用户名: 密码: 验证码:
太原晋阳大佛边坡岩体风化分级及地震稳定性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太原晋阳大佛开凿于北齐年间,是迄今为止我国发现的最早的大型石刻佛像,具有极高的历史和文化价值。大佛在元末毁于战火,在1980年被重新发现时已是四肢残缺、破碎不堪。文物部门决定重修大佛,重整大佛及周边环境。这对于保护珍贵的历史文化遗产、发展当地的旅游经济具有十分积极的意义。本文以大佛修复工程为依托,从岩体风化分级、结构面对岩质边坡动力响应影响规律,岩质边坡地震稳定性分析方法三个方面开展了研究。
     考虑石质文物评价对文物造型和岩体稳定性的双重要求,从岩体外部特征、岩体结构和岩体物理力学性质三方面出发建立了风化分级的指标体系,研究了岩石物理力学指标和风化风等级之间的关系,并建立了风化等级的分级标准,将层次分析法与模糊数学理论结合起来对于大佛胸部及腹部岩体的风化程度进行了评判,结果表明大佛腹部岩体存在着严重的差异风化。
     采用数值分析软件UDEC,比较系统地研究了岩体结构面对岩质边坡地震响应的影响,包括岩体阻尼、结构面刚度变化的地震动效应、结构面产状(与坡面相交以及与坡面平行)、发育位置和密度以及卸荷裂带深度对边坡岩体地震动响应的影响,揭示了一系列有价值的规律。
     提出了两种不同意义上的边坡动力稳定性概念:一是对于确定的地震荷载作用,边坡的动力稳定性安全储备有多大;二是对于确定的边坡状况,多大的地震作用会使边坡发生动力破坏。
     分别应用动力时程法与拟静力法对大佛边坡关键块体进行了地震稳定性分析。比较两种计算结果发现,相对于动力时程分析法分析结果而言,拟静力法计算结果偏于危险,但两种方法所求出的边坡破坏临界加速度基本一致。在此基础上,论文提出一种动力时程法与拟静力法相结合评价岩质边坡地震稳定性的方法。大佛边坡地震稳定性计算结果表明:单独在峰值加速度为200cm/s2的地震荷载作用下,大佛陡崖岩体不会发生顺岩层的滑动破坏;但在裂隙水压力和水平地震力联合作用下,大佛陡崖不能保持稳定。
Jinyang Grand Buddha in Taiyuan, built in Beiqi Dynasty, is the earliest large stone statue found by far in our country and has significant value in history and culture. It was destroyed due to the war at the end of Yuan Dynasty. When it was found again in 1980, the Buddha is only a headless and fragmented body. Now, the cultural-relic department determines to repair the Buddha and recondition its vicinity. This will be beneficial not only to the protection of rare cultural-relics but also to the development of local tourism-economy. Based on the repair project of the Buddha,, the classification of weathered rock mass, the influence of structure faces on the earthquake motion in a rock slope are studied in this thesis. Furthermore, some new conceptions and methods on the seismic stability of rock slope are also put forward in this paper.
     Considering the dual requirement of cultural relic for appearance and stability, the index system for weathering degree evaluation of rock mass is proposed based on the external characteristic, the rock structure and the physical and mechanical properties of rock mass. The relationship between weathering grades and the physical and mechanical properties of rock mass is studied and the evaluation standard was put forward according to the relationship. Furthermore, analytic hierarchy process and fuzzy mathematics theory were applied to evaluate the weathering grade of rock mass of Buddha in accordance to the evaluation standard. The analytic results indicate the rock mass of Buddha is differently weathered.
     The numerical simulation with software UDEC for the influence of structure faces on the earthquake motion of rock slopes are carried out systematically in this paper. The influences of the variations in the factors such as the damp ratio of rock mass, the stiffness, positions, occurrence(insert with the slope and parallel with the slope) of structure faces, and unloading depth on the earthquake motion in a rock slope were summarized by the numerical simulation results. Based on the conclusion mentioned above, some valuable laws are developed.
     Two different concepts of dynamic stability of slope were proposed. The first is used to describe the stability of slope under the constant seismic load; The second is used to describe the seismic load that the slope can sustain.
