用户名: 密码: 验证码:
混凝土损伤演化的CT研究及其在细观数值模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土类岩土材料的破裂过程,是一个复杂的非线性材料损伤演化过程,一直是力学、材料和工程等各学科的研究热点和难点之一。破裂过程主要表现在材料内部初始缺陷能量积聚,微裂纹不断萌生,扩展、贯通直至整体失稳的过程,其宏观表现为材料力学性能的不断劣化。本文将细观力学、损伤力学、统计理论和数值计算理论相结合,运用可以有效观测材料细观损伤演化的CT技术对混凝土材料裂纹的扩展、贯通以及最后破坏的过程进行研究,以此来分析混凝土的裂纹扩展及破坏形态,揭示出混凝土材料的损伤破裂机理,本文的研究工作可以总结为以下几个方面:
     (1)详细介绍了最新研制的便携式CT实时动态加载设备的组成,技术指标及其特点,该仪器是国内最新为CT试验配套的动态实时加载设备,可以实现动态加载,尤其是能进行动力拉伸试验。并利用最新研制的便携式CT实时动态加载设备开展混凝土静、动力实时CT试验。
     (2)以混凝土材料的静力压缩、动力压缩、静力拉伸、动力拉伸的CT图像为研究对象,充分利用CT扫描信息,提出了多种CT图像、CT数分析方法,并对混凝土材料的细观损伤破裂过程进行研究,得到混凝土材料在静力压缩、动力压缩、静力拉伸、动力拉伸时的破坏特点。
     (3)依据CT裂纹演化规律,对混凝土破坏阶段进行分类。并利用同一断面不同应力阶段的两幅CT图像进行差值运算,通过差值图像中的低密度带表现为环状或线状影像来判断裂纹是否开裂。
     (4)根据混凝土破坏过程所处的阶段,对混凝土材料进行了分区描述,定义了混凝土材料的安全区、损伤区、破损区,对分区的CT阈值标准进行了探讨和经验选定。在此标准下,对CONC-10试样的扫描断面进行分区,并对各个分区上混凝土CT数随加载过程的变化规律以及破损区产生的条件进行研究。
     (5)利用分形理论方法,以混凝土静力压缩、动力压缩CT图像为研究对象,估算出不同扫描断面不同应力阶段的CT图像分形维数,并且在VB和MATLAB语言的基础上进行了程序可视化的开发。通过分维数的变化分析混凝土材料在静力压缩、动力压缩条件下的细观损伤演化过程。
     (6)本文通过总结前人依据混凝土CT试验建立的损伤本构模型,结合本文的分析结果,对混凝土的损伤变量和损伤本构模型做了进一步研究。基于混凝土损伤演化特性的细观CT试验,运用不同的方法定义了混凝土材料不同的损伤变量,并建立了相应的损伤演化方程。并以CT数变化建立的分段损伤演化方程为代表建立了损伤本构关系。将密度损伤(CT数变化)变量为基础建立的混凝土损伤演化方程和损伤本构关系与宏观力学性能的劣化相联系。
     (7)采用以CT数变化建立的损伤本构关系进行静载作用下混凝土试件单轴受压试验的细观数值试验。并将混凝土数值试验结果与CT试验结果进行详细的比较和分析,实现了采用细观上的简单本构关系模拟宏观上复杂的破裂现象,为改进试验设计提供力学依据,并使在可靠和有效的前提下用数值方法取代部分试验成为可能。
     (8)本文直接从CT扫描的数据入手,进行图像的三维重建研究。运用Matlab环境下CT切片图像的三维体重建和MIMICS环境下CT切片图像的三维重建两种不同的方法对混凝土三维细观结构进行重建,以期待可以得到混凝土真实的细观结构。利用CT试验三维重建模型进行了混凝土破裂过程的细观数值模拟,以便与CT试验结果相比较,从而校正数值分析模型。
The fracture process of Concrete category in the geotechnical materials, a complex non-linear evolution of the material damage, has been one of hot issues and diffcult reasearch in the field of the mechanical, materials and engineering. In the breakdown process of material, it was the manifestations that internal energy accumulation of the initial defects, and micro-crack continually initiating and expanding till the overall instability, which were performed as constant deterioration of mechanical properties in the macroscopic. In this paper, combined with meso-mechanics, the damage mechanics, statistical theory and numerical theory, the process was researched which included the expanding cracks, finally through and the destruction of concrete material by CT technology which is a effective means of observing meso-damage evolution, so that the concrete cracks expanding and damage patterns were analyzed, and the breakdown mechanism of concrete materials was revealed. In this paper research work was summarized as follows:
     (1)The composition of the portable latest developed CT load equipment the, the technical indicators and their characteristics were introduced detailed. The instrument is the lastest domestic equipment which supports real-time dynamic load for CT test, using which dynamic loadingand particularly dynamic tension test especially could be achieved. And the static and dynamic real-time CT test were carried out using newly developed portable concrete testing machine
     (2)Studying CT images of concrete materials including static compression, dynamic compression, static tension and dynamic tension and making full use of the CT scans information, various analysis methods of CT image and CT number were put forward for the meso-damage process investigation of concrete materials, and the fracture characteristics of the concrete material in static compression, dynamic compression, static tension and dynamic tension were obtained.
