用户名: 密码: 验证码:
肿瘤生长过程形态模拟及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学的飞速发展和学科之间交叉研究频频出现,计算机应用技术已经渗透到各个学科的研究。虚拟手术、虚拟人等项目便是在计算机科学与医学相结合的产物。用计算机模拟肿瘤生长也逐渐受到研究者们的关注和重视,它融合了计算机技术、计算几何、科学计算可视化、计算机图形学、生物力学、现代医学等多学科知识。用计算机模拟肿瘤生长将有助于人们了解肿瘤发生和发展的机理以及理解人体肿瘤作为自组织系统和动态演化系统的特征,对提高我国的肿瘤诊断和防治水平具有一定的意义。
     论文以模拟肿瘤在颅底(内耳附近)的有血管等组织的复杂环境生长为背景,综述了模拟肿瘤生长的结构和构成模块,并对模拟系统的关键技术进行了深入研究和探索:
     1)论文在深入研究基于方向包围盒的碰撞检测算法基础上,提出了基于近似凸包的方向包围盒(OBB:Oriented Bounding Box)构造算法和基于1-范数预判的包围盒相交测试算法。基于近似凸包的包围盒构造算法基本思想是根据近似凸包的思想提取出部分模型表面顶点集,然后对提取出的点集构造OBB包围盒。基于简单测度的包围盒相交测试算法的基本思想是在构造包围盒层次结构时,对每个包围盒,增加两条记录分别记录包围盒中心点到包围盒顶点距离的最大值和最小值,这里的距离是1-范数意义下的距离。在包围盒相交测试时,首先判断当前两个待判断包围盒的中心之间的距离是否比两个包围盒的最小记录之和小,如果条件成立,则判定两个包围盒相交,否则进一步判断包围盒中心之间的距离是否比两个包围盒的最大记录大,如果条件满足,则可判定两个包围盒不相交,如果前面两个条件都不满足,则按分离轴的方法分别在15个轴上进行投影判断。为了避免乘方和开方以提高预判速度,包围盒的最大值、最小值记录和包围盒中心的距离采用每个1-范数计算。
     2)提出了基于隐式曲面和惩罚力的碰撞响应算法。首先通过A、B两模型的碰撞检测得到B模型相交基本几何元素集,将B模型的这些基本几何元素中的代表模型表面的顶点构造隐式曲面。根据A模型顶点的隐函数值将A模型的顶点分为两类,碰撞点集和非碰撞点集。对每一个碰撞点集的点,计算其梯度向量并单位化,然后乘以该点的隐函数值得到点的深度向量。根据深度向量计算力向量,最后通过相应的力学模型计算A物体顶点的位移,从而得物体形变结果。
     3)为了给肿瘤模型建立以四面体为基本单元的元胞有限元力学模型,以便肿瘤模型在生长过程中肿瘤模型和组织器官模型能表现出真实的行为,提出了如何将以六面体为基本单元的细胞自动机空间的肿瘤模型网格转化为以四面体为单元的网格。由于以四面体为单元的有限元力学分析比以六面体为单元的有限元力学分析更为准确,所以要将元胞自动机空间(CA:Cellular Automata)肿瘤模型进一步划分为以四面体为基本单元的网格。对于每一个六面体,首先标志出8个顶点中不属于肿瘤模型的顶点和属于肿瘤模型的顶点。然后把属于肿瘤模型的顶点根据顶点到最近非肿瘤模型顶点的最短路径的大小进行分类,最后根据本文第5章5.4部分的划分策略将属于肿瘤模型的顶点划分为互不交叉四面体。对肿瘤模型所占的每个细胞进行同样的处理,得到以四面体为基本单元网格模型。另一方面,针对用细胞自动机得到的肿瘤模型的特殊性,论文提出一种提取肿瘤模型表面顶点和提取表面三角形面片集的方法,计算顶点的法向量,并用隐式曲面对肿瘤体模型进行渲染。
     4)针对从人体切片重建模型中提取的血管模型形态的不准确性,及其对血管力学性质的影响造成力学分析的不准确的情况,论文提出了一种血管模型形态纠正算法。基本思想是:利用拾取技术对一段血管拾取两个点,从而计算一条近似的血管中轴,然后根据血管段顶点到中轴的距离统计情况,对满足一定条件的点沿着血管截面半径方向向外或向内移动顶点。
With the development of the computer science and the continual appearance of the cross-discipline researches, computer application technology has been used widely in multitudes of subjects'researches. The virtual operation and virtual human are the products in combination with computer science and medicine. The simulation of the tumor growth using computers attracts the attentions of many researchers. This technology involves computer application, computational geometry, and visualization in scientific computing, computer graphics, biomechanics and medicine. The simulation of tumor growth using computers can help people to explore the mechanism of the tumor generation and growth and then to understand the characteristics of tumor as a self-organizing system and a dynamic evolvement system, which in turn has great significance for the diagnosis of tumor prevention and cure.