     Dynamic time-history method and quasi-static method were used to analyze the stability of key blocks on Buddha slope respectively. By comparing the results of the two different methods, It is found that quasi-static method overestimate the stability of slope, but the critical acceleration calculated by the two methods is not far off. Thus, a new method that combines the merits of the two methods is put forward to assess the seismic stability of rock slope. And the analytical results illustrate that plane sliding failure will not occur when the slope is affected only by seism. However, When horizontal seism-force and hydro-static pressure are coupled, the Buddha slope can hardly keep stable.
引文
[1]黄克忠.岩土文物建筑的保护.北京:中国建筑工业出版社,1998
    [2]潘别桐,黄克忠.文物保护与环境地质.北京:中国地质大学出版,1992
    [3]樊锦诗,彭金章,王旭东.敦煌莫高窟北区洞窟及崖面崩塌原因探讨.敦煌研究,2004,(3):74~82
    [4]杜锦华.晋阳文史资料(第五辑).太原:政协太原市晋源区文史资料委员会,2001
    [5]汪东云,刘东燕,张赞勋.摩岩石刻文物保护防风化研究现状及深化方向.重庆建筑大学学报,1997,19(2):106~111
    [6]王兴山.石刻文物表面硬度、侵蚀速率与表面风化毁损研究——以明孝陵、龙门石窟、乐山大佛为例[硕士论文].南京:南京大学,2002
    [7] Vittorio Contardi, Enrico Franceschi, Sandro Bosio, et al. On the conservation of architectural artistic handwork of the‘Pietra di Finale’. Journal of Cultural Heritage, 2000, 1(2): 83~90
    [8] J. B. Johnson, M. Montgomery, G. E. Thompson, et al. The influence of combustion-derived pollutants on limestone deterioration: 2. The wet deposition of pollutant species. Corrosion Science, 1996, 38(2): 267~278
    [9] Papida S, Murphy W, May E. Enhancement of physical weathering of building stones by microbial populations. International Biodeterioration &Biodegradation. 2000,46:305~317
    [10] Monforti F, Bellasio R, Bianconi R,et al·An evaluation of particle deposition fluxes to cultural heritage sites in Florence. Italy·Science of the Total Environment, 2004, 334-335(1): 61~72
    [11] Satake K, Inoue T, Kasasaku K,et al·Monitoring of nitrogen compounds on Yakushima Island, a world natural heritage site. Environmental Pollution, 1998, 102(1): 107~113
    [12]李文发.日本考古学领域的保存科学及高聚物应用的新动向.文博,1998,5:94~96
    [13]牟会宠,杨志法,伍法权.石质文物保护的工程地质力学研究.北京:地震出版社,2000
    [14]黄克忠.云岗石窟砂岩石雕的风化问题.水文地质工程地质,1984,3:32~35
    [15]潘别桐,刘景龙.洛阳龙门石窟环境病害与防治对策研究[J].见:文物保护与环境地质.武汉:中国地质大学出版社,1992,9~18
    [16]曲永新,黄克忠,徐晓岚等.大同云岗石窟石雕表面和表层的粉状物及其在石雕风化中的作用研究.中国地质学会专业委员会编,全国第三次工程地质大会论文集.成都:成都科技大学出版社,1988,241~246