     (3)Based on CT crack evolution laws, the damage stageof concrete was classified. At the same time,the D-value of the two CT images on the same cross-section in different stress phase were operated, and the low-density of D-value image would determine the crack whose shape was ring or linear.
     (4)According to the concrete failure stage, the concrete materials were distinctly described to define the safe zone, damage zone and fracture zone of concrete materials, and the CT threshold criteria on the partition was discussed and selected empirically. In this standard, the scanned cross-section of CONC-10 sample was zoned to study the change regulation and the conditions resulting in fractured zones of concrete CT number with loading process on each partition.
     (5)Using fractal theory, and concrete CT images of static compression and dynamic compression were acted as the research objects to estimate the fractal dimension of different scanning sections CT images in different stress stages, and based on the VB and MATLAB language, the Program of was visually developed. Through changes of fractal dimension, the meso-damage evolution process of concrete materials was analyzed in the static compression and dynamic compression.
     (6)In This paper, concrete damage constitutive model assembled by previous based on CT tests were summarized, combining the analysis results in this paper, the damage variables and damage constitutive model were further researched. Based on the meso-CT test characterized by Concrete damage evolution, different ways were applied to define different damage variables of concrete material and to establish the corresponding damage evolution equation. Based on the damage evolution equation created as CT change, a constitutive relation was created to assosiate the damage evolution equation based on to the density damage (CT number changes) and the constitutive relation with the degradation of macro mechanical properties.
     (7)The damage constitutive relation due to CT changes was used to numerical simulation of concrete in static uniaxial compression. Numerical test results of concrete were analyzed detailedly and compared with CT test results. A simple meso constitutive relation was applied to simulate the complex failure phenomena of macro and to provide mechanical basis for improving test design.At the same time, that maked it possible that the numerical method replaces of some tests in a reliable and effective premise.
     (8)In this paper, the CT scan data was directly acted as start point to carry out the research on three-dimensional reconstruction of images. Three-dimensional concrete meso-structure was reconstructed by using the method of three-dimensional reconstruction of CT image slice applied Matlab and MIMICS to get the real concrete meso-structure.
引文
【1】陈厚群等.中国水利水电科学研究院科研报告,“九五”国家重点科技攻关课题,300m级高拱坝抗震技术研究[R].1999.
    【2】陈厚群.全级配大坝混凝土动态性能研究[C],水利部科技创新项目,2000:10.
    【3】陈厚群,丁卫华,蒲毅彬,党发宁.单轴压缩条件下混凝土细观破裂过程的X射线CT实时观测[J].水利学报,2006,37(9):1044-1050.
    【4】陈厚群,丁卫华,党发宁,等.混凝土CT图像中等效裂纹区域的定量分析[J].中国水利水电科学研究院学报,2006,4(1):1-7.
    【5】刘恩龙,沈珠江.岩土材料破损过程的细观数值模拟[J].岩石力学与工程学报,2006,Vol.25 No,91790-1794.
    【6】 Taylor G l,J. Inst. Metals [M].1938:62-307.
    【7】马怀发,陈厚群.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130.
    【8】Wittrnan F H. Structure and mechanical properties of concrete [J]. [日]东北大学建筑学报,1983, 22(3):93-111.
    【9】 Zaitsev. crack propagation in a Composition Material. Fracture Mechanics of concrete [M]. Arnstererdam Printed in the Netherlands,1983:251-299.