     The dissertation firstly sets its background in the tumor growth simulation in vein complex environment located at the skull base, then summarizes the structure of the simulation system and studies the crucial technology of simulating system.
     1) With the thorough research of the collision detection algorithm based on oriented bounding box, a new construct algorithm using approximate convex hull and a new test algorithm using 1-norm pre-judgment are presented in the dissertation. The constructing algorithm of OBB basing on approximate convert hull is divided into two stages. Firstly, extract the vertices near the model surface to construct OBB by way of the approximate convex hull algorithm. Secondly, constructing OBB using the extracted vertices set. The basic idea of the test algorithm on simple measure OBB is that add 2 records to record the maximum and minimum distances from the center of OBB to the vertices of bounding box when constructing the hierarchical structure. First of all, judge whether the centre distance between the two bounding boxes is less than the sum of the two bounding boxes' minimum distance. The two bounding boxes are judged whether they are overlapped when the centers'distance of the two OBBs is less than the sum of the two minimum records. Then consider whether the distance of the centers between the two bounding boxes is greater than the sum of the max records. If the condition is satisfied, the bounding boxes are not considered overlapped, otherwise, project boxes to 15 axes by way of separating axis to judge whether the two OBB are overlapped. To speed up pre-judging process, the max record, the min record and the centers distance are computed by 1-norm.
     2) The thesis presents a collision response algorithm basing on punishment force and implicit surface. First, obtain the intersected set of the geometrical element of model B by the collision detection between model A and model B. Then construct implicit surface using the surface vertices extracted from intersected vertices of Model B. According to the implicit function value of vertices in the model A, the vertices sets of Model A are classified into two groups:the set of collision and the set of non-collision. For the vertices involved in the set of the collision, compute gradient vector of every vertex and then normalized them. Then multiply the results derived from the previous process with the value of implicit function. And finally, the depth vector is used to compute the force vectors, the result of shape change can be obtained by means of computing the displacement of the vector of A.
     3) The paper proposes a method to convert a hexahedron CA mesh into a new tetrahedron CA mesh in order to construct accurate force model which helps simulate the interaction process between tumor model and tissue model. The FEM analysis of tetrahedron mesh is more accurate than the FEM analysis of hexahedron mesh, so we should convert the hexahedron mesh into tetrahedron mesh. For every hexahedron, first label the vertices belonging to tumor model and the vertices which do not belong to tumor model. Then classify the vertices according to minimum distance to vertex not belonging to tumor model, finally based on the strategies proposed in the 5.4 part of the dissertation, divide the tumor model into tetrahedron which in not overlapped. Deal with every cell of the tumor model with the same method to get tetrahedron mesh. On the other hand, with regard to the specialties of tumor model obtained from CA model, the thesis proposes an algorithm to abstract the surface vertices and surface triangles, which will make computing the normal vectors apply in rendering tumor volume model with implicit surface.
     4) Since the vessel model extracted by reconstructed model is inaccurate and the inaccurateness will lead to the inaccurateness of force analysis, the dissertation puts forward an algorithm on rectifying the vessel model. The basic idea of the algorithm is:computing an approximate vessel axis by extracting 2 points; then according to the statistics of the distance between the vertices and the axis, moving the vertices inwardly or outwardly along the vessel's radius direction.
引文
[1]H.I. Pass, J.B.Mitcell, D.H. Johnson, A.T.Turrisi, Lung Cancer, Principles and Practice (Lippincott-Raven, Philadelphia, New York,1996).
    [2]H.Lodish, D.Baltimore, A. Berk, S. L.Zipursky, P.Matsudaira, J.Darnell, Molecular Cell Biology (Scientific American Books, New York,1995) 1247-1294
    [3]J.D.Watson, N.H.Hopkins, J.W.Roberts, J.A.Steitz, A.M.Weiner, Molecular Biology of the Gene,4th Edition (The Benjamin/Cummings Publish Company, Inc., Menlo Park, California, 1987)1058-1096
    [4]J.F. Fowler, Review of radiobiological models for improving cancer treatment, in:K.Baier and D.Baltas,eds, Modelling in Clinical Radiobiology, Freiburg Oncology Series, Monograph No.2 (Albert-Ludwigs-University Freiburg, Genmany,1997)
    [5]Greenspan H. Models for the growth of solid tumors by diffusion. Stud Appl Math,1972, 51(4):317-340
    [6]Greenspan H. On the growth and stability of cell cultures and solid tumors. J Theor Biol, 1976,56(1) 229-242
    [7]Byrne H, Chaplain M. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math Biosci,1995,130(2); 151-181
    [8]Byrne H, Chaplain M. Growth of necrotic tumors in the presence and absence of inhibitors. Math Biosci,1996,136(2):187-216
    [9]Byrne H, Chaplain M. Free boundary value problems associated with the growth and development of multicellular spheroids. European J Appl Math,1997,8(6):639-658
    [10]McElwin D. Pettet G. Cell migration in multicell spheroids:swimming against the tide. Bull Math Biol,1993,55(3):655-674.