    [17]方云,潘別桐.山西省彬县大佛寺石窟环境地质病害及防治对策.见:文物保护与环境地质,武汉:中国地质大学出版社,1992,155~160
    [18]方云,邓长青,李宏松.石质文物风化病害防治的环境地质问题.现代地质,2001,15(4):458~468
    [19]李最雄.李最雄石窟保护论文集.兰州:甘肃民族出版社,1994
    [20]汪东云,张赞勋,付林森等.宝顶山石窟岩体风化破坏的作用因素分析.工程地质学报,1994,2(20):54~65
    [21]汪东云,张赞勋,付林森等.宝顶山石窟造像岩壁风化产物化学特征及形成分析.工程地质学报,1995,3(3):18~30
    [22]李智毅,张咸恭,李宏松.忠县地面石质文物的风化病害研究.地球科学—中国地质大学学报,1995,20(4):378~382
    [23]孙进忠,陈祥,袁加贝等.石质文物风化程度超声波检测方法探讨.科技导报,2006,8:19~24
    [24]李最雄.丝绸之路古遗址保护.北京:科学出版社,2003
    [25]李最雄,王旭东.古代土建筑遗址保护加固研究的新进展.敦煌研究,1997,4:167~172
    [26]黄继忠.云冈石窟主要病害及治理.雁北师范学院学报,2003,19(5):57~59
    [27]潘別桐,黄克忠.中国石窟寺保护的环境地质问题.见:文物保护与环境地质.武汉:中国地质大学出版社,1992,1~8
    [28]黄克忠.麦积山石窟的稳定性问题.见:文物保护与环境地质.武汉:中国地质大学出版社,1992,79~86
    [29]潘別桐.龙门石窟边坡岩体动力稳定性离散元分析.见:文物保护与环境地质.武汉:中国地质大学出版社,1992,206~215
    [30]滕伟福,潘別桐,李宏松.巩县石窟寺地质病害研究及防治对策.见:文物保护与环境地质.武汉:中国地质大学出版社,1992,147~154
    [31]牟会宠,杨志法.南响堂寺石窟石窟稳定性分析及工程处理方案.见:文物保护与环境地质.武汉:中国地质大学出版社,1992,126~146
    [32]何燕,李智毅.关于河南灵泉寺石窟地质病害及整治方法的研究.岩土力学,2000,21(1):56~59
    [33]石玉成.石窟防震减灾与文物保护.灾害学,1998,13(4):90~94
    [34]石玉成,蔡红卫,徐晖平等.石窟围岩及其附属构筑物地震稳定性评价方法研究[J].西北地震学报,2000,22(1):83~89
    [35]石玉成,蔡红卫,徐晖平.石窟文物抗震安全评价方法研究.岩石力学与工程学报,2003,22(sup2):2804~2808
    [36]张国军.敦煌莫高窟北区崖体的保护加固研究[硕士论文].兰州:兰州大学,2006
    [37]刘芳珍.彬县大佛寺石窟危岩加固设计与施工.岩土工程学报,1998,20(5):112~115
    [38]樊锦诗,李传珠.锚索新技术在榆林窟岩体加固工程上的应用.敦煌研究,2000,1:119~122
    [39]刘智,方云.预应力锚杆技术加固沫滩摩崖造像危岩体.文物保护与考古科学,2004,16(1):43~46
    [40] Anand S, Gupta K, Seshagiri Rao. Weathering indices and their applicability for crystalline rocks. Bull Eng Geol Env, 2001, 60: 201~221
    [41] IAEG. Rock and soil descriptions for engineering geological mapping. Report by the IAEG Commission on Engineering Geological Mapping. Bull Int Assoc Eng Gol, 1981, 24: 235~274.
    [42] ISRM. In: Brown ET(ed), ISRM Suggested methods: rock characterization, testing and monitoring. London: Pergamon Press, 1981
    [43] .Dearman W R, Baynes F J, Irfan T Y. Engineering grading of weathered granite. J.Eng.Geo, 1978, 12:345~374.
    [44] Raman Y V, Gogte B S. Quantitative studies of weathering in saprolitized charnockites associated with a land-ship zone at the Porthimund Dam. India. Eng. Geol, 1982, 19: 29~46
    [45] Currey D T. Deeply weathered rock at victorian dam site. Eng.Geol, 1977, 11: 341~363.
