学.1993,14(3):67~71.
    [21]徐光黎,唐辉明,杜时贵等.岩体结构模型与应用[M].武汉:中国地质大学出版社.993.
    [22]曹劲,吴旭军.岩体结构概率模拟的原理与方法[J].勘察科学技术.1990(4):30~35.
    [23]陈剑平,王清等.岩体结构统计均质区的划分[J].地质灾害与环境保护.1996,7(1):19~24.
    [24]苏永华,何满潮,曹文贵.岩体地下结构围岩稳定非概率可靠性的凸集合模型分析方法[J].岩石力学与工程学报.2005,24(3):377~383.
    [25]张菊明,王思敬.边坡岩体结构的三维失稳形式及稳定性分析研究[J].工程地质学报.1997,5(3):242~250.
    [26]王在泉.岩石高边坡岩体结构特征及其工程控制研究[J].中国矿业大学学报.1997,26(3):79~83.
    [27]李长洪,蔡美峰等.大型露天矿山边坡岩体结构与破坏模式分析[J].中国矿业.2004,13(2):48~51.
    [28]杨治林.顺层边坡岩体结构的模态幅值研究[J].岩土力学.2003,24(5):764~770.
    [29]柴贺军,黄地龙.岩体结构三维可视化及其工程应用研究[J].岩土工程学报.2001,23(2):217~220.
    [30]黄地龙,柴贺军,黄润秋.岩体结构可视化软件系统研究[J].成都理工学院学报.2001,28(4):416~420.
    [31] ]何满潮,刘斌,徐能雄.工程岩体三维可视化构模系统的开发[J].中国矿业大学学报,2003,32(1):38-43.
    [32]徐能雄,何满潮,景海河.岩体结构三维构模技术及其可视化系统研制[J].岩土工程学报.2004,26(3):373~377.
    [33]韩爱果,聂德新.岩体结构研究中结构面间距取值方法探讨[J].岩石力学与工程学报.2003,22(增2):2575~2577.
    [34]吴志勇,聂德新.基于数码图像的岩体结构信息采集处理研究[J].岩石力学与工程学报.2003,22(增2):2568~2571.
    [35]韩爱果,聂德新.岩体结构研究中统计区间长度的确定[J].地球科学进展.2004,19(增):296~299.
    [36]韩爱果.工学博士论文.坝基岩体质量量化分级及图形展示[D].成都理工大学.2002.
    [37]崔银祥.工学博士论文.碎裂岩体用作高混凝土重力坝坝基的可能性评价[D].成都理工大学.2005.
    [38] R.J.Shannely and M. A.Mahhlab, Delineation and Analysis of Cluster in Orientation Data[J], Mathematical Geology, 1976, Vol.8.No.1.
    [39] Bingham C . Distributions on the sphere and on the projective plan[D] . Yale University,1964.
    [40] P.H.W. Kulatilake and T.W.Wu . The Density of Discontinuity Traces in Spacing Windows[J], int.Rock Mech. Min. Sci. and Geomech. Abstracts,1984, Vol.21.
    [41] P.H.W. Kulatilake and T.W.Wu. Estimation of mean length of Discontinuity[J]. Rock Eng. 1984, Vol.17.
    [42] Terzaghi K.Introduction to tunnel geology in rock tunneling with steel supports[M].Proctor and white 1946.
    [43] Goodman R E.Introduction to rock mechanics[M].New York:John wiley and sons,1980.
    [44] Goodman R E.Introduction to rock mechanics(Second.Edition) [M]. New York:John wiley and sons,1992.
    [45] Evert Hoek.ROCK ENGINEERING(Course notes) [M],1999.
    [46] Sen Zekai. Fractal Dimension and Rock Quality Charts[J]. Bulletin of the Association of Engineering Geologists. 1992,29(1).
    [47] John Kemeny, Randy Post. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces[J]. Computers & Geosciences, 2003(29): 65-77.
