用户名: 密码: 验证码:
陈述式仿真模型相容性分析与约简方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数学建模与仿真已经成为分析产品技术性能的一项重要技术。随着科学技术的高速发展,产品结构和功能日趋复杂与异构。复杂产品通常是机械、电子、液压、控制等多领域子系统的综合体。为优化复杂产品的设计,必然需要将不同领域的子系统模型集成到一起以实现复杂产品整体性能的协同仿真。Modelica语言是一种基于方程的物理系统建模语言,它继承和统一了先前多种面向对象建模语言的诸多优点,非常适合于现代多领域复杂系统建模。面向方程的分析优化器是基于Modelica语言的建模仿真平台的一项核心技术,本文对其进行了深入研究。
     模型相容是模型可以求解的前提。本文分析了造成仿真模型奇异的原因,提出了基于图论算法的相容性分析方法,显著地提高了奇异模型的识别和修正效率。该方法通过在二部图上计算最大匹配实现了模型的相容性判定。引入虚构方程替代组件的外部连接方程,通过识别奇异组件细化判别范围。在此基础上,使用结构过滤规则和语义过滤规则进一步缩小判别范围,最终给出有效的修正信息。
     陈述式建模形成的DAE系统规模很大,求解时间长。为支持复杂多领域系统的高效率仿真,本文研究了DAE系统的符号约简技术。结合Modelica模型的特点,通过定义规范转换规则,基于方程的二叉树表示实现了方程表达式的规范转换。运用图论算法消除等值方程,分解方程系统,简化代数环,有效地降低了模型的规模和耦合度,显著地加快了模型的求解速度。
     数值求解高指标DAE系统是十分困难的。本文讨论了DAE系统的指标分析策略,阐明了指标约简的基本原理。通过定义最小结构奇异子集和加权二部图,提出了基于加权二部图的指标约简方法,该方法可以找出所有需要微分的方程。基于方程的二叉树表示实现了方程的符号微分。结合符号约简技术,给出了大规模DAE系统的指标分析方法,提高了分析效率。在此基础上讨论了DAE模型的相容初始化问题,给出了初始条件的相容性判定标准和初始化方程系统求解策略。
     基于上述研究成果,设计实现了面向Modelica模型的分析优化器MWOptimizer,为开发基于Modelica语言的建模仿真环境奠定了技术基础,并成功地将其集成到了多领域物理系统混合建模与仿真平台MWorks中。
Mathematical modeling and simulation has become an important technology to analyze product performance. Along with advance in science and technology, modern products are increasingly complex and heterogeneous. Complex products generally are composed of subsystems from multiple engineering domains such as mechanic, electric, hydraulic, and control system components. To optimize complex products, it is necessary to integrate simulation models from several engineering domains to cooperatively simulate the total behavior of complex products. Modelica is an equation based language for physical systems modeling. The language unifies and generalizes previous modeling languages, and is appropriate to model modern complex multi-domain systems very well. The optimizer for equations is a kernel of a Modelica based modeling and simulation tool, its key issues are studied in this dissertation.
     The consistency of a model is the precondition for that the model can be solved. The causes of inconsistencies of simulation models are analyzed, and a consistency analysis method based on graph theoretical algorithms is proposed, which can enhance the error detecting and correcting process. The method determines whether a model is consistent or not by computing a maximum matching in the bipartite graph associated with the model. In order to find out singular components, fictitious equations are used to replace the equations generated from the connections of the component. The equations and variables, which are responsible for the inconsistencies, are reduced by singular components, and then are further reduced by the structural filtering rule and the semantic filtering rule. Finally, efficient correcting messages for the user are elaborated.
     The DAE system resulted from declarative model is of very large dimension, and its numerical solution requires excessively long computation times. Techniques for the symbolic manipulation of general DAE systems are presented, and used for model reduction purpose, to support efficient simulation of complex multi-domain systems. Canonical transformation rules are used to simplify and transform equations, which are represented as binary trees, into canonical forms. Some graph theoretical algorithms are employed to address the specific problems, which are elimination of trivial equations by means of substitution, and partitioning the whole DAE system into subsystems which can be solved in sequence, and reducing algebraic loops by tearing algorithm. These symbolic manipulations can considerably reduce the dimension and coupling of a DAE system to make the simulation of the DAE system be executed much more efficiently.