    [11]Pettet G, Please C, McElain M. The migration of cells in multicell tumor spheroids. Math Biol,2001,83(2):231-257
    [12]Sherrat J, Chaplain M. A new mathematical model for vascular tumor growth. J Math Biol, 2001,43(4) 291-312
    [13]Thompson L, Byrne H. Modelling the internalization of labeled cells in tumor sphroids. Bull Math Biol,1999,61(4):601-623
    [14]Vaidya V G,A lexandro JRFJ. Evaluation of some mathematical models for tumor growth. Int. J. Bio-Medical Computing,1982; 13:19
    [15]Miljenko Marucis, Mathematical models of tumor growth. The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian Mathematical Society-Division Osijek, June 7,1996.175-192
    [16]Steel GG Growth kinetics of tumors[M]. Oxford:Clarendon Press.1997.
    [17]Adam J. A. A simplified mathematical model of tumour growth. Math. Biosci,1986, 81:224-229
    [18]Ward J. P.& King J. R. Mathematical modeling of acascular-tumour growth. IMA J. Math. Appl. Med. Biol,1997,14
    [19]Byrne H. M.& Chaplain M. A. J. Necrosis and apoptosis:distinct cell loss mechanisms in a mathematical model of avascular tumour growth in cultured cell spheroids. Int. J. Cancer, 1998,42
    [20]Tracqui P, Cruywagen G C, Woodward D. E, ect. A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif,1995,28
    [21]C.P.Plese, G Pettet, D.L. S. Mecelwain. New approach to Modelling the Formation of Necrotic Regions in tumours. Appl. Math. Lett,1998,11:89-94
    [22]Stephen Wolfram. Statistical Mechanics of Cellular Automaton. Rev. of Modern Physics,1983,55.
    [23]花福安,杨院生,郭大勇,童文辉,胡壮麒,基于曲率驱动机制的晶粒生长元胞自动机模型,金属学报,Vol.40,No.11 2004年11月 1210~1214
    [25]赵雪平,杨宝俊,固体介质中细胞自动机有限深势阱的量子力学分析,地球物理学进展,Vol.21 No.1 2006年3月 53~60
    [26]沈成武,唐小兵,杨吉新,平面桁架力学分析的细胞自动机方法初探,武汉交通科技大学学报 Vol.24,No.2,2000年4月,105~108
    [27]沈成武,杨吉新,马道远,细胞自动机方法在空间桁架力学分析的应用,《工程力学》增刊2000年,259~264
    [28]庞东晓,刘清友,李斌,基于元胞自动机的钻柱力学模型建立和求解。石油机械,Vol.35,No.4,2007年 15~17,45
    [29]Stephen Wolfram. Statistical Mechanics of Cellular Automaton. Rev. of Modem Physics. 55.1983
    [30]K.Nagel, M.Schreckenberg. J. Phys.Ⅰ(France),1992,2:21-22
    [31]M.Fukui, Y.Ishibashi. J.Phy.Soc.Japan.1996,65:1868
    [32]王雷。一维交通流元胞自动机模型中自组织临界性及相变行为的研究[博士学位论文][D],北京,中国科学技术大会,2000年。
    [33]O.Biham, A.Middleton, D.Levine. Phys.Rev.A.1992,46:R6124.