    [46] Reiche P. Graphics representation of chemical weathering. J Sediment Petrol. 1943, 13: 58~68
    [47] Ruxton B P. Measures of the degree of chemical weathering of rock. J Geol. 1968, 76: 518~527
    [48] Parker A. An index of weathering for silicate rocks. Geological Magazine, 1970, 107: 501~504
    [49] Vogel D E. Precambrian weathering in acid metavolcanic rocks from the Superior Province, Villebond Township, south central Quebec. Can J Earth Sci. 1973, 12: 2080~2085
    [50] Suoeka T, Lee I K, Huramatsu M, et. al. Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria. In: Proc 1st Int Conf on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasilia. 1985, Publ 1: 175~186
    [51] Harrois. L., Moore. J. M. Geochemistry and origin of the ore chimmey formation, a transported paleoregolith in the Greenville Province of Souteastern Ontario, Canada. Chem. Geol, 1988, 69: 267~289
    [52] Jayaverdena U de S, Izawa E. A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Eng Geol, 1994, 36: 303~310
    [53] Irfan, T.Y. Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quart. J. Engng Geol, 1996, 29: 5~35
    [54] Dixon H. W. Decompositon products of rock substances: proposed engineering geological classification. In: Proc Sympon Rock Mech, Sydney University, 1969, 39~44
    [55] Onodera TF, Yoshinaka R, Oda M. Weathering and its relation to mechanical properties of granite. In: Proc 3rd Congress of ISRM Advances in Rock Mechanics, Denver, 1974, 71~78
    [56] Irfan T Y, Dearman W R. The engineering petrography of a weathered granite in Cornwall,England[J]. Q J Eng Geol. 1978, 11:233~244
    [57] Al-Qudami D, Shehata W M, Al-Harthi A A, Sabtan A. On weathering of syenite under arid conditions[J]. Bull Int Assoc Eng Geol. 1997, 56:3~8
    [58] S. Ceryan, K. Zorlu, C. Gokceoglu. The use of cation packing index for characterizing the weathering degree of granitic rocks. Eng Geo, 2008, 98: 60~74
    [59] Sousa L M O, Suarez del Rio L M, Calleja L, et al. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol. 2005, 7: 153~168
    [60] Kim Sung-Soo, Park Hyeong-Dong. The relationship between physical and chemical weathering indices of granites around Seoul, Korea. Bull Eng Geol Env. 2003, 62: 207~212
    [61] Hamrol A. A quantitative classification of weathering and weatherability of rocks. In: Proc 5th Int Conf on Soil Mechanics Foundation Engineering, 1961, Publ 7, no 3, 771~774
    [62] Iliev IG. An attempt to estimate the degree of weathering of intrusive rocks from their physico-mechanical properties. In:Proc 1st Congr Int Soc Rock Mechanism, Lisbon, 1967, 109~114
    [63] Lee S G, Freitas MH. A revision of the description and classification of weathered granite and its application to granites in Korea. Q J Eng Geol. 1990, 22: 31~48
    [64] Kilic R. A unified alteration index (UAI) for mafic rocks. Environ Eng Geosci, 1999, 4: 475~483
    [65] Fehmi Arikan, Resat Ulusay, Nihal Aydin. Characterization of weathered acidic volcanic rocks and a weathering classification based on rating system. Bull Eng Geol Environ, 2007, 66: 415~430
    [66] Merritt A H. Engineering classification for in situ rock. Ph. D. Thesis, Univ. Illinois, Urbana, 1968