     It is numerically difficult to solve a high-index DAE system. The strategy for index analysis of DAE system is discussed, and the basic principle of index reduction is elaborated. The minimally structurally singular subset and the weighted bipartite graph are introduced, and then an index reduction algorithm based on weighted bipartite graph is developed, which can locate those subsets of the system equations which need to be differentiated. By representing equation as binary tree, a symbolic method for calculating the derivative of equation is presented. On the basis of the techniques proposed for model reduction, an index analysis method for large scale DAE system is proposed, which can improve index reduction efficiency. Finally, the consistent initialization of DAE model is discussed, the criterion for determining whether an initial condition is consistent or not is given, and the strategy for solving the initialization equation system is presented.
     On the basis of the above achievement, an optimizer for Modelica models has been developed, which provides technology foundation for the development of Modelica based modeling and simulation environment, and has been integrated into a hybrid modeling and simulation tool, named MWorks, for multi-domain physical system.
引文
[1] Mattsson SE, Elmqvist H, Otter M. Physical system modeling with Modelica. Control Engineering Practice, 1998, 6(4): 501~510
    [2] Fritzson P, Engelson V. Modelica – a unified object-oriented language for system modeling and simulation. In Proceedings of the 12th European Conference on Object-Oriented Programming, Brussels, Belgium, 1998
    [3] Elmqvist H. A Structured Model Language for Large Continuous Systems: [PhD thesis]. Sweden: Lund Institute of Technology, 1978
    [4] Andersson M. Object-Oriented Modeling and Simulation of Hybrid Systems: [PhD thesis]. Sweden: Lund Institute of Technology, 1994
    [5] Piela P, Epperly T, Westerberg K, et al. ASCEND – An object-oriented computer environment for modeling and analysis: the modeling language. Computers and Chemical Engineering, 1991, 15(1): 53~72
    [6] Barton PI, Pantelides CC. Modeling of combined discrete/continuous processes. AIChE Journal, 1994, 40(6): 966~979
    [7] Fritzson P, Viklund L, Fritzson D, et al. High-level mathematical modeling and programming. IEEE Software, 1995, 12(4): 77~87
    [8] Elmqvist H, Mattsson SE, Otter M. Modelica – an international effort to design an object-oriented modeling language. In Proceedings of the 1998 Summer Computer Simulation Conference, Reno, Nevada, USA,1998
    [9] Fritzson P. Principles of object-oriented modeling and simulation with Modelica 2.1. New York: IEEE Press, 2003
    [10] Tiller M. Introduction to physical modeling with Modelica. Boston: Kluwer Academic, 2001
    [11] Modelica Language Specification, version 2.2. http://www.modelica.org/documents/ ModelicaSpec22.pdf
    [12] Torge P, Gerhard S. Modelling and transient simulation of CO2-refrigeration systems with Modelica.International Journal of Refrigeration, 2004, 27:42~52
    [13] Otto M. Advanced concepts in Modelica and their implementation in VehProLib : [Master thesis]. Sweden: Link?ping University, 2004
    [14] Johanson B, Krus P. Probabilistic analysis and design optimization of Modelica models. In Proceedings of 4th International Modelica Conference, Hamburg, Germany, 2005
    [15] Pop A, Fritzson P. A portable debugger for algorithmic Modelica code. In Proceedings of 4th International Modelica Conference, Hamburg, Germany, 2005
    [16] Nytsch-Geusen C, Nouidui T, Holm A, et al. A hygrothermal building model based on the object-oriented modeling language Modelica. In Proceedings of 4th International Modelica Conference, Hamburg, Germany, 2005