    [34]Wasserman R, Acharya R, Sibata C. & Shin K. H. A patient-specific in vivo tumour model. Math. Biosci.1996,136
    [35]Chaplain M. A. J. & Slemman B. D. Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J. Math. Biol, 1993,31:431-473
    [36]付振南,许庆彦,熊守美,基于概率捕获模型的元胞自动机方法模拟镁合金枝晶生长过程,中国有色金属学报Vol.17,No.10.2007年10月 1567~1573
    [37]Szczerba, D., Szekely, G:Simulating vascular systems in arbitrary anatomies. In:Duncan, J.S., Gerig, G (eds.) MICCAI 2005. LNCS, vol.3750, pp.641-648. Springer, Heidelberg (2005)
    [38]Szczerba, D., Szekely, G, Kurz, H.:A multiphysics model of capillary growth and remodeling. In:Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol.3992, pp.86-93. Springer, Heidelberg (2006)
    [39]Lloyd, B., Szczerba, D., Sz'ekely, G:A coupled finite element model of tumor growth and vascularization. In:Ayache, N., Ourselin, S., Maeder, A. (eds.)MICCAI 2007, Part II. LNCS, vol.4792, pp.874-881. Springer, Heidelberg (2007)
    [40]吴金,肿瘤生长过程的仿真分析[D],华中科技大学.中国。武汉。2004年3月
    [41]M.Gardner. The fantanstic combination of John Conway's new solitaire game life[J]. Scientific American.1970,220(4):120
    [47]Chopard B, Droz M. Cellular Automata Modeling of Physical Systems[M]. London, Cambridge University Press,1998.
    [48]Gianluca Tempesti. A New Self-reproducing Cellular Automata Capable of Construction[M]. Grenada, Spain, Advances in Artificial Life,1995.
    [49]Frekin E. Information Processing and Transmission in Cellular Automata[R]. Massachusetts MIT press,1971.
    [50]Frekin E. Digital Mechanics An Informational Process Based on Reversible Universal CA[J]. Physica D,1990,45:254:256
    [51]JIN Yu-Liang, YAN Guang-wu. Three-dimensional Fredkin-rule Cellular Automata[J]. Journal of Jilin University (Science Edition),2005,43(1):47:48.(金玉良,闫广武,三维Fredkin规则元胞自动机[J].吉林大学学报(理学版),2005,43(1):47~48)
    [52]A.R.Kansal, S.Torquato,GR.Harsh Ⅳ, E.A.Chiocca and T.S.Deisboeck:Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automation [J]. J.theor.Biol.(2000) 203,367-382
    [53]胡日查,阮晓刚.模拟肿瘤生长的Logistic细胞自动机模型[J]生物医学工程学杂志2003;20(1):79~82
    [54]于乃功,阮晓钢.基于细胞自动机的生长系统仿真模型研究[J].计算机仿真.2005.2,22(2):228~231.
    [55]傅延亮,李用普,傅南枝,一个良性肿瘤细胞生长的计算机仿真模型,生物学杂志,Vol.18. No.6.2001年 12月.22-25
    [56]孙亮,常云峰,基于Potts模型的恶性肿瘤生长的二维随机模拟。华中师范大学学报(自然科学版)。Vol.37.No.4 2003年12月。491~495。
    [57]B.Naylor, J.Amanatides, W.Thibault. Merging BSP Trees Yields Polyhedral Set Operations. ACM Computer Graphics (SIGGRAPH'90 Proceedings),1990,24(2):115-124
    [58]W.Thibault and B.Naylor. Set operations on Polyhedra Using Binary Space Partitioning trees. ACM Computer Graphics.1987,21(4):153-162
    [59]M.Moore and J.Wilhelms. Collision detection and response for computer animation. ACM Computer Graphics,1988,22 (4):289-298
    [60]H.Noborio, S.Fukuda and S.Arimoto. Fast Interference Check Method Using Octree Representation. Advanced Robotics.1989,3(3):193-212
    [61]J.L.Bentley. Multidimensional Binary Search Trees Used for Associative Searching. ACM Communications.1975,18(9):509-517
    [62]Stephen J.Adelson and Larry F.Hodges, Generating exact ray-traced animation frames by reprojection. IEEE Computer Graphics and Applications,1995,15(3):43-52
    [63]T.L.Kay and J.T.Kajiya, Ray tracing complex scenes. ACM Computer Graphics,1986, 20(4):269-278
    [64]J.Goldsmith and J.Salmon. Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphics and Application.1987,7(1):14-20
    [65]H.Weghorst, GHooper and D.P.Greenberg. Improved computational methods for ray tracing. ACM Transaction on Computer Graphics.1984,3(1):52-69
    [66]Fabio Ganovelli, John Dingliana, Carol O'Sullivan. BucketTree:Improving Collision Detecction Betwwen Deformable Objects, http://vcg.isti.cnr.it/publications/papers/buckettree.pdf.