    [67] Franklin J A, Chandra R. The slake durability test. Int J Rock Mech Min Sci, 1972, 9: 325~341
    [68] Shoichi Hachinohe, Nobuaki Hiraki, Takasuke Suzuki. Rates of weathering and temporal changes in strength of bedrock of marine terraces in Boso Peninsula. Japan Developments in Geotechnical Engineering, 2000, 84: 171~185
    [69]中华人民共和国水利部.水利水电工程地质勘察规范(国家标准,GB50287-99).北京:中国计划出版社,1999
    [70]中华人民共和国国家标准编写组.岩土工程勘察规范(GB500021-2001).北京:中国建筑工业出版社,2001
    [71]廖颜萱.风化岩分带指标定量研究.北京:地震出版社
    [72]聂德新,韩爱国,巨广宏.岩体风化的综合分带研究.工程地质学报,2002,10(1):20~25
    [73]吴宏伟,尚彦军,曲永新等.香港花岗岩风化分级化学指标体系与风化壳分带.工程地质学报,1999,7(2):125~134
    [74]尚彦军,吴宏伟,曲永新.花岗岩风化程度的化学指标及微观特征对比—以香港九龙地区为例.地质科学,2001,36(3):279~294
    [75]魏克和.用点荷载法对花岗岩风化程度进行定量评价的研究.水文地质工程地质,1982,(2):24~27
    [76] P.Guan, C.W.W. Ng, M. Sun, W. Tang. Weathering indices for rhyolitic tuff and granite in Hong Kong. Engineering Geology, 2001, 59:147~159
    [77]邵盛福,李院兵.黄铁矿在划分岩石风化带中的作用.湖北地矿,2001,15(2):42~44
    [78]李日运,吴林峰.岩石风化程度特征指标的分析研究.岩石力学与工程学报,2004,23(22):3830~3833
    [79]孔广胜.利用钻孔超声成像的图像特征进行岩石风化程度分类.物探与化探. 2005,29(4):367~368
    [80]巨广宏.黄河拉西瓦水电站坝区花岗岩风化研究.中国地质灾害与防治学报,2006,17(1):124~129
    [81]冯文丽,崔洪庆,刘远征.基于有序聚类法的风化岩体定量分带研究.岩土工程技术,2006,20(6):297~299
    [82]谭卓英,岳中琦,谭国焕等.金刚石钻进比功及风化花岗岩实时分级研究.岩石力学与工程学报,2007,26(sup1): 2907~2912
    [83]左三胜,任光明.运用定量指标研究岩体风化问题的探讨.山地学报,2002,20(3):365~369
    [84]张克绪,谢君斐.土动力学.北京:地震出版社,1989
    [85]祁生文.边坡动力响应分析及应用研究[博士学位论文].北京:中国科学院地质与地球物理研究所,2002
    [86]王思敬,张菊明.岩体结构稳定性的块体力学分析.地质科学,1980,1:19~33
    [87]王思敬,张菊明.边坡岩体滑动稳定的动力学分析.地质科学,1982,2: 162~170
    [88]王思敬,薛守义.岩体边坡楔形体动力学分析.地质科学,1992,2:177~182
    [89]王存玉.地震条件下二滩水库岸坡稳定性研究.岩体工程地质力学问题(七).北京:科学出版社,1987
    [90]张平,吴德伦.动荷载下边坡滑动的试验研究.重庆建筑大学学报,1997,19(2):80~86
    [91]门玉明,彭建兵,李寻昌等.层状结构岩质边坡动力稳定性试验研究.世界地震工程,2004,20(4):131~136
    [92]郝建斌,门玉明,彭建兵,等.层状岩体边坡动力稳定性模型试验研究.公路交通科技,2005,22(6):72~75
    [93]梁庆国,韩文峰,马润勇,等.强震动作用下层状岩体破坏的物理模拟研究.岩土力学,2005,26(8):1307~1311
    [94]吴伟,姚令侃,陈强,等.坡形和加筋措施对地震响应影响的振动台模型实验研究.重庆交通大学学报(自然科学版),2008,27(5):689~694
    [95]何蕴龙,陆述远.岩石边坡地震作用近似计算方法.岩土工程学报,1998,20(2):66~68
    [96]肖克强.地震荷载作用下顺层岩体边坡变形特征及稳定性研究[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2006
    [97]王环玲,徐卫亚.高烈度区水电工程岩石高边坡三维地震动力响应分析.岩石力学与工程学报,2005,24(sup2),5890~5895
    [98]刘宏,宋建波,王文俊.岩溶区层状岩质弧形边坡动力响应特征.矿业研究与开发,2007,27(5):36~38
    [99]王义锋,郑文棠,石崇.岩质高边坡的地震时程响应分析.三峡大学学报(自然科学版),2008,30(3):1~5
    [100]刘洪帅.岩质边坡地震稳定性分析方法研究[博士学位论文].哈尔滨:中国地震局工程力学研究所,2006
    [101]陶连金,苏生瑞,张倬元.节理岩体边坡的动力稳定性分析.工程地质学报,2001,9(1):32~38
    [102]胡聿贤.地震工程学.北京:地震出版社,1988
    [103]孙进忠.岩土体动力学体系框架及若干问题的研究与应用[博士学位论文].北京:中国地质大学(北京),2001
    [104] Pyrak-Nolte L J, Myer L R, Cook N G W. Transmission of seismic waves across single natural fracture. Journal of Geophysical Research, 1990, 95(6): 8617~8638
    [105] Pyrak-Nolte L J. Sesmic visibility of fractures. Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA, 1988
    [106] Murty G S. A theoretical model for the attenuation and dispertion of stonely waves at the loosely bonded interface of elastic half space. Phys. Earth Planet. Int. 1975, 11:65~79
    [107]王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律.岩土工程学报,1995,17(2):42~46
    [108] Frazer L N. SH propagation in rocks with planar fractures. Geophysical Journal International,1995, 122(1):33~62
