用户名: 密码: 验证码:
裂隙岩石水—岩作用力学特性试验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水-岩耦合作用下岩石力学行为的研究是岩土工程领域的基础性前沿课题之一。实际工程岩体总是具有多裂隙的岩体,而裂隙(节理)岩体的安全性往往受到水-岩耦合作用的影响。目前,在水-岩耦合作用下裂隙岩石力学损伤演化规律及变形破裂机理方面的研究还不多,相应的损伤断裂力学本构模型还未真正建立起来。为了着重研究水-岩耦合作用对裂隙岩石强度变形破裂过程的影响机制,通过进行水-岩耦合作用下裂隙岩石的单轴压缩试验和腐蚀时效特征试验、节理强度特性试验和裂隙岩体原位剪切等一系列物理力学试验,分析了水-岩耦合作用下裂隙岩石微裂纹萌生、扩展、贯通及相互作用内部演化过程和力学损伤演化机理,建立了裂隙岩石损伤断裂准则和裂隙岩石破坏过程的本构模型,并对建立的模型进行了对比分析。主要研究内容与成果如下:
     1.首次在长度为100mm,直径为50mm的真实圆柱形标准试件上加工三种裂纹排列方式的穿透裂纹,所有预制裂纹倾角均为45°,两裂纹岩桥倾角分别为75°和105°。预制裂纹单条长度为10mm,该长度为圆柱形试件上预制裂纹的平面投影长度,最大径向穿透厚度为50mm。人工预制穿透裂纹试件的成功制作并试验,为裂隙岩石变形破坏机理研究提供了新的方法和途径。首次进行了含人工预制穿透裂纹圆柱体标准岩石试件在水-岩化学环境下的力学试验,为水-力学、水-力学-化学耦合过程的研究提供了基础。
     2.通过进行相同浓度化学溶液不同pH值、不同浸泡流速下的单裂隙与两裂隙红砂岩单轴压缩试验,获得了不同水-岩化学环境下单裂隙和两裂隙岩石试件的应力-应变全过程曲线,并对应力-应变全过程曲线特征进行了分析。探讨了不同水-岩化学环境(浸泡流速、pH值)下对不同预制裂纹排列方式红砂岩变形特性的影响规律与强度腐蚀效应。
     3.分析了水-岩化学作用下单裂隙与两裂隙岩石的单轴压缩破裂过程与破坏方式,同时分析了两裂隙的裂纹搭接模式与裂纹相互作用机制。基于单轴压缩试验结果,从裂隙岩石的细观结构、化学腐蚀以及损伤断裂三个方面揭示其变形破裂过程及其力学性质损伤演化机理。基于以上单轴压缩损伤机理分析,建立了自然状态和水-岩化学作用下裂隙岩石的损伤演化变量与本构模型,并将本构模型进行应用及对比分析。
     4.考虑水-岩作用对裂隙岩石的损伤为一个长期的时间效应问题,通过物理手段测试不同浸泡时间段内单裂隙岩石试件与化学反应溶液的相关参数,并进行分析。结果表明,水-岩作用主要是通过水中化学成分与岩石矿物的反应产生的细微观结构与构造化学腐蚀,导致岩石宏观物理力学性质的劣化与变异。
     5.进行了节理强度特性的水-岩作用试验与损伤本构模型研究。通过三种不同类型岩体结构面在不同饱水状态、不同正应力下的剪切试验研究,分析了水-岩作用对节理剪切力学特性的影响规律,从微观层次上分析了节理在剪切荷载作用下的损伤破坏机制,解释了节理剪切本构关系的非线性和宏观特征。在此基础上加入了水-岩作用对节理的力学损伤效应。借助能量原理,建立了基于损伤的节理剪切应力-应变关系和水-岩作用剪切力学模型。
     6.进行了不同含水、不同法向应力状态下裂隙岩体的现场直接剪切试验,获得了不同正应力水平下剪切应力-剪切变形关系曲线和剪切强度参数,对其剪切应力-剪切变形关系曲线特征和不同正应力作用下剪应力随正应力的变化规律以及水-力耦合作用对岩裂隙体剪切强度与变形特性影响进行了分析。揭示了含水率对裂隙岩体强度与变形的影响规律,通过试验结果的线性回归建立其定量表征关系即裂隙岩体的粘聚力c与含水率ω具有良好的负指数关系,内摩擦角φ与含水率ω具有近似的对数关系。建立了考虑含水率影响的裂隙岩体抗剪强度准则,并与试验结果进行了对比。最后利用概率统计分析了裂隙岩体的抗剪强度参数指标的变异性。
Research on rock mechanical behavior under Water-Rock coupling is one of the most basic forefront issues for geotechnical engineering. Actually engineering rock mass have many cracks, and the safety of fractured rock are affected by Water-Rock coupling. However, at present it's little research on the mechanical damage evolution and deformation and fracture mechanism of fractured rock under Water-Rock coupling. The corresponding damage and fracture mechanical constitutive model has not yet been established. In order to focus on the research on the effect mechanism of strength and deformation fracture process for fractured rock under Water-Rock coupling, a series of physical and mechanical tests which contained uniaxial compression test and corrosion test and joint strength characteristics test and in situ shear testing have been carried out. The micro-crack initiation, propagation and through and the process of internal evolution and mechanical damage evolution mechanism are analyzed. The damage fracture criterion and the constitutive model have been established. Main research contents and results are as follows:
     Firstly, for the first time processing arrangement of three pre-cut crack in the length of 100mm,50mm diameter cylindrical standards of the real specimen. All the angle of pre-cut crack are 45°, and the bridge angle of pre-cut two cracks are 75°and 105°. The length of single pre-cut crack is 10mm, and the maximum radial penetration thickness is 50mm. The success of pre-cut crack product and test provide new method and mean for study on rock deformation and fracture mechanism. The first time study on mechanical experiment with the pre-cut crack under Water-Rock Chemical coupling provides the basis for the research on Hydraulic-Mechanics and Hydraulic-Mechanics-Chemical coupling process.
     Secondly, based on the results of uniaxial compression tests, the characteristics of complete stress-strain curves of cracked rocks under different chemical environment are analyzed, and the behavior of deformation and strength of cracked rocks under different Water-Rock chemical environment(immersion flow rate, pH value) are obtained.
     Thirdly, failure process and failure modes of uniaxial compression are analyzed, and the modes of crack coalescence and crack interaction mechanism are analyzed. Based on the results of uniaxial compression test, revealed the fractured process and mechanical properties of deformation and fracture mechanism of damage evolution from microstructure, chemical corrosion and damage fracture. Based on the above analysis, damage constitutive model considered Water-Rock chemical coupling is established.
     Fourthly, the time-dependent characteristics of cracked rocks under different chemical environment are obtained based on the analysis of test data at different time of specimens soaked in different chemical solutions. The results show that Water-Rock Interaction is that meso-structure and construction of chemical corrosion and lead to deterioration and variation of macro physical and mechanical properties.
     Fifthly, based on the shear test of different joints under Water-Rock coupling, analyzed the joints shear mechanical properties and damage fracture mechanism, explained the nonlinear and macro features of shear constitutive model. With energy principle, joint shear stress-strain relationship based on damage mechanics and shear mechanical model under Water-Rock Interaction are established.
     Lastly, based on in situ shear test of fractured rock mass under different water contents and normal stress, obtained shear stress-shear deformation curves and shear strength parameters, analyzed the shear stress-shear deformation curves characteristics and variation and effects of shear strength and deformation of fractured rock mass in Hydraulic-Mechanics coupling. It's revealed that the effect law of fractured rock mass strength and deformation. Fractured rock mass cohesion has a good negative exponential relationship with moisture content, and the angle of internal friction has the approximate logarithmic relationship with moisture content. We concluded from the results that shear strength criteria of fractured rock mass which moisture content was taken into account have been established. Finally, shear strength parameters index variability have been analyzed by using probability and statistics.