    【10】Cusatis, G., Bazant, Z. P., Cedolin, Luigi. Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression:Ⅰ. Theory, Journal of Engineering Mechanics,2003,129 (2): 1439-1448.
    【11】 Schlangen, E., Garboczi, E. J. Fracture simulations of concrete using lattice model:computational aspects.Engineering Fracture Mechanics,1997,57, (2/3):319-332.
    【12】 Mohamed, A. R, Hansen, W. Micromechanical modeling of concrete response under static loading-PartⅠ:Model development and validation. ACI Materials Journal,1991,96(2):196-203.
    【13】 Mohamed, A. R, Hansen, W. Micromechanical modeling of concrete response under static loading-PartⅡ:Model predictions for shear and compressive loading. ACI Materials Journal,1999, 96(3):354-358
    【14】邢纪波,俞良群,王泳嘉.三维梁—颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报,1999,16(6):627-630.
    【15】邢纪波著.梁—颗粒模型导论[M].地震出版社,1999.
    【16】邢纪波,俞良群,张瑞丰.用于模拟颗粒增强复合材料破坏过程的梁—颗粒细观模型的试验验证[J].实验力学,1998,13(3):377-382.
    【17】张德海,邢纪波,朱浮声,杨顺存.混凝土破坏过程的数值模拟[J].东北大学学报(自然科学版),2004,25(2):175-178.
    【18】 Cundall, P.A.(1971). A computer model for simulating progressive large scale movements in block
    rock systems. Proc. Int. Symp. Rock Fracture, ISRM, Nancy, France:2-8
    【19】 Zubelewics,A. and Mroz,Z. (1983).Numerical simulation of rockbursts processes treated as problem of dynamic instability.Rock Mechanics and Rock Engineering, Vol.16:253-274
    【20】 Bazant Z, P., Tabbara M R, Kazemi M T, etal. Random particle model for fracture of aggregate or fiber composites [J]. Journal of Engineering Mechanics., ASCE,1990,1 16(8):1686-1705.
    【21】刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报,1996,36(1):84-89.
    【22】刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报,2003,43(8):29-36.
    【23】高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714.
    【24】宋玉普.多种混凝土材料的本构关系和破坏准则[M].中国水利水电出版社,2002.
    【25】黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应[J].华北水利水电学院学报,2001,22(3):50-53.
    【26】唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    【27】朱万成,黄明利,唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟[J].辽宁工程技术大学学报(自然科学版),2000,19(3):271-274.
    【28】朱万成,唐春安,齐安文.混凝土三点弯曲试件破坏过程的数值模拟[J].力学与实践,1999,21(5):55-56.
    【29】朱万成,唐春安,杨天鸿,梁正召.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29
    【30】朱万成,赵启林,唐春安,卓家寿.混凝土断裂过程的力学模型和数值模拟[J].力学进展,2002,32(4):579-598.
    【31】朱万成,唐春安等.混凝土试样在静态载荷作用下断裂过程的数值模拟研究[J].工程力学.2002,19(6):148-153.
    【32】朱万成,王述红,唐春安.混凝土三点弯曲试验的计算机模拟[J].东北大学学报(自然科学版).1999,20(5):533-535.
    【33】朱万成,林天革等.混凝土拉伸断裂过程及尺寸效应的数值模拟[J].岩土力学.2002,23(2):147-151.
    【34】 Yue Z Q, Morin I. Digital image processing for aggregate orientations in asphalt concrete:reply to discussion by Ashraf M. Ghaly[J]. Canadian Journal of Civil Engineering,1997, 24:334-334.
    【35】 Yue Z Q, Morin I. Digital image processing for aggregate orientation in asphalt concrete mixtures [J]. Canadian Journal of Civil Engineering,1996,23:479-89.
    【36】 YueZQ, Chen S, Tham L G. Digital image processing based finite element method for rock mechanics [A]. In:Lin Y M, Tang CA, Feng XT, et al ed. New Development in Rock Mechanics and Rock Engineering:Proceedings of the 2nd International Conference, China[C]. [s.1.]:[s. n.], 2002.609-615.
    【37】 Yue Z Q, Chen S, Tham L G. Finite element modeling of geomaterials using digital image processing[J]. Computers and Geotechnics,2003,30:375-397.