    [109] Zhao J, Zhou Y X, Hefny A M, et al. Rock dynamic research relate to cavern development for ammunition storage. Unnelling and Underground Space Technology, 1999, 14(4): 513~526
    [110] Cai J G, Zhao J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 661~682
    [111] Zhao J, Cai J G. Transmission of elastic P-waves across single fracture with a nonlinearnormal deformational behavior,Rock mechanics and rock engineering, 2001, 34(l): 3~22
    [112]王卫华.节理动态闭合变形性质及应力波在节理处的传播[博士学位论文].长沙:中南大学,2006
    [113]张西前.节理岩体边坡爆破动力稳定性分析研究[博士学位论文].西安:西安理工大学,2006
    [114]田振农,李世海,肖南等.应力波在一维节理岩体中传播规律的试验研究与数值模拟.岩石力学与工程学报,2008,27(sup1):2688~2693
    [115]石崇,徐卫亚,周家文,张金龙.节理面非线性变形对SV波透反射性能影响.岩石力学与工程学报,2008,27(sup1):2661~2668
    [116]史丹,陈蕴生,韩信等.岩质边坡地震动力稳定性研究进展.西北农林科技大学学报(自然科学版),2006,34(2):147~152
    [117] Ling H.I., Cheng, Alexander H.D. Rock Sliding Induced by Seismic Force. International Journal of Rock Mechanics and Mining Science, 1997, 4(6): 1021~1029
    [118]姚爱军,苏永华.复杂岩质边坡锚固工程地震敏感性分析.土木工程学报,2003,36(11):34~37
    [119] L. Siad. Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dynamics and Earthquake Engineering, 2003, 23: 203~212
    [120]陈蜀俊,党晓英,曾心传等.奉节长江大桥北岸在地震荷载作用下的稳定性分析.岩石力学与工程学报,2004,23(4):657~662
    [121] R.Baker, R. Shukha, V. Operstein, et al. Stability Charts for pseudo-static slope stability analysis. Soil Dynamics and Earthquake Engineering, 2006, 26: 813~823
    [122]李维光,张继春.地震作用下顺层岩质边坡稳定性的拟静力分析.山地学报,2007,25(2):184~189
    [123] Pyke R. Selection of seismic coefficients for use in pseudo-static slopestability analyses. http://www.tagasoft.com; 1991.
    [124]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述.重庆交通学院学报,2001,20(3):83~88
    [125]洪海春,徐卫亚.地震作用下岩质边坡稳定性分析综述.岩石力学与工程学报,2005,24(sup1):4827~4835
    [126] Newmark N.M.. Effects of earthquakes on dams and embankments. Geotechnique, 1965, 15(2):139~160
    [127] Richard R, Elms DG. Seismic behavior of gravity retaining walls. Journal of the Geotechnical Engineering Division, ASCE, 1979, 105(GT4):449~464
    [128] Zarrabi K. Sliding of gravity retaining wall during earthquakes considering vertical acceleration and changing inclination of failure surface. SM Thesis, Department of Civil Engineering, MIT, Cambridge, MA, 1979
    [129] Nadim F, Whitman RV. Seismically induced movement of retaining walls. Journal of the Geotechnical Engineering Division, ASCE 1983, 109(GT7): 915~931
    [130] Ambraseys NN. Behavior of foundation materials during strong earth-quakes. Proceedings of the Fourth European Symposium on Earth-quake Engineering, London, 1972, 7
    [131] Sarma SK. Earthquake studies: report on response and stability of earth dams during strong earthquakes. US Army Procurement Agency, 1976
    [132]王思敬.岩石边坡动态稳定性的初步探讨.地质科学,1977,(4):372~376
    [133]薛守义,王思敬,刘建中.块状岩体边坡地震滑动位移分析.工程地质学报,1997,5(2):131~136
    [134]黄建梁,王威中,薛宏交.坡体地震稳定性的动态分析.地震工程与工程振动,1997,17(4):113~122
    [135]祁生林,祁生文,伍法权等.基于剩余推力法的地震滑坡永久位移研究.工程地质学报,2004,12(1):63~68
    [136]祁生文.考虑结构面退化的岩质边坡地震永久位移研究.岩土工程学报,2007,29(3):452~457
    [137] Finn W.D.L, Yogendrakumar M, Yoshida M, et al. Tara-3: A program to compute theresponse of 2-D Embankments and soil-structure interaction systems to seismic loadings. Vancouver: Department of civil engineering, University of British Columbia, 1986.