    [48] T.R.Reid,J.P.Harrison. Automated tracing of rock mass discontinuities from digital images[J]. Int. J. Rock Mech. Sci. 1997(3):535.
    [49]长江流域规划办公室编.岩石坝基工程地质[M].北京:水利电力出版社,1982.
    [50]王思敬.坝基岩体工程地质力学分析[M].北京:科学出版社,1990.
    [51]田野,蔡斌,丁秀丽等.岩石坝基工程[M].武汉:湖北科学技术出版社,2001.
    [52]任自民,马代馨,田野等.三峡工程坝基岩体工程地质研究[M].武汉:中国地质大学出版社,1998.
    [53]万宗礼,聂德新,杨天俊.拉西瓦高拱坝岩体力学、工程地质研究成果综述[J].水力发电.2007.33(11),21-23.
    [54]万宗礼,聂德新.坝基红层软岩工程地质研究与应用[M].北京:中国水利水电出版社,2007.
    [55]聂德新,杨建宏,崔长武,李树森.岩体结构、岩体质量及可利用性研究[M].北京:地质出版社,2008.
    [56]王均星,张优秀,王汉辉.高拱坝承载能力研究[J] .武汉大学学报(工学版).2004.37(1),27-31.
    [57]王亮清,唐辉明,夏元友.不同风化程度岩体弹性模量的确定方法研究[J].金属矿山.2008(7),19-21.
    [58]李维树,谭新,黄志鹏.长江小南海水利枢纽坝基弱风化岩体工程力学性质研究及可利用探讨[J].岩石力学与工程学报.2008(27),3899-3904.
    [59]赖国伟,陆述远.高坝基岩的宏观抗剪强度研究[J] .武汉大学学报(工学版).2001.34(1),26-30.
    [60]栾茂田,鳩飼惠三.关于岩土工程研究中若干基本力学问题的思考[J].大连理工大学学报.1999.39(2),309-317.
    [61]杨更社.我国岩石力学的研究现状及其进展[J].西安矿业学院学报.1999.19(增刊),5-11.
    [62]孙钧.岩石力学在我国的若干进展[J] .西部探矿工程(岩土钻掘矿业工程).1999.11(1),1-5.
    [63]徐东强,周昌达.岩石试件刚度及压力机刚度对岩石主破裂前声发射相对平静的影响[J].地震研究.1994.17(3),301-308.
    [64]符文熹,尚岳全,孙红月.岩体变形参数渐变取值模型及工程应用[J].工程地质学报.2002.10(02),198-203.
    [65]杨更社,孙钧.中国岩石力学的研究现状及其展望分析[J].西安公路交通大学学报.2001.21(3),5-9.
    [66]董学晟,邬爱清.高拱坝技术的新进展水工岩石力学研究的基本思路[J].岩石力学与工程学报.2005.24(20),3696-3703.
    [67]王毅,聂德新,张景科.岩体裂隙化程度与岩体变形参数的关系研究[J].岩石力学与工程学报.2003.22(增2),2572-2574.
    [68]周济芳,李建林,杨学堂.影响卸荷岩体力学特征的因素及力学参数研究[J].灾害与防治工程.1999(1),50-54.
    [69]杨建国,饶权.载荷下岩体波速的变化研究[J].西部探矿工程.2009(5),10-12.
    [70]林鹏,王仁坤,周雅能.特高拱坝建基面浅层卸荷机制与稳定分析[J].岩土力学.2008.29(增刊),8-20.
    [71]钱向东,赵引,任青文.建基面强度对拱坝应力、变形的影响[J].河海大学学报.2001.29(3),95-98.
    [72]杨令强,武甲庆,秦冰.横观各向同性层状岩石地基对高拱坝的影响[J].水资源与水工程学报.2007.18(3),6-9.
    [73]赵兰浩,李同春,牛志伟.考虑库水可压缩性的高拱坝动力特性分析[J].水电能源科学.2008.26(3),95-97.