    【38】 Yue Z Q, Chen S, Tham L G. Seepage analysis in inhomogeneous geomaterials using digital image processing based on finite element method[A]. In:Proceedings of the12th Pan-Amerian Conference for Soil Mechanics and Geotechnical Engineering and the 39th US Rock Mechanics Symposium, Soil and Rock America 2003[C]. Boston, USA:[s. n.],2003.1297-1302.
    【39】岳中琦,陈沙,郑宏等.岩土工程材料的数字图像有限元分析[J].岩石力学与工程学报,2004,23(6):889-897.
    【40】 Chen S, Yue Z Q, Tham L G, et al. Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method[J]. Int. J. RockMech. Min. Sci.,2004,41(3):447-447.
    【41】陈沙,岳中琦,谭国涣.基于数字图像的非均质岩土工程材料的数值分析方法[J].岩土工程学报,2005,27(8):956-964.
    【42】岳中琦.岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展[J].岩石力学与工程学报,2006,Vol.25 No.5875-888.
    【43】刘恩龙,沈珠江.岩土材料破损过程的细观数值模拟[J].岩石力学与工程学报,2006,Vol.25 No.91790-1794.
    【44】葛修润,任建喜,蒲毅彬等.岩石细观损伤演化规律的CT试时试验研究[J].中国科学E,2000,30(2):104-111.
    【45】葛修润,任建喜,蒲毅彬.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    【46】葛修润,周伯海,刘明贵.电液伺服自适应控制岩石力学试验机及其对岩石力学某些问题研究的意义[J].岩土力学,1992,13(2):8-13.
    【47】葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态实验[J].岩石力学与工程学报,1999,18(5):497-502.
    【48】葛修润,任建喜,蒲毅彬等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩石工程学报,2001,23(2):191-195.
    【49】葛修润,任建喜,蒲毅彬.节理岩石卸载损伤破坏过程CT实时检测[J].岩土力学,2002,23(5):575-578.
    【50】葛修润.岩石疲劳破坏的变形控制律、岩土力学实验的实时X射线CT扫描和边坡坝基抗滑稳定性分析的新方法[J].岩石工程学报,2008,30(1):1-20
    【51】杨更社,谢定义,张长庆等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):48-54.
    【52】杨更社,谢定义,张长庆等.岩石损伤扩展力学特性的CT分析[J].岩石力学与工程学报,1999,18(3):250-254.
    【53】杨更社,谢定义,张长庆,孙钧.CT技术在岩石损伤检测中的应用研究[J].实验力学,1998,13(4):451-456.
    【54】杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.
    【55】杨更社,张全胜,任建喜,蒲毅彬.冻结速度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报,2004,23(24):4099-4104.
    【56】杨更社.岩石细观损伤力学特性及本构关系的CT识别[J].煤炭学报,2000,25(S):102-106.
    【57】杨更社,谢定义,张长庆.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报,1998,17(3):279-285.
    【58】任建喜,葛修润.岩石单轴细观损伤演化特性的CT实时分析[J].土木工程学报,2000,33(6):99-104.
    【59】任建喜.单轴压缩岩石旱变损伤扩展细观机理CT实时试验[J].水利学报,2002,(1):10-15.
    【60】任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    【61】任建喜.岩石损伤扩展特性实验分析及其本构模型与数值模拟研究[D].武汉:中国科学院武汉岩土力学研究所,2001.
    【62】任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学,2001,22(2):130-133.
    【63】任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701.
    【64】任建喜.三轴压缩岩石细观损伤扩展特性CT实时检测[J].实验力学,2001,16(4):387-395.
    【65】仵彦卿,丁卫华,蒲毅彬等.压缩条件下岩石密度损伤增量的CT动态观测[J].自然科学进展,2000,10(9):830—83.
    【66】仵彦卿,曹广祝,王殿武.基于X射线CT方法的岩石小裂纹扩展过程分析[J].应用力学学报,2005,22(3):487-490.
    【67】仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报,2002,10(1):93-97.
    【68】仵彦卿,丁卫华等.岩石单轴与三轴CT尺度裂纹演化过程观测[J].西安理工大学学报,2003,19(2):115-119.
    【69】丁卫华,仵彦卿,蒲毅彬等.受力岩石密度损伤增量及其数字图象[J].西安理工大学学报,2000,16(1):45-48.
    【70】丁卫华,仵彦卿,蒲毅彬等.基于X射线的岩石内部裂纹宽度测量[J].岩石力学与工程学报,2003,22(9):1793-1797.