    [138]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析.地震工程与工程振动,2001,21(2):116~120
    [139]陈云.岩质边坡动力稳定性分析[硕士学位论文].南京:河海大学,2004
    [140]梁力,王伟,李明.某露天矿岩质高边坡地震动力响应及稳定性分析.金属矿山,2008,8:21~25
    [141] Cundall P. A. A computer model for simulating progressive large scale movement in block rock system. Symposium ISRM, 1971, Proc 2:129~136
    [142]刘凯欣,高凌天.离散元法研究的评述.力学进展,2003,33(4):483~490
    [143] Itasca Consulting Group. UDEC Manual,2005
    [144] Bhasin R, Kaynia AM. Static and dynamic simulation of a 700m high rock slope in western Norway. Eng Geol 2004, 71:213~226
    [145] Stead D, Eberhardt E, Coggan JS. Developments in the characterisation ofcomplex rock slope deformation and failure using numerical modeling techniques. Eng Geol 2006, 83:217~235
    [146] Vidar Kveldsvik Amir M. Kaynia, Farrokh Nadim, et, al.Dynamic distinct-element analysis of the 800m high Aknes rock slope. International Journal of Rock Mechanics & Mining Sciences, 2009,46:686~698
    [147]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用.沈阳:东北工业出版社,1991
    [148]鲁军,张楚汉等.岩体动静力稳定分析的三维离散元数值模型.清华大学学报(自然科学版),1996,36(10):98~104
    [149]毛彦龙,胡广韬,毛新虎等.地震滑坡启程剧动的机理研究及离散元模拟.工程地质学报,2001,9(1):74~80
    [150]姜彤.边坡在地震力作用下的加卸荷响应规律与非线性稳定分析[博士学位论文].北京:中国地震局地质研究所,2004
    [151]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析.岩石力学与工程学报,2007,26(12):2386~2394
    [152]梁海波,张明,李仲等.快速拉格朗日差分法及其应用.红水河,1997,16(2):21~24.
    [153]戴妙林,李同春.基于降强法数值计算的复杂岩质边坡动力稳定性安全评价分析.岩石力学与工程学报,2007,26(sup1):2749~2754
    [154] A.S Al-Homoud, W. Tahtamoni. Comparison between predictions using different simplified Newmarks’block-on-plane models and field values of earthquake induced displacements. Soil Dynamics and Earthquake Engineering, 2000, 19: 73~79
    [155]山西省地质矿产局区域地质调查队.中华人民共和国太原市地质图(1:50000)说明书.北京:全国地质资料馆,1986.