    [74]刘世煌.拉西瓦拱坝建基面的优化[J].水力发电.1996.(12),17-21.
    [75]刘世煌.拉西瓦拱坝建基面的模糊评判[J].西北水电.1996.(4),17-21.
    [76]方大德.高坝坝基可利用岩体质量标准问题[J].水力发电.1997.(12),16-18.
    [77]王仁坤,林鹏.溪洛渡特高拱坝建基面嵌深优化的分析与评价[J].岩石力学与工程学报.2008.27(10),2010-2017.
    [78]孟新华.朝阳寺大坝轴线调整及大坝建基面选择[J].湖北水利发展.1999(2),15-18.
    [79]孙少锐,许人平,叶勇.风化岩体与混凝土坝建基面选择[J].水利水电科技进展.2006.26(5),45-47.
    [80]钱康.天生桥一级水电站岩体风化分带、特征及建基面的确定[J] .人民珠江.1999(1),22-26.
    [81]侯波,彭殿元,罗志虎.土卡河水电站复杂地层条件下建基标准的探讨[J].云南水力发电.2006.22(6),28-30.
    [82]丁向东,吴继敏,黄建华.坝基岩体物理力学参数垂直分布与建基面选择[J].勘机科学技术.2006.(3),2-6.
    [83]李会中,向家菠,王团乐.乌东德水电站砼高拱坝拱端嵌岩深度选择地质研究[J].长江科学院院报.2008.25(5),98-106.
    [84]王旭红,施裕兵.沙牌水电站碾压混凝土高拱坝建基面的抬高[J].水电站设计.2003.19(4),69-84.
    [85]苏全,梁国钱,刘超英.超声波综合检测技术在防渗墙质量检测中应用[J].中国农村水利水电.2007(6),83-88.
    [86]房纯纲,臧瑾光,葛怀光.碾压混凝土高拱坝现场快速质量检测技术[J].水利发电.2001(8),24-25.
    [87]余波,徐光祥.光照水电站坝基岩体质量检测研究[J].岩石力学与工程学报.2008.27(增1),2883-2892.
    [88]邹丽春,刘伟,寇伟.高拱坝坝基稳定研究[J].水利发电.2001(8),63-65.
    [89]柴军瑞.高拱坝坝肩岩体动力稳定性分析综述[J].辽宁工程技术大学学报(自然科学版).2001(4),502-504.
    [90]柴军瑞,刘浩吾.高拱坝研究新进展[J].水利水电科技进展.2001.21(6),1-4.
    [91]潘家铮,陈式慧.关于高拱坝建设中若干问题的探讨[J].科技导报.1997(2),17-19.
    [92]王光纶,郭志松,张楚汉.高拱坝沿建基面抗滑稳定分析的研究[J].水利水电技术.1998.29(8),5-11.
    [93]徐福卫,陈海玉.高拱坝沿建基面的上滑稳定性分析[J].水力发电.2008.34(3),44-46.
    [94]任青文,钱向东,赵引.高拱坝沿建基面的破坏和安全度研究[J] .水力发电.2002.(12),10-13.
    [95]董玉文,任青文.高拱坝稳定安全度研究综述[J].水利水电科技进展.2006.26(5),78-82.
    [96]刘先珊,周创兵,盛永清.高拱坝动力分析及坝肩稳定性研究[J].岩石力学与工程学报.2007.26(增1),3421-3426.
    [97]陈在铁.高拱坝安全评价方法比较[J].水利水电科技进展.2007.27(3),9-13.
    [98]刘先珊,周创兵,王军.复杂条件下高拱坝应力及坝肩稳定分析[J] .岩土力学.2008.29(1),225-234.
    [99]王奖臻,黄润秋,许模.金沙江下游白鹤滩水电站岩体结构的建造特征[J].地球科学进展2004.19(增),64-69.