    [67]周益胜,丁国富,许明恒,何邕。实时碰撞检测算法综述,计算机应用研究第 25卷第1期。2008年1月 8~12
    [68]D.H.Ballard. Strip trees:A hierarchical representation for curves. Comm.ACM,,May 1981, 24(5):310-321
    [69]GBarequet, B.Chazelle, L.J. Guibas, J.S.B.Mitchell. A.Tal.BOXTREE:A Hierarchical Representation for Surfaces in 3D. EUROgRAPHICS'96, j.Rossignac and F. Silliion, eds., Blackwell Publishers, Eurographics Association, Voll 5(3):C-387-C-484,1996
    [70]GZachmann.. Exact and Fast Collision Detection. Diploma thesis, Fraunhofer Institute for Computer Graphics, Technische Hochschule Darmstadt, Fachbereich Informatik,Germany,1994
    [71]GZachmann, W. Felger. The Box Tree:Enabling real-time and exact collision detection of arbitrary polyhedra. Proc. SIVE'95,1995,104-113
    [72]S.Gottschalk, M.C.Lin, D.Manocha, OBB-Tree:A Hierarchical Structure for Rapid Interference Detection, Proceedings of ACM Siggraph'96
    [73]Stefan Gottschalk. Collision Queries Using Oriented Bounding Boxes, PhD thesis, University of North Carolina,2000.
    [74]Chen Cheng-jun, A.Y.C.Nee, S.K.Ong,Zhou Yi-qi,Qu Bin. An Improved Haptic Interface for Virtual Assembly Operations. Second Workshop on Digital Media and its Application in Museum&Heritatage. December,2007.410-415
    [75]崔汉国,陈军,王大宇.虚拟环境中优化的OBB碰撞检测算法研究,计算机工程与设计 第28卷 第11期 2007年6月 2524~2526
    [76]魏迎梅.虚拟环境中碰撞检测问题的研究,博士毕业论文,国防科技技术大学。湖南,长沙,2000年10月 6~7
    [77]赵军.一种基于OBB的三维医学碰撞检测算法 兰州交通大学学报 第27卷 第三期2008年6月 101~103
    [78]张勤、黄琨,李光明,一种基于OBB的碰撞检测算法的改进[J],华中科技大学学报(自然科学版),2003,31(1),46~48
    [79]Jimenez P, Thomas F, Torras C.3D Collision detection a survey[J]. Computers and Graphics,2001,25(2):269-285
    [80]Bo Zhu, Lixu Gu, Jingsi Zhang, A Method For Collision Response Between Deformable Objects in Virtual Surgery[C],6th International Special Topic Conference on ITAB,2007, Tokyo.119-122.
    [81]Marie-Paule, Cani-Gascuel, Mathieu Desbrun, Animation of Deformable Models Using Implicit Surfaces, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSC, VOL.3, NO.1, MARCH 1997 39-50
    [82]Marie-Paule Gascuel, An Implicit'Formulation for Precise Contact Modeling between Flexible Solids, Pro,Siggraph,1993,313-320
    [83]D. Baraff, "Coping with Friction for Non-penetrating Rigid Body simulation[J]". Computer Graphics, vol.25, no.4,1991.31-40
    [84]D. Baraff, "Fast contact Force Computation for Non-penetrating Rigid Bodies", Proc. Siggraph,1994.23-34
    [85]F.Faure, "An Energy-Based Method for Contact Force Computation", Proc. Eurographics, 1996; 357-366
    [86]Liangjun Zhang, Young J.Kim, Gokul Varadhan, Dinesh Manocha, " Generalized Penetration Depth Computation", Robotics:Science and Systems Conference (RSS07),2007. be avilablie:http://gamma.cs.unc.edu/PDG.
    [87]G Nawratil, H. Pottmann, and B. Ravani:Generalized Penetration Depth Computation based on Kinematical Geometry. Journal of Computer Aided Geometric Design 26 (4) (2009)425-443.
    [88]G Turk, J. O'Brien, "Variational Implicit Surfaces," Technical Report GIT-GVU-99-15, Georgia Institute of Technology,1998.
    [89]J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, T. T. Evans, "Reconstruction and Representation of 3D Objects with Radial Basis Functions," Proc. ACM Siggraph 2001,2001,67-76.
    [90]N. Kojekine, I. Hagiwara, V. Savchenko, "Software Tools Using CSRBFs for Processing Scattered Data," Computers & Graphics, vol.27, no.2,2003,311-319.
    [91]高昊,许世雄,蔡颍等,肿瘤血管生成的二维数值模拟,力学季刊,Vol.26 No.03.2005年。
    [92]S.Wolfram. University and Complexity in Cellular Automata[J], Physica D,1984,10(1): 1-35
    [93]T. Toffoli, N.Margolus. Cellular Automata machines[J]. The MIT Press, Cambridge, Massachusetts,1987.
    [94]K. Gulik II, L.P.Hurd, S.Yu. Computation theoretic aspects of cellular automata[J]. Physica D,1990,45:357-378
    [95]S.Rao Kosaraju. On Some Open Problem in the Theory of Cellular Automata[J]. IEEE Transactions on Computers,1974,23(6):561-565.