    [156]贾拱元.晋阳西山大佛修复研究岩土工程初步勘查报告.太原:山西新世纪交通建设工程咨询有限公司,2005
    [157]山西省地质矿产局第三水文地质工程地质队.中华人民共和国太原市灾害地质图(1:100000)说明书.北京:全国地质资料馆,1987
    [158]山西省地质矿产局区域地质调查大队.中华人民共和国太原市地质构造图(1:100000)及说明书.北京:全国地质资料馆,1986
    [159]山西省地质矿产局第三水文地质工程地质队.中华人民共和国太原市工程地质图(1:100000)说明书.北京:全国地质资料馆,1986
    [160] GB 50021—2001,中华人民共和国国家标准,岩土工程勘察规范.北京:中国建筑工业出版社,2002
    [161] GB 50218—94,中华人民共和国国家标准,工程岩体分级标准.北京:中国计划出版社,1995
    [162]宋建波,张倬元,于远忠,等.岩体经验强度准则及其在地质工程中的应用.北京:地质出版社,2002
    [163] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion -2002 edition.In:Proceedings of the North American Rock Mechanics Symposium Toronto, 2002
    [164]李治平.工程地质学.北京:人民交通出版社,2002
    [165]赵焕臣,许树柏,和金生.层次分析法.北京:科学出版社,1986
    [166]王莲芬,许树柏.层次分析法引论.北京:中国人民大学出版社,1990
    [167]谢全敏,夏元友.岩体边坡治理决策的模糊层次分析方法研究.岩石力学与工程学报,2003,22(7):1117~1120
    [168]夏元友,朱瑞赓.岩质边坡稳定性多人多层次模糊综合评价系统研究.工程地质学报,1999,7(1):46~56
    [169]刘春,白世伟,王刚.黄麦岭磷矿采场边坡稳定性模糊综合评判.矿冶工程,2002,22(4):36~38
    [170]陈守煜.工程模糊集理论与应用.北京:国防工业出版社,1998
    [171]宋小秋.模糊数学原理与方法.徐州:中国矿业大学出版社,1999
    [172]祁小博.大连LNG工程大连-营口段地质灾害危险性综合评估研究[硕士学位论文].北京:中国地质大学(北京),2006
    [173]沈良峰,顾苏林.边坡稳定性分析的模糊综合评判法.哈尔滨商业大学学报,2001,17(4):111~113
    [174] Kuhlmeyer R L, J. Lysmer. Finite Element Method Accuracy for Wave Propagation Problems. J.soil Mech & Foundations Div, ASCE,1973,99:421~427
    [175] Cundall P.A. UDEC—A generalized District Element Program for Modeling Jointed Roc. European Research Office, U.S.Army.1980.
    [176]刘波、韩彦辉. Flac原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [177]金春山,黄乃安.工程地震.北京:中国水利水电出版社,1995
    [178]寇力夯,王琳,徐艳杰等.基于地震实测记录的二滩拱坝模态参数识别.水利水运工程学报,2008,(3):8~14
    [179]郭易圆,李世海.有限岩柱中纵波传播规律的离散元数值分析.岩石力学与工程学报,2002,21(8):1124~1129
    [180]孙玉科.重大工程中的关键力学问题.中国科学基金,1994,3:224~227
    [181]俞言祥.长周期地震动衰减关系研究[博士学位论文].北京:中国地震局地球物理研究所,2002.
    [182]张伯艳,陈厚群,杜修力等.拱坝坝肩抗震稳定分析.水利学报,2000,(11):55~59
    [183]张伯艳,陈厚群.用有限元和刚体极限平衡方法分析坝肩抗震稳定.岩石力学与工程学报,2001,20(5):665~670
    [184]张冲,金峰,徐艳杰.拱坝—坝肩整体动力稳定分析方法研究.水利发电学报,2007,26(2):27~31
    [185]郑惠峰,汪卫明,陈胜宏.岩石边坡动力稳定安全系数的块体单元法分析.岩石力学与工程学报,2008,27(sup1):2785~2792
    [186]李梦,常晓林.基于有限元法对拱坝坝肩动力稳定的分析.湖北水力发电,2008,(2):7~9
    [187]苏永华,封立志,李志勇,等. Hoek-Brown准则中确定地质强度指标因素的量化.岩石力学与工程学报,2009,28(4):679~686
    [188]向波,周立荣,马建林.基于岩体结构面分级的抗剪强度确定法.岩石力学与工程学报,2008,27(2):3547~3552
    [189]刘春,白世伟.岩体风化程度两级模糊综合评判研究.岩石力学与工程学报,2005,24(2):252~256
    [190]李宁,韩烜,陈蕴生等.岩体节理刚度系数的现场声波测试.应用力学学报,1998,15(3):119~123
    [191]孙进忠,蔡新滨,陈祥.岩土介质动静力学参数与介质物理组构参数之间的关系.地球与环境,2005,33(3):101~106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700