    [100] L H.Basalt fingers-origin of columnar joints[J].Geological Magazine,1981,118(3):251–264.
    [101] PHILIP E L,BERNARD J W.Structures,textures,and cooling histories of Columbia River basalt flows[J].Geological Society of America Bulletin,1986,97(9):1 144–1 155.
    [102]孙蓉琳,梁杏,靳孟贵.基于野外水力试验的玄武岩渗透性及尺度效应[J].岩土力.2008.29学.2006.27(9),1490-1494.
    [103]周文戈,谢鸿森,赵志丹.高温、高压下粗面玄武岩相变对其纵波速度影响的研究[J].科学通报.1999.44(4),424-427.
    [104]张招崇,王福生,范蔚茗.峨眉山玄武岩研究中的一些问题的讨论[J].岩石矿物学杂志.2001.20(3),239-246.
    [105]聂爱国,秦德先,管代云.峨眉山玄武岩浆喷发对贵州西部区域成矿贡献研究[J].地质与勘探.2007.43(2),50-54.
    [106]王建平,陆海凌.白鹤滩水电站坝址区玄武岩水-岩作用模拟及应用研究[J].地下水.2009.31(1),44-47.
    [107] MüLLER.G.Experimental simulation of basalt columns[J].Journal of Volcanology and Geothermal Research,1998,86(1/4):93–96.
    [108] MüLLER G.Starch columns:analog model for basalt columns[J].Journal of Geophysical Research,1998,103(B7):15 239–15 253.
    [109] BEARD.C.N.Quantitative study of columnar jointing[J].Bulletin of The Geological Society of America,1959,70(33):379–382.
    [110]沈军辉,王兰生,徐林生.峨眉山玄武岩的岩相与岩体结构[J].水文地质工程地质.2001(6),1-4.
    [111]沈军辉,王兰生,李天斌.川西南玄武岩的岩体结构特征[J].成都理工学院学报.2002.29(6),680-685.
    [112]沈军辉.工学博士论文.川西南玄武岩岩体结构的浅表生改造与水电工程[D].成都理工学院.2000.
    [113]魏云杰,许模,陶连金.峨眉山玄武岩岩体风化分带量化研究[J].湖南科技大学学报(自然科学版).2008.23(3),32-36.
    [114]魏云杰.工学博士论文.中国西南水电工程区峨眉山玄武岩岩体结构特性及其工程应用研究[D].成都理工大学.2007.
    [115]石安池,唐鸣发,周其健.金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J].石力学与工程学报.2008.27(10),2079-2086.
    [116]朱道建,杨林德,蔡永昌.柱状节理岩体各向异性特性及尺寸效应研究[J].岩石力学与工程学报.2009.28(7),1405-1414.
    [117]朱道建,杨林德,蔡永昌.柱状节理岩体压缩破坏过程模拟及机制分析[J].岩石力学与工程学报.2009.28(4),716-724.
    [118]刘顺桂,池永翔,王思敬.柱状节理玄武岩体抗剪强度参数尺寸效应研究[J].工程地质学报.2009.17(3),367-370.
    [119]张倬元,王士天,王兰生.工程地质分析原理[M].地质出版社.1994.
    [120]华东勘测设计研究院.白鹤滩水电站预可研报告[R].2006.
    [121]聂德新.金安桥水电站坝基裂面绿泥石化岩体成因机制、工程性状、工程适应性及坝基可利用岩体工程地质研究[R].成都理工大学.2004.
    [122]聂德新.金沙江龙开口水电站建基面选择研究及岩体力学参数评价[R].成都理工大学.2008.
    [123]聂德新.坝基复杂岩体工程地质特性及修建高砼重力坝的适宜性研究[R].成都理工大学.2008.
    [124]聂德新.雅砻江卡拉水电站坝基岩体质量及建基面选择研究[R].成都理工大学.2009.