    [96]Pob Yong KON, and Kiyoshi FURU YA, State Diagrams of Elementary Cellular Automata with Arbitrary Boundary Conditions[C]. IEEE Trans.Information & System,1998, E81-D(7): 753-758.
    [97]P.Bardell, Analysis of cellular automata used as pseudoradom pattern generators[C]. In. Proceedings of the on IEEE International Test Conference, IEEE Press, Piscataway, NJ,1990, 762-768.
    [98]Kevin Cattell. Jon C.Muzio. Analysis of One-dimensional Linear Hybrid Cellular Automata over GF(q)[C]. IEEE Transaction on Computers,1996,45(7):782-791.
    [99]B.K.Kar. On Explicity Expressions in Additive Cellular Automata Theory[J]. Information Sciences,1993,72:83-103.
    [100]DINGLIANA J.O'SULLIVAN C. Graceful degradation of collision handling in physically based animation[J]. Computer Graphics Forum,2000,19(3):239-247
    [101]O'SULLIVAN C, DINGLIANA J. Real-time collision detection and response using sphere-trees[C].//Proc of Spring Conference on Computer Graphics Bratislava,1999,83-92.
    [102]LIN M. GOTTSCHALK S. Collision detection between geometric models a survey[C] //Proc of MA Conference on Mathematics of Surfaces.1998.37-56
    [103]REDON S, KHEDDAR A, COQUILLART S. CONTACT:arbitrary in-between motions for continuous collision detection[C]//Proc of IEEE ROMAN',2001.
    [104]S.A Cameron, R. K. Culley, "Determining the Minimum Translational Distance Between Two Convex Polyhedra", Proc. IEEE Int. Conf. Robotics and Automation.1986.591-596.
    [105]L. Guibas, R. Seidel, "Computing Convolution:by Reciproacal Search", Proc. Symposium on Computational Geometry,1986,90-99.
    [106]D. Dobkin, J. Hershberger, D. Kirkpatrick, S. Suri, "Computing the Intersection Depth of Polyhedra", Algorithmica, vol.9,1993,518-533.
    [107]E. G Gilbert, D. w. Johnson, S. S. Keerthi, "A Fast Procedure for Computing the Distance Between Objects in Three-Dimensonal Space", IEEE Journal Robotics and Automation, vol.4,1988,193-203
    [108]S. Cameron, "Enhancing GJK:Comjputing Minimum and Penetration Distance Between Convex Polyhedra", Proc. Int, Conf Robotics and Automation,1997,3112-3117.
    [109]G van den Bergen, "Proximity Queries and Penetration Depth Computation on 3D Game Objects", Proc. Game Developers Conf.2001.
    [110]K. Hoff, A. Zaferakis, M.Lin, D. manocha, "Fast 3D Geometric. Proximity Queries Between Rigid and Deformable Models Using Graphics Hardware Acceleration", Technical Report University of North Carolina, Computer Science,2002.
    [111]A. Sud, M. A. Otaduy, D. Manocha, "DiFi:Fast 3D Distance Field Computation Using Graphics Hardware", Proc. Eurographics,2004.
    [112]Y. J. Kim, M. C. Lin, D. manocha, "Incremental Penetration Depth Estimation Between Convex Polytopes Using Dual-Space Expansion", IEEE Transactions on Visualization and Computer Graphics, vol.10, no.2,2004.
    [113} Bruno HeidelBerger, Matthias Teschner, Richard Keiser, etc. Consistent penetration depth estimation for deformable collision response, VMV 2004, Stanford, USA, November,2004,16-18
    [114]H. Hoppe, T. DeRose, T. Duchamp, "Surface Reconstruction from Unorganized Points", Computer Graphics, Vol.26, no.2,1992,71-78
    [115]E. Shaffer, M. Garland, "Efficient Adaptive Simplification of Massive Meshes", IEEE Visualization 2001,2001,127-134
    [116]Ulf Tiede, Karl Hoehne Hoehne, Bomans M, et al. Investigation of medical 3D-rendering algorithms[J]. IEEE Computer Graphics and Applications,1990,10(2):41-53
    [117]Levoy M. Volume rendering-display of surfaces form volume Data[J]. IEEE Computer Graphics&Applications.1988.8(3).29-37.
    [118]Luo L M, Hamitouche C, et al. A moment-based three-dimensional edge operator[J]. IEEEE Trans. On BME.1993,40(7):693-703
    [119]F. Girosi, M. Jones, T. Poggio, "Priors, Stabilizers and Basis Functions:from Regularization to Radial, Tensor and Additive Splines," In:Technical Report:AIM-1430, MIT, 1993.