    [17] Alexander H. Timo H. Thomas T, et al. A combined thermo-hydraulic approach to simulation of active building components applying Modelica. In Proceedings of 4th International Modelica Conference, Hamburg, Germany, 2005
    [18] Johansson B. Modelling of Multi-Domain Systems: [PhD thesis]. Sweden: Link?ping University, 2001
    [19] 蹇佳, 张和明. 基于商品化软件的多领域协同仿真及其在复杂产品设计中的应用. 2003 年全国系统仿真学术年会, 西安, 2003
    [20] 陈晓波, 熊光楞, 郭斌, 等. 基于 HLA 的协同仿真运行研究. 系统仿真学报, 2003, 15(12): 1707~1711
    [21] Kortüm W, Valasek M. Modeling and Simulation of Mechatronic Vehicles: Tools, Standards and Industry Demand – Objectives, Issues and Summary of Results. Vehicle System Dynamics, 1999, 33: 191~201
    [22] BMS. Co-simulation boosts vehicle design efficiency at ford. Computer Aided Engineering, 1999, 18(7): 8~9
    [23] Liu CS, Monkaba V, Lee H, et al. Co-simulation of Visteon Dirveline Torque BiasControls. ADAMS User Conference 2001 - North America, Detroit, USA, 2001
    [24] 陈晓波. 仿真在复杂产品设计中的应用: 现状及相关问题思考. 清华大学 CIMS 工程研究中心, 2001
    [25] Goodall R. Active railway suspensions: implementation status and technological trends. Vehicle System Dynamics, 1997, 28(2): 87~117
    [26] Frederick K. Create computer simulation systems: an introduction to the high level architecture. Upper Saddle River: Prentice Hall PTR, 2000
    [27] 陈晓波, 熊光楞, 郭斌, 等. 基于 HLA 的多领域建模研究. 系统仿真学报, 2003, 15(11): 1537~1542
    [28] 柴旭东, 李伯虎, 熊光楞. 复杂产品协同仿真平台的研究与实现. 计算机集成制造系统—CIMS, 2002, 8(7): 580~584
    [29] 王克明, 熊光楞. 复杂产品的协同设计与仿真. 计算机集成制造系统—CIMS, 2003, 9: 15~19
    [30] 李伯虎, 王行仁, 黄柯棣, 等. 综合仿真系统研究. 系统仿真学报, 2000, 12(5): 429~434
    [31] 李伯虎, 柴旭东, 朱文海, 等. 复杂产品协同制造支撑环境技术的研究. 计算机集成制造系统—CIMS, 2003, 9(8): 691~697
    [32] 张国峰, 林新, 王行仁. 多联邦系统构建原则和时间延迟的探讨研究. 系统仿真学报, 2002, 14(3): 300~303
    [33] 邸彦强, 李伯虎, 柴旭东, 等. 多学科虚拟样机协同建模与仿真平台及其关键技术研究. 计算机集成制造系统—CIMS, 2005, 11(7): 901~908
    [34] 蒋熙, 苗建瑞, 于勇, 等. 基于高层体系结构的铁路编组站综合仿真系统研究. 系统仿真学报, 2002, 14(4): 481~484
    [35] 孙鹏文, 左正兴, 廖日东. 复杂产品协同仿真技术研究. 组合机床与自动化加工技术, 2005, 4: 18~20
    [36] ?str?m KJ, Elmqvist H, Mattsson SE. Evolution of continuous-time modeling and simulation. In Proceedings of the 12th European Simulation Multi-conference, Manchester, UK, 1998
    [37] Mattsson SE, Otter M, Elmqvist H. Modelica hybrid modeling and efficient simulation. In Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, USA, 1999
    [38] Elmqvist H, Mattsson SE, Otter M. Object-oriented and hybrid modeling in Modelica. The Journal of European system automatics, 2001, 35(1): 1~10
    [39] Rüdiger F. Formulation of dynamic optimization problems using Modelica and their efficient solution. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002
    [40] Tiller M, Bowles P. Detailed vehicle powertrain modeling in Modelica. In Proceedings of the Modelica Workshop 2000, Lund, Sweden, 2000
    [41] Johanna W. Modelling of components for conventional car and hybrid electric vehicle in Modelica: [Master thesis]. Sweden: Link?ping University, 2004
    [42] Tiller M, Tobler WE, Kuang M. Evaluating engine contributions to HEV driveline vibrations. In Proceedings of the 2nd International Modelica Conference,Oberpfaffenhofen, Germany, 2002
    [43] Ivan IK, Maia SS. Approach to model multibody system dynamics using Modelica. In Proceedings of the 3rd International Modelica Conference, Link?ping, Sweden, 2003
    [44] Tomas S. Simulation of liquid food process in Modelica. In Proceedings of the 3rd International Modelica Conference, Link?ping, Sweden, 2003
    [45] Bachmann B, Wiesmann H. Advanced modeling of electromagnetic transients in power systems. In Proceedings of the Modelica Workshop 2000, Lund, Sweden, 2000
    [46] Beater P, Clauss C. Multi-domain systems: pneumatic, electronic and mechanical subsystems of a pneumatic drive modeled with Modelica. In Proceedings of the 3rd International Modelica Conference, Link?ping, Sweden, 2003