    [125]胡德.弹性波动力学[M].北京:地质出版社.1992.
    [126]水利水电科学研究院.岩石力学参数手册[M].北京:水利电力出版社.1991.
    [127]徐卫亚.长江三峡工程工程地质力学研究[M].北京:中国三峡出版社.1996.
    [128] Merritt A.H and Baecher G.B.Site characterization in rock engineering[J].22nd U.S.Symp.on Rock Mechanics.1981,49-66.
    [129] Z.T. Bieniawski.Engineering Classification of Jointed Rock Mass[J]. S. Atrica Inst. Civ. Engrs, 1970, 15(12).
    [130] DEERE, D. V.Geological Considerations, Capter in Rock Mechanics, in Engineering Practice[M], London, Wiley, 1968.
    [131] Mandelbrot B.B.The Fractal Geometry of Nature[M].New York. W. H. Freeman,1982.
    [132] Tse R,Cruden D M.Estimating joint roughness coefficients[J].Int.J Rock Mech Min Sci&Geomech Abstr. 1979,16,303~307.
    [133] JAMES R.CARR &JAMES B. WARRINER.Fractal dimension and joints roughness coefficient[J].Bulletin of the Association of Engineering Geologists.1989,26(2).253~263.
    [134] Keith C.Clarke.Computation of the fractal dimension of topographic surfaces using the triangular prism surface area[J].Computers &Geosciences.1986,12(5).
    [135] Zhao J.Joint surface matching and shear strength.Part A:Joint matching coefficient(JMC) [J].Int.J.of Rock Mechanics and Mining Science. Geomech.Abstr.
    [136]黄扬一、王造根,关于弱风化岩体利用的认识与实践[J],人民长江,1995年06期.
    [137]罗小杰,风化岩石地基的工程特性[J],水利水电快报,1996年09期.
    [138]卢建平,陆兆溱,钟肖青,水电工程中弱风化岩体可利用性探讨[J],岩土力学,1996年01期.
    [139]肖诗荣,三峡坝区风化岩体的工程利用研究[J].三峡大学学报(自然科学版),2002年03期.
    [140]聂德新,韩爱果,巨广宏.岩体风化的综合分带研究[J].工程地质学报.2002年01期.
    [141]湖南省土木建筑学会工程勘察学术委员会、湖南省勘察科技情报网、中国有色金属工业总公司、长沙勘察科技情报室合编.湖南勘察简讯[Z].第4期,1986.
    [142] Peng SQ; Nie DX; Zhao QH.Engineering character of the fossil-weathered granite[C], Proceedings of 7th International Congress International Association of Engineering Geology, 1994.
    [143] Lin WY, A microscopic study on zoning and use of weathered crust for bedrock of the 3 gorge project[C],Proceedings of 7th International Congress International Association of Engineering Geology, 1994.
    [144] Guolin Ren; Yushan Lin, Engineering geological zonation of Xiamen granitic weathered crust and bearing capacity of residual soil[C], Proceedings of 6th International Congress International Association of Engineering Geology, 1990.
    [145]宁宇,徐卫亚,郑文棠等.柱状节理岩体随机模拟及其表征单元体尺度研究[J].岩石力学与工程学报岩石力学与工程学报.2008.27(6),1202-1208.
    [146] SCHULTZ R A.Limits on strength and deformation properties of jointed basaltic rock masses[J].Rock Mechanics and Rock Engineering,1995,28(1):1–15.
    [147]王让甲.声波岩石分级和岩石动弹性力学参数的分析研究[M].北京:地质出版社.1997.
    [148]陈成宗.工程岩体声波探测技术[M].北京:中国铁道出版社.1990.
    [149] MALLET R . On the origin and mechanism of production of the prismatic(or columnar)structure of basalt[J].Philosophical Magazine,1875,4(50):122–135,201–226.