    [120]W. E. Lorenson, H. F. Cline, "Marching cubes:A High Resolution 3D Surface Construction Algorithm," Computer Graphics, vol.21, no.4,1987, PP.163-169
    [121]B. Wyvill, C. McPheeters, G. Wyvill, "Data Structure for Soft Objects," The Visual Computer, vol.2, no.4,1986, pp.227-234
    [122]P. Shirley, A. Tuckman, "A Polygonal Approximation to Direct Scalar Volume Rendering," Computer Graphics, vol.24, no.5,1990, pp.63-70
    [123]M. Hall, J. Warren, "Adaptive Polygonalization of Implicitly Defined Surfaces, " IEEE Computer Graphics & Applications, vol.10, no.6,1990, pp.33-42
    [124]杨吉新,“元胞单元法理论研究及程序设计[D]”,博十学位论文,武汉理工大学,2002年6月
    [125]Francis PagC, Frangois Guibault "collision detection algorithm for NURBS surfaces interactive applications" CCECE 2003-CCGEI 2003, Moneal, May/mai 2003
    [126]谭同德,吴强,赵红领,秦安亮,OBB层次包围盒构造方法的改进,计算机工程 与应用,2008,44(5),79~81
    [127]周培德.计算几何-算法设计与分析[M].北京:北京大学出版社2005,112~113
    [128]王炜,包卫东,张茂军,等。虚拟仿真系统导论[M]。长沙:国防科技大学出版社,2007
    [129]S. Redon, Y. J. Kim, M. C. Lin, D. Manocha, "fast continuous collision detction for articulated models", Proc. Symposium Solid Modeling and Applications,2004.
    [130]M. Teschner, B. Heidelberger, M. Muller, D Pomeranets, M. Gross. "Optimized spatial hashing for collision detection of deformable objects", Proc. Vision, Modeling, Visualization VMV'03,2003.47-54.
    [131]W. Martin, E. Cohen, F. Russell, S. Peter. "Practical Ray Tracing of Trimmed NURBS Surfaces," Journal of Graphics Tools, vol.5, no.1,2000,27-52
    [132]G Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation[C]. In:WEL Grimson ed. Proceedings of the Fifth International Conference on Computer Vision, Los Alamitos:IEEE Computer Society Press,1995; 902-907
    [133]神会存,李建华,周来水,三角网格模型顶点法矢与离散曲率计算[J].计算机工程与应用,2005,41(26):12~15
    [134]俞铭华,吴剑国,曹骥等。有限元法与面向对象编程[M]。北京:科学出版社,2004,238~239。
    [135]管伟光.体视化技术及其应用.北京:电子工业出版社,1998,60~120
    [136]秦绪佳,“医学图像三维重建及可视化技术研究[D]”,大连,大连理工大学,2001年6月
    [137]Ingo Wald, Heiko Friedrich, Gerd Marmitt, Faster Isosurface Ray Tracing Using Implicit KD-Trees, IEEE Transactions on visualization and computer graphics, Vol.11, No.5, September/October 2005 562-572
    [138]Daniel J. schneck, Joseph D. Bronzino, Biomechanics Principles and Applications,2003 21-33
    [139]Nikolas Paries, Patrick Degener, Reinhad Klein, simple and efficient mesh editing with consistent local frames[C],15th pacific conference on computer graphics and applications 2007 461-464
    [140]Shin Yoshizawa, Alexander GBelyaev, Hans-Peter Seidel, A Simple Approach to Interactive Free-Form Shape Deformations, Proceedings of the 10th pacific conference on computer graphics and applications(PG'02) 2002
    [141]K C Hui, H C leung, Virtual Sculpting and Deformable Volume Modelling, Proceedings of the sixth international conference on information visualization (IV 02) 2002
    [142]Kitagawa H. Theory of Elasticity and Plasticity-Foundament of Non-linear Analysis[M]. Tokyo:Shokabo,1987,46-62
    [143]潘鹏志。岩石破裂过程及其渗流—应力耦合特性研究的弹塑性细胞自动机模型[博士毕业论文][D].武汉:岩土力学所.2006
    [144]H. SAMET, "Quadtree, Octrees, and Other Hierarchical Methods", Addison Wesley, 1989
    [145]C. Jackins, S. Tanimoto, "Oct-trees and Their Use in Representing Three-dimensional Objects", Computer Graphics and Image Processing, vol.14,1980,249-270
    [146]D Keren, D Gotsmanl Fitting curves and surfaces with constrained implicit polynomials [J]1 IEEE Trans on Pattern Analysis and Machine Intelligence,1999,21 (1):31-41
    [147]J F Blinnl A generalization of algebraic surface drawing [J].ACM Trans on Graphics, 1982,1 (3):235-256
    [148]D Keren, D Cooperl Describing complicated objects by implicit polynomial [J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1994,16 (1):38-53