    【71】丁卫华,仵彦卿,蒲毅彬等.低应变率下岩石内部裂纹演化的x射线CT方法[J].岩石力学与工程学报,2003,22(11):1421-1425.
    【72】丁卫华,仵彦卿,蒲毅彬等.X射线岩石CT的历史与现状[J].地震地质,2003,25(3):
    468-475.
    【73】范留明,李宁,丁卫华.数字图像彩色增强方法在岩土CT图像分析中的应用[J].岩石力学与工程学报,2003,19(6):702-706.
    【74】尹小涛.砂岩力学行为的CT研究[D].西安:西安理工大学,2005:3
    【75】 Morgan I L, et al. Examination of concrete by computerized tomography [J]. ACI Journal,1980, 77(1):23-27
    【76】Oral Buyukozturk. Imaging of concrete structures[J].NDT&E. International,1998,31 (4):233-243.
    【77】 John S L, Denis T K, Surendra P S. Measuring three-dimensional damage inconcrete under compression [J]. ACI Materials Journal,2001,98(6):465-475.
    【78】 Stock S R, Naik N K, Wilkinson A P, et al. X_ray microtomography(microCT) of the progression of sulfate attack of cement paste [J]. Cement and Concrete Research,2002,32(10):1673-1675.
    【79】 Chotard T J,Boncoeur_Martel M P, Smith A, et al. Aplication of X_ray computed tomography to characterize the early hydration of calcium aluminate cement [J]. Cement&ConcreteComposites,2003,25(1):145-152
    【80】 Lawer J S, Keane D, Shah S P. Measuring three_dimensional damage in concrete under compression [J]. ACI MaterialsJournal,2001,98(6):465-475
    【81】尹小涛,葛修润,党发宁等.基于CT试验的混凝土破损机理生态学研究[J].混凝土,2006(8):21-24.
    【82】田威,党发宁,梁昕宇,陈厚群.混凝土细观破裂过程的CT图像分析[J].武汉大学学报,2008,41(2):
    【83】田威.基于细观损伤的混凝土破裂过程的三维数值模拟及CT验证[D].西安理工大学,2005:3
    【84】党发宁,田威,韩文涛,陈厚群.基于细观损伤的混凝土破裂过程的三维数值模拟与CT试验验证[J].水利学报,2006,6:674-680.
    【85】梁听宇.数值混凝土模型的改进及其细观力学特性研究[J].西安理工大学,2007:3
    【86】党发宁.岩土破损演化理论(I):破损空间[J].岩土力学,2005,26(4):513-519
    【87】党发宁.岩土破损演化理论(Ⅱ):物理状态指标与分区破损理论[J].岩土力学,2005,26(5):673-679.
    【88】 Kaplan, (1961), M. F. Crack propagation and the fracture of the concrete. ACIJ, (1961) Vol.58, No.11:591—610
    【89】Kesler, C., Naus, D. J. Lott, James L. Behavior of Materials. In:Proceedings of the International Conference on Mechanical Behavior of Materials,1971,4(8):15-20.
    【90】余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    【91】 Dougill J. W. et al.J.Eng. Mechanics in Eng.Div, ASCE,1976 (102):333.
    【92】董聪,杨庆雄.细观损伤力学新进展[J].强度与环境,1993,4:1-8.
    【93】王自强,杨卫,夏霖.细观力学基础[M].北京:中国标准出版社,1992.
    【94】周维垣.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,
    13(1):1-9
    【95】杨卫.细观损伤理论进展[J].力学进展,1992,22(1):1-9.
    【96】江见鲸,冯乃谦.混凝土力学[J].北京:中国铁道出版社,1991.
    【97】李春雨,邹振祝.非均匀介质有限元法[J].力学与实践,1998,20(6):10-12
    【98】董毓利.混凝土非线性力学基础[M].北京:中国建筑工业出版社,1997.
    【99】冯乃谦.实用混凝土大全[M].北京:科学出版社,2001.
    【100】[美]P·梅泰.混凝土的结构、性能与材料[M].上海:同济大学出版社,1991.
    【101】 mindess,S.(1991)Fracture process zone detection.In:Fracture Mechanics Test Methods for Concrete.ed. Shah,P.and Carpinteri,A. Chapman&Hall,London.231-255
    【102】杨延毅,周维垣.岩石与混凝土类材料断裂过程研究[J].水利学报,2000,9(10)::830-835.