    [150] Bieniawski Z T.Engineering Rock Mass Classification-A Complete Manual for Engineers and Geologists in Mining,Civil and Petroleum Engineering[M].Wiley:IntersciencePublication,1989.
    [151] Bieniawski Z T.Geomechanics classification of rockmasses and its application in tunneling[A].In:Proc.3th Int.Cong.on Rock,Mechanics(ISRM)[C],Denver.1974:[s.n.],4:27~32.
    [152] Bieniawski Z T.Rock mass classification in rock engineering[A].In:Proc.Symposium for rock engineering[C].Johannesburg:[s.n.],1976,1:97~106.
    [153] Barton N.Analysis of rock mass quality and support practice in tunneling and a guide for estimating support requirements[J].Rock Mechanics,1974,6(4):189~236.
    [154]刘彬.软硬相间层状岩体变形参数理论研究及工程应用[D].成都理工大学.2006.
    [155]耿大新,杨林德.层状岩体的力学特性及数值分析[J] .地下空间,2003.Vol.23.No.4:380-387.
    [156]周思孟主编.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社1998.
    [157] Lekhnitskii SG . Theory of Elastcity of an Anisotropic Elastic Body[M] . San Franicesco. Holdenn-Daty Inc. 1963.
    [158] Lekhnitskii SG.Theory of an Anisotropic Body[M].Moscow, Mir Publishers, 1987.
    [159] Amadei, B, Int.J. Rock Mech. Min. Strength of a Regularly Jointed Rock Mass Under Biaxial and Axisymmetric Loading Conditions"[J], Sci. & Geomech. Abstr. Vol. 25, No. 1 3-13, 1988.
    [160]李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [161] B.H.G.Brady,E.t.Brown. Rock Mechanics For Underground Mining[M]. London Grorge Allen & Unwin .1985.
    [162] Richard E.Goodman.Introduction to Rock Mechanics, Second Edition[M]. John Wiley&Sons.1987.
    [163]杜时贵,程俊杰,王思敬.岩体的基本构成—结构面和结构体[J].工程地质学报.2000,8.
    [164]袁绍国,王震.节理迹长线测量与面测量的精度对比[J].中国矿业.1999,8(1).
    [165]袁绍国,王震.节理测量误差的来源及其分析[J].包头钢铁学院学报,1998,17(4).
    [166]龙亦安.综合声学参数计分评判坝区工程岩体质量的研究[J].工程勘察.1990,(4).
    [167]蒋友清.用岩心块度指数划分建筑地基岩体完整性[J].湖南水利.1998,(6).
    [168]杜时贵.岩石质量定量描述研究现状及趋向[J].工程地质学报.1998,6(3).
    [169]杜时贵,何芳象,王思敬.RQD研究的几个理论问题[J].现代地质.1998,12(2).
    [170]杜时贵,许四法,杨树峰等.岩石质量指标RQD与工程岩体分类[J].工程地质学报.2000,8(3).
    [171]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999.
    [172]杜时贵,王思敬.岩石质量指标(RQD)的各向异性分析[J].工程地质学报.1996,4(4).
    [173]韩爱果,聂德新,王小群.高拱坝建基面选择主控指标的选取[J].成都理工学院学报.2001,28(增刊).
    [174] DX Nie, WX Fu.The Application of primary wave velocity in the assessment of rockmass strength parameters[J]. Engineering and Environmntal Geophysics for the 21st Century, 1997, p518-523.
    [175]余仁福,李天扶.龙羊峡水电站坝基岩体质量分类及力学参数选择[J].工程地质.1989,2.
    [176]李云林.三峡工程坝基岩体力学参数选择分析[J].长江科学院院报.1996,13(3).
    [177]胡夏嵩、赵法锁等.西北某市引水工程右坝肩碎裂结构围岩成分与微结构特征[J].青海大学学报(自然科学版).2004,22(1):28~30.
    [178]杨子文.岩体工程分级—岩石力学的理论与实践[M].水利电力出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700