    [149]Li Daolun, Lu Detang, Kong Xiangyan. Implicit curve based on radial basis function network [J]. Journal of Computer Research and Development,2005,42 (4):599-603 (in Chinese)(李道伦,卢德唐,孔祥言1基于径向基函数的隐式曲线[J].计算机研究与发展,2005,42(4):599-603)
    [150]A M Cretu, E M Petriu, et al. Neural network architecture for 3D object representation [C]. The Conf on Audio and Visual Environments and Their Applications, Haptic,2003
    [151]M Carcenac, A Acan. Modeling an isosurface with a neural network [C]. Pacific Conf on Computer Graphics and Applications,Hong Kong,2000
    [152]I P Ivrissimtzis, W K Jeong, H P Seidel. Using growing cell structures for surface reconstruction [C]. The Int'l Conf on Shape Modeling and Applications, Seoul, Korea,
    2003
    [153]Ioannis Ivrissimtzis, et al. Neural meshes surface reconstruction with a learning algorithm [R]. Max-Planck-Institut fuer Informatik, Tech Rep:MPI-I,2004.1-16
    [154]Y-H Tseng, J-N Hwang, F H Sheehanl 3-D heart contour delineation and motion tracking of ultrasound images using continuous distance transform neural networks [C]. The Workshop on Neural Networks for Signal Processing, Kyoto,1996.
    [155]Ward J, King J. Mathematical modeling of vascular-tumor growth. IMA J Math Appl Biol Med,1997,14(1):39-69
    [156]Ward J, King J. Mathematical modeling of vascular-tumor growth II:Modelling growth saturation. IMA J Math Appl Biol Med,1999,16(2):171-211
    [157]L. Velho, "Adaptive Polygonization Made Simple," Proc. SIBGRAPI'95,1995,111-118.
    [158]L. Velho, "Simple and Efficient Polygonization of Implicit Surface," Journal of Graphics Tool, vol.1, no.2,1996,5-25.
    [159]M. Desbrun, N.Tsingos, M.P.Cani, "Adaptive Sampling of Implicit Surfaces for Interactive Modeling and Animation," Computer Graphics Forum, Vol.15, no.5,1996,319-325
    [160]B.Crespin, P. Guitton, C.Schlick, "Efficient and Accurate Tessellation of Implicit Sweep Objects," Proc. Constructive Solid Geometry'98,1998,46-63
    [161]A. Bottino, W. Nuij, K. van Overveld, "How to Shrink-wrap Through A Critical Point. " Proc. Implicit Surfaces'96,1996,53-73
    [162]E. Allgower, S. Gnutzmann, "Simplicial Pivoting for Mesh Generation of Implicitly Dfined Surfaces," Computer Aided Geometric Design, vol.8,no.41991,305-325
    [163]J. Bloomenthal, "An Implicit Surface Polygonizer," Graphics Gems IV,1994,324-349
    [164]W. E. Lorenson, H.F. Cline, "Marching Cubes:A High Resolution 3D Surface Construction Algorithm," Computer Graphics, vol.21, no.4,163-169
    [165]M. Levoy, "Efficient Ray-Tracing of Volume Data," ACM Transactions on Graphics, 1990,9(3),245-261
    [166]J. Hart, "Sphere Tracing:a Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces," The Visual Computer, vol.12,no.10,1996,527-545 [167] A Sherstyuk, "Fast Ray Tracing of Implicit Surfaces," Computer Graphics Forum,1999, 18(2),139-147
    [168]D P. Mitchell, "Robust Ray Intersection with Interval Arithmetic," Proc. Graphics Interface'90,1990,68-74
    [169]D. Karla, A.H.Barr, "Guaranteed Intersections with Implicit Surfaces," Computer Graphics,1989,23(3),297-306.
    [170]G. Schaufler, H.WJensen, "Ray Tracing Point Sampled Geometry," Rendering Techniques 2000, EG workshop on rendering,2000,319-328
    [171]J. Kajiya, "Ray Tracing parametric patches," Computer Graphics,1982,16(3),245-254
    [172]R. Szeliski, D. Tonnesen, "Surface Modeling with Oriented Particle Systems", Proc. The 19th Annual Conference on Computer Graphics and Interactive Techniques,1992,185-194
    [173]A.P. Witkin, P. S. Heckbert, "Using Particles to Sample and Control Implicit Surfaces," Proc. ACM Siggraph1994,1994,269-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700