    【103】于骁中,居襄.混凝土的强度和破坏[J].水利学报,1983,2:22-35.
    【104】黄克智,徐秉业.固体力学发展趋势[M].北京:北京理工大学出版社,1995,196-198.
    【105】夏梦棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(Ⅰ)[J].力学进展,1995,25(1):1-40.
    【106】杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.
    【107】Willi A.Kalender,崔世民等译.计算机体层成像[M].北京:人民卫生出版社,2001,1.
    【108】丁卫华.基于X射线CT的混凝土动力破坏过程研究[D].北京:中国水利水电研究科学院
    【109】罗军辉,冯平,哈力旦·A.matlab7.0在图像处理中的应用[M].机械工业出版社,2005.
    【110】赖永标,乔春生,刘开云,朱正国.支持向量机载围岩稳定性分类中的应用[J].2008,37(9):1092-1096.
    【111】陈守煜.模糊最优归类理论模型及其在围岩稳定性分类与场地类别评定中的用[J].水利学报,1993,(12):26-36.
    【112】赵洪波,玛夏庭.支持向量机函数拟合在边坡稳定性估计中的应用[J].岩石力学与工程学报,2004,22(2):241-245.
    【113】邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.
    【114】Nello Cristianini(美),John Shawe-Taylor(英)著.支持向量机导论[M].北京:电子工业出版社,2004.
    【115】许磊.支持向量机和模糊理论在遥感图像分类中的应用[D].江南大学,2006.
    【116】田威,党发宁,刘彦文,陈厚群.支持向量机在混凝土CT图像分析中的应用[J].水利学报,2008,7(39):889—894.
    【117】党发宁,尹小涛,丁卫华.基于CT试验的岩体分区破损本构模型[J].岩石力学与工程学报,2005,24(22):4003-4009.
    【118】陈宁,朱伟勇.M-J混沌分形图谱[M].沈阳:东北大学出版社,1998,1-14.
    【119】唐明,李晓.混凝土分形特征研究的现状与进展[J].混凝土,2004,(12):8-11
    【120】孙霞,吴自勤,黄昀.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003,38-51.
    【121】 B. B. Mandelbrot.How Long is the Coast of Britain, Statistical Self Similarity and Fractional Dimension [J]. Science.1967, (31):636-638.
    【122】B. B. Mandelhrot. Fractals:Form, Chance and Dimension [M]. Freeman, San Francisco 1977: 1-20.
    【123】 B. B. Mandelhrot. The Fractal Geometry of Nature [M]. New York. W.H.Freeman.1982:1-25.
    [124]MandelbroL B B.The fractal geometry of nature [M]. 上海:上海远东出版社,1998.
    【125】武震.基于分形理论的图像分割[D].南京:南京航天航空大学,2002.
    【126】谢和平.分形-混凝土力学导论[M].北京:科学出版社,1996,15-29.
    【127】B.B.Mandelbrot, et al. Fractal character of fracture surfaces of metals [J]. Nature,1984, (308):721-723.
    【128】Keru W u. Effect of metallic aggregate on strength and fracture properties of HPC [J]. Cement and Concrete Reseach.2001, (31):113-118.
    【129】Au Yan,KeruWu.effect of fracture path on the fracture energy of high-strength concrete [J]. Cement and Concrete Research.2001, (31):1601-1606.
    【130】董毓利,谢和平,赵鹏.硷受压全过程声发射b值与分形维数的研究[J].实验力学,1996,11(3):272-276.
    【131】 A. Carpinteri. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mechanics of Materials.1994, (18):89-101.
    【132】 A.Carpinteri, B. Chiaia.Crack-resistance behavioras a consequence of self-similar fracture topologies [J]. International, Journal of Fracture.1996, (76):327-340.
    【133】康光宗,洪君毅.混凝土结构裂缝宽度尺寸效应的分形行为[J].湖南城建高等专科学校学报,1999,(2):1-3.
    【134】倪玉山.混凝土细观结构断裂的分形分析[J].大连理工大学学报,1997,37(1):72-76.
    【135】王铁成,杨建江.混凝土结构状态及其扩展的分形几何解析[J].大连理工大学学报,1997,(supp):77-81.