    [47] Reichl G. Wastewater - a library for modeling and simulation of wastewater treatment plants in Modelica. In Proceedings of the 3rd International Modelica Conference, Link?ping, Sweden, 2003
    [48] Elmqvist H, Mattsson SE, Olsson H. New methods for hardware-in-the-loop simulation of stiff Models. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002
    [49] Farnqvist D, Strandemar K, Johansson KH, et al. Hybrid modeling of communication networks using Modelica. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002
    [50] 李防战, 孟光, 王廷兴, 等. 基于特性方程的燃气涡轮的建模与性能仿真. 中国动力工程学报, 2005, 25(1): 18~22
    [51] 莫雨峰, 刘成良. 基于 Dymola 的开关磁阻电机建模及仿真. 计算机仿真, 2004, 21(4): 34~37
    [52] 负延风, 陈关龙. 基于 Dymola 的同步电机建模及仿真. 机电工程, 2004, 21(3): 40~44
    [53] 徐志梅, 刘永文, 杜朝辉, 等. 热机系统仿真中一种通用介质容积模型的建立. 燃气轮机技术, 2003, 16(4): 34~38
    [54] 杨世文, 苏铁熊, 李炯. 基于 Modelica 语言的面向对象的发动机建模与仿真. 车用发动机, 2004, (2): 39~42
    [55] 杨世文, 郑慕侨. 面向对象的液力机械传动箱建模与仿真. 华北工学院学报, 2004, 25(3): 171~176
    [56] 曹源, 金先龙. 涡扇发动机模块化模型库及其应用. 系统仿真学报, 2004, 16(10):2201~2204
    [57] IEEE Standard 610.12-1990. IEEE Standard Glossary of Software Engineering Terminology, 1990.
    [58] Parasoft. It's a Bug-free World After All. Technical Paper PS-9710-DV3, 1997
    [59] Robson D, Nenett KH, Cornelius BJ, et al. Approaches to program comprehension. The Journal of Systems Software., 1991, 14(2): 79~84
    [60] Liebermann H. The Debugging Scandal and What to Do About It. Communications of the ACM, 1997, 40(4): 27~29
    [61] Mattsson SE. Simulation of object-oriented continuous time models. Mathematics and Computers in Simulation, 1995, 39(5): 513~518
    [62] Morton W, Collingwood C. An equation analyzer for process models. Computers and Chemical Engineering, 1998, 22(4): 571~585
    [63] Rei?ig G, Feldmann U. A simple and general method for detecting structural inconsistencies in large electrical networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(11): 1482~1485
    [64] Murota K. Systems Analysis by Graphs and Matroids: Structural Solvability and Controllability. New York: Springer, 1987
    [65] Bunus P, Fritzson P. Automated static analysis of equation-based components. Simulation: Transactions of the Society for Modeling and Simulation International, 2004, 80(8): 321~345
    [66] Bunus P. An empirical study on debugging equation-based simulation models. In Proceedings of the 4th International Modelica Conference, Hamburg, Germany, 2005
    [67] Bunus P, Fritzson P. Semantics guided filtering of combinatorial graph transformations in declarative equation based languages. In Proceedings to 2nd International Workshop on Source Code Analysis and Manipulation, Montreal, Canada, 2002
    [68] Bunus P, Fritzson P. Methods for structural analysis and debugging of Modelica models. In Proceedings of the 2nd International Modelica Conference, Munich, Germany, 2002
    [69] Bunus P, Fritzson P. Applications of graph decomposition techniques to debugging declarative equation based languages. In Proceedings of the Conference on Simulation and Modeling of the Scandinavian Simulation Society, Porsgrunn, Norway, 2001
    [70] Maffezzoni C, Girelli R, Lluka P. Generating efficient computational procedures from declarative models. Simulation Practice and Theory, 1996, 4(5): 303~317
    [71] Cellier FE, Elmqvist H. Automated formula manipulation supports object-oriented continuous system modeling, IEEE Control Systems, 1993, 13(2): 28~38
    [72] Emanuele C, Claudio M. Symbolic manipulation techniques for model simplification in object-oriented modeling of large scale continuous systems. Mathematics and Computers in Simulation, 1998, 46(2): 133~150
    [73] Duff IS, Erisman AM, Reid JK. Direct methods for sparse matrices. New York: Clarendon Press, 1987