引文
[1]Jing Lanru, Feng Xiating, Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (T-H-M-C) of geological media-international and Chinese experiences,岩石力学与工程学报,2003,22(10):1704~1715.
    [2]谢强,姜崇喜,凌建明.岩石细观力学实验与分析,西南交通大学出版社,1997.
    [3]蔡美峰,何满潮,刘东燕.岩石力学与工程,科学出版社,2002.
    [4]梁祥济,水-岩相互作用和成矿物质来源.学苑出版社,1995.
    [5]Tsang C F. Coupled processes associated with nuclear waste repositories. New York:Academic Press,1987.
    [6]Tsang C F. Coupled thermomechanical and hydrochemical processes in tock fractures. Review of Geophysics,1991,29(5):537~548.
    [7]张永安,李峰,陈军.红层泥岩水岩作用特征研究.工程地质学报,2008,16(1):22~26.
    [8]黄宏伟,车平.泥岩遇水软化微观机理研究.同济大学学报(自然科学版),2007,35(7):866~870.
    [9]马水山,雷俊荣,张保军等.滑坡体水岩作用机制与变形机理研究.长江科学院院报,2005,22(5):37~48.
    [10]陈近中,赵其华.水-岩相互作用对滑坡的影响.路基工程,2007,9~11.
    [11]仵彦卿,地下水与地质灾害.地下空间,1999,19(4):303~310.
    [12]何满朝,姚爱军,鹿粗等.边坡岩体水力学作用的研究.岩石力学与工程学报,1998,(6):662-666.
    [13]Atkinson B. K, Meredith P.G, Stress corrosion cracking of quartz:a note on the influence of chemical environment.Tectonophysics,1981,77:1~11.
    [14]Karfakis M.G., Askram M. Effects of chemical solutions on rock fracturing, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1993,37(7):1253-1259.
    [15]Hutchinson A.J., Johnson J.B. Stone degradation due to wet deposition of pollutants. Corrosion science.1993,34:1881-1898.
    [16]朱珍德,胡定.裂隙水压力对岩体强度的影响.岩土力学,2000,21(1):64~67.
    [17]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究.地球物理学报,1991,34(3):335~342.
    [18]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究.同济大学学报,1997,25(2):127~134.
    [19]周翠英,彭泽英,尚伟等.论岩土工程中水-岩相互作用研究的焦点问题——特殊软岩的力 学变异性.岩土力学,2002,23(1):124~128
    [20]谭卓英,刘文静,闭历平等.岩石强度损伤及其环境效应实验模拟研究.中国矿业,2001,10(4):49~53
    [21]谭卓英,刘文静,闭历平等.酸化环境下岩石强度弱化效应的实验模拟研究.第六次全国岩石力学与工程学术会议论文集,武汉,2000
    [22]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性——第一部分:试验研究.岩石力学与工程学报,2000,19(4):403~407
    [23]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性——第二部分:时间分形分析.岩石力学与工程学报,2000,19(5):551~556
    [24]陈四利.化学腐蚀下岩石细观损伤破裂机理及其本构模型.沈阳:东北大学博士学位论文,2003.
    [25]Xia-Ting Feng, Shaojun Li, Sili Chen. Effect of water chemical corrosion on strength and cracking characteristics of rocks-a review. Key Engineering Materials.2004.261-263.
    [26]X.-T.Feng, C.Sili, S.Li. Study on nonlinear damage localization process of rocks under water chemical corrosion,10th Congress of the ISRM Technology Roadmap for Rock Mechanics, South Africa 2003.
    [27]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测.岩石力学与工程学报,2002,21(7):935~939
    [28]Xia-Ting Feng, Sili Chen, Shaojun Li. Effects of water chemistry on microcracking and compressive strength of granite. Int. J. Rock Mech. Min. Sci.2001,38(4):557-568.