    【136】周克荣,肖小松,吴晓涵.混凝土轴心抗扭强度尺寸效应的分形行为[J].福州大学学报,1996,(supp):58-62.
    【137】唐明,宁作君.混凝土断裂而的复型重构及其分形特征的评价[J].沈阳建筑工程学院学报,2003,(2):1-4.
    【138】唐明,混凝土材料分形特征及应用研究[D].哈尔滨:哈尔滨工业大学材料科学与工程学院,2003,1-4.
    【139】唐明,混凝土材料力学中的分形问题[J].沈阳建筑工程学院学报,1997,(supp):1-4.
    【140】唐明,李晓.混凝土材料宏观结构形貌的分形解析[J].沈阳建筑工程学院学报,2004,20(1):46-49.
    【141】周尚志,党发宁,陈厚群,梁斌.基于单轴压缩CT试验条件下混凝土破裂分形特性分析[J].水力发电学报,2006,26(5):112-117.
    【142】徐晓鹏,彭瑞东,谢和平等.基于SEM图像分维估算的脆性材料细观结构演化[J].岩土
    力学与工程学报,2004,23(21):3600-3603.
    【143】谢涛.基于CT实时观测的沥青混合料裂纹扩展行为研究[D].成都:西南交通大学,2006.
    【144】卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的CT试验研究[J].岩土力学,2002,23(21):417-422.
    【145】简洁,朱维申,李术才,蒲毅彬等.模拟节理岩体水压致裂的CT实时试验初探[J].岩石力学与工程学报,2002,21(11):1655-1662.
    【146】夏蒙芬等.统计细观损伤力学和损伤演化诱致突变(Ⅱ)[J].力学进展,1995,25(2):1-7.
    【147】江泽坚,吴智泉.实变函数论[M].北京:人民教育出版社,1961.
    【148】熊金城,点集拓扑讲义[M].北京:高等教育出版社,1981.
    【149】陈四利,宁宝宽,鲍文博等.水泥土细观破裂过程的损伤本构模型[J].岩土力学,2007,28(1):93-96.
    【150】刘彦文.混凝土力学行为的CT研究[D].西安:西安理工大学,2007:3.
    【151】梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].东北大学,2005:7
    【152】唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1992.
    【153】唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    【154】陈永强,姚振汉,郑小平.非均匀脆性材料本构关系统计解析解[J].清华大学学报(自然科学版),2002,42(11):1515-1518.
    【155】W.Weibull,A statistical theory of the strength of materials[M].stockholm,1939.
    【156】Zdenek Bazant & Er-Ping Chen.结构破坏尺度律[J].力学进展.1999,29(3):383-433.
    【157】Krajcinovic D.and Silva M.A.G,Statistical aspects of the continuous damage theory[J]. Int.J. Solids Structures.1982,18(7):551-562.
    【158】曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.
    【159】曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    【160】谢和平.岩石混凝土损伤力学[M].江苏:中国矿业大学出版社,1990.
    【161】白晨光,魏一鸣,朱建明.岩石材料初始缺陷的分形维数与损伤演化的关系[J].矿冶,1996,5(2):17-19.
    【162】温世游,胡柳青,李夕兵.节理岩体损伤的分形研究[J].江西有色金属,2000,14(3):14-16.
    【163】高峰,赵鹏.岩石破碎度的分形度量力学与实践,1994,16(2):16-17.
    【164】张明,李仲奎,苏霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,24(23):4282-4288.
    【165】高艳,唐晓英,张军莉等.基于物体空间序法的CT图像三维重建算法的研究[J].北京生物医学工程,2003,22(3):180-183.
    【166】苏胜,沈德建等.三维重建技术在全级配混凝土骨料随机分布中的研究与应用[J].江西科学,2007,10(5):522-531.
    【167】曾筝,董芳华,陈晓等.利用MATLAB实现CT断层图像的三维重建[J].CT理论与应用研究,2004,13(2):24-29.
    【168】徐云翔,吴秀清,胡拥军.在MATLAB环境下实现体绘制法的生物切片图像的三维重建[J].计算机工程,2002,27(12):114-115.
    【169】罗军辉,冯平,哈力旦A.matlab7.0在图像处理中的应用[M].,北京:机械工业出版社,2006.
    【170】刘慧.基于CT图像处理的冻融岩石细观损伤特性研究[D].西安:西安科技大学,2006,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700