    [74] Pothen A, Fan CJ. Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software, 1990, 16(4): 303~324
    [75] Elmqvist H, Otter M. Methods for tearing systems of equations in object-oriented modeling. In Proceedings of the European Simulation Multiconference, Barcelona, Spain, 1994
    [76] Unger J, Kroner K, Marouardt W. Structural analysis of differential-algebraic equation systems – theory and applications. Computers and Chemical Engineering, 1995, 19(8): 867~882
    [77] Mattsson SE, Olsson H, Elmqvist H. Dynamic Selection of States in Dymola. In Proceedings of the Modelica Workshop 2000, Lund, Sweden, 2000
    [78] Gear WC. Differential-algebraic equations index transformations. SIAM Journal on scientific and statistical computing, 1988, 9(1): 39~47
    [79] Pantelides C. The consistent initialization of differential-algebraic systems. SIAM Journal on scientific and statistical computing, 1988, 9(2): 213~231
    [80] Mattsson SE, S?derlind G. Index reduction in differential-algebraic equations using dummy derivatives. SIAM Journal on scientific and statistical computing, 1993, 14(3): 677~692
    [81] Chowdhry S, Linninger AA. Automatic structure analysis of large scale differential algebraic systems. IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001
    [82] Hairer E, N?rsett SP, Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems (second edition). Berlin: Springer-Verlag, 1993
    [83] Lambert JD. Numerical Methods for Ordinary Differential Equations: The Initial Value Problem. New York: Wiley, 1991
    [84] Bendtsen C, Thomsen PG. Numerical Solution of Differential Algebraic Equations.Technical Report. Department of Mathematical Modeling, Technical University of Denmark, 1998
    [85] Ascher UM, Petzold LR. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia: SIAM, 1998
    [86] Brenan KE, Campbell SL, Petzold LR. Numerical Solutions of Initial-Value Problems in Differential-Algebraic Equations. New York: North-Holland, 1989
    [87] Petzold LR. A description of DASSL: a differential-algebraic equation solver. In proceedings 10th IMACS world congress, Montreal, Canada, 1982
    [88] Brown PN, Hindmarsh AC, Petzold LR. Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM Journal on scientific and statistical computing, 1994, 15(6): 1467~1448
    [89] Hairer E, Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (second edition). Berlin: Springer-Verlag, 1996
    [90] Sincovec RF, Erisman AM, Yip EL. Analysis of descriptor systems using numerical algorithms. IEEE Transactions on Automatic Control, 1981, 26(1): 139~146
    [91] Brown PN, Hindmarsh AC, Petzold LR. Consistent initial condition calculation for differential algebraic systems. SIAM Journal on scientific and statistical computing, 1998, 19(5): 1495~1512
    [92] Vieira RC, Biscaia EC. Direct methods for consistent initialization of DAE systems. Computers and Chemical Engineering, 2001, 25(10): 1299~1311
    [93] Vieira RC, Biscaia EC. An Overview of Initialization Approaches for differential algebraic equations. Latin American Applied Research, 2000, 30(3): 303~313
    [94] Brück D, Elmqvist H, Mattsson SE, et al. Dymola for Multi-Engineering Modeling and Simulation. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002
    [95] Jirstrand M. MathModelica - a full system simulation tool. In Proceedings of the 6th Conference on Product Models, Global Product Development, Link?ping, Sweden, 2000
    [96] Fritzson P, Bunus P. Modelica – a general object-oriented language for continuous and discrete-event system modeling and simulation. In Proceedings of the 35th Annual Simulation Symposium, San Diego, USA, 2002
    [97] Bachmann B. Modelica tutorial for beginners. Modelica Association, 2002
    [98] Asratian AS, Denley T, Haggkvist R. Bipartite Graphs and their Applications.Cambridge: Cambridge University Press, 1998
    [99] 肖位枢. 图论及其算法. 北京: 航空工业出版社, 1993
    [100] Barton PI. Structural Analysis of Systems of Equations. Technical Report. Department of Chemical Engineering, Massachusetts Institute of Technology, 1995
    [101] Page M, Gensel J, Boudis M. An algorithm for goal-driven simulation. In Proceedings of the 31st Conference on Winter Simulation, Phoenix, USA, 1999
    [102] Serrano D, Gossard D. Constraint management in conceptual design. In Proceedings Knowledge Based Expert Systems in Engineering: Planning and Design. Southampton, UK, 1987
    [103] Hopcroft JE, Karp RM. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal of Computing, 1973, 2(4): 225~231
    [104] Ait-Aoudia S, Jegou R, Michelucci D. Reduction of constraint systems. In Proceedings of Compugraphics, Alvor, Portugal, 1993
    [105] Dulmage AL, Mendelsohn NS. Coverings of bipartite graphs. Canadian Journal of Mathematics, 1963, 10: 517~534
    [106] Bliek C, Neveu B, Trombettoni G. Using Graph Decomposition for Solving Continuous CSPs. In Proceedings of the Principles and Practice of Constraint Programming, Pise, Italy, 1998
    [107] 蒋鲲, 高小山, 岳晶岩. 参数化模型欠、过和完整约束的判定算法. 软件学报, 2003, 14(12): 2092~2097
    [108] Fukuda K, Matsui T. Finding all the perfect matchings in bipartite graphs. Applied Mathematics Letters, 1994, 7(1): 15~18
    [109] Uno T. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In Proceedings of 8th Annual International Symposium on Algorithms and Computation, Singapore, 1997
    [110] Uno T. A fast algorithm for enumerating bipartite perfect matchings. In Proceeding of 20th Annual International Symposium on Algorithms and Computation, Christchurch, New Zealand, 2001
    [111] Flannery LM, Gonzalez AJ. Detecting anomalies in constraint-based systems. Engineering Applications of Artificial Intelligence, 1997, 10(3): 257~268
    [112] Billing J, Wehmeier S. Rule-based simplification of expressions. MathPAD, 2002, 11(1), 36~43
    [113] Mark AW. 数据结构与算法分析――C 语言描述(第二版). 冯舜玺译. 北京: 机械工业出版社, 2004
    [114] Esko N, Eljas SS. On finding the strongly connected components in a directed graph. Information Processing Letters, 1994, 49 (1): 9~14
    [115] Tarjan, RE. Depth first search and linear graph algorithms. SIAM Journal of Computing, 1972, 1(2): 146~160
    [116] Bunus P, Fritzson P. Semi-automatic fault localization and behavior verification for physical system simulation models. In Proceedings of the 18th IEEE International Conference on Automated Software Engineering, Montreal, Canada, 2003
    [117] Elmqvist H, Otter M, Cellier FE. Inline integration: a new mixed symbolic/numeric approach for solving differential-algebraic equation systems. In Proceedings of the European Simulation Multi-conference, Prague, Czech,1995
    [118] Shinichi S, Takashi M. Application of mixed mode integration and new implicit inline integration at Toyota. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002
    [119] Elmqvist H, Mattsson SE, Olsson H. New methods for hardware-in-the-loop simulation of stiff models. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002
    [120] Peng XB, Chen LP, Zhou FL, et al. Singularity analysis of geometric constraint systems. Journal of Computer Science and Technology, 2002, 17(3): 314~323
    [121] Health, Michael T. Scientific computing: An introductory survey. New York: McGraw-Hill, 2002
    [122] Hall P. On representatives of subsets. Journal of the London Mathematical Society, 1935, 10: 26~30
    [123] Mattsson SE, Elmqvist H, Otter M, et al. Initialization of hybrid differential-algebraic equations in Modelica 2. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700