    [29]Xia-Ting Feng, Sili Chen, Hui Zhou. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. International Journal of Rock Mechanics and Mining Sciences.2004.41(2):181-192.
    [30]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析.武汉:中国科学院武汉岩土力学研究所博士学位论文.2005.
    [31]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究.岩石力学与工程学报.2002,21(6):822-827.
    [32]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响.中山大学学报(自然科学版).2000,39(5): 126-128.
    [33]汤连生,周翠英.渗透与水化学作用之受力岩体的破坏机理.中山大学学报,1996,35(6):95~100.
    [34]Feucht L.J.& Logan J.M. Effects of chemically active solutions on shearing behavior of a sandstone. Tectonophysics 1990.175:159-176.
    [35]Dieterich J. H., Conrad G. Effects of humidity on time and velocity dependent friction in rocks.J. Geophys. Res.,1984,89:4196-4202.
    [36]Hutchinson A.J., Johnson J.B. Stone degradation due to wet deposition of pollutants. Corrosion science.1993,34:1881-1898.
    [37]Ishido, T. and Mizutani, H.:Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics, J. Geophys. Res.,1984,86:1763-1775.
    [38]Kazuo Hayashi, Jonathan Willis -Richards, Robert J.Hopkirk, Yuichi Niibori. Numerical models of HDR geothermal reservoirs—a review of current thinking and progress. Geothermics 28(1999): 507-518.
    [39]Zhengzi Jing, Kimio Watanabe, Jonathan Willis-Richards, et al. A 3-D water/rock Chemical interaction model for prediction of HDR/HWR geothermal reservoir performance. Geothermics 31 (2002):1-28.
    [40]尹双增,断裂·损伤理论及应用,清华大学出版社,1992.
    [41]Dougill J W, et al. Mechanics in Eng. ASCE. EMD,1976:333~355.
    [42]Dragon A, Mroz Z. A contimuum model for plastic brittle behavior of rock and concrete. Int. J. Eng.Sci.,1979,17:121~137.
    [43]Krajcnovic D. Continuum mechanics. Appl. MeCH. Rev.,1984,37(1).
    [44]谢和平.岩石混凝土损伤力学.徐州:中国矿业大学出版社,1990.
    [45]谢和平.分形-岩石力学导论.北京:科学出版社,1997.
    [46]Kemeny J. Effective moduli. Non-linear deformation and strength of a cracked elastic solid. Int. J. Rock Mech. Min. Sci.& Geomech. Abstract.1986,23(2):107~118.
    [47]李长春等.动态类脆性材料的细观损伤本构关系.岩土力学,1989,10(2):55~68.
    [48]Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. Ph. D. thesis, Brown University,1975.
    [49]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Tech.,1977:2~15.
    [50]McClintock F M. A criterion for ductile fracture by the growth of holes. J. Appl. Mech.,1968.
    [51]卢应发,葛修润.岩石损伤本构理论.岩土力学,1990,11(2):67~72.
    [52]王金龙,林卓英,吴玉山等.脆性岩石的损伤与裂隙扩展.岩土力学,1990,11(3):1~8.
    [53]叶黔元.岩石的内时损伤本构模型.见:袁建新主编.是、第四届全国岩土力学数值分析与 解析方法讨论会论文集.武汉:武汉测绘科技大学出版社,1991.85~90.
    [54]李庆彬,郝军保.岩石三轴损伤本构模型.见:朱维申主编.中国青年学者岩土工程力学及其应用讨论会论文集.北京:科学出版社,1994.149~155.
    [55]周光泉,陈德华,席道瑛.岩石连续损伤本构方程.岩石力学与工程学报,1995,14(3):229~235.
    [56]李广平.类岩石材料微裂纹损伤模型分析.岩石力学与工程学报,1995,14(2):107~117.
    [57]李广平,陶振宇.真三轴条件下岩石细观损伤力学模型.岩土工程学报,1995,17(1):24~31.
    [58]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究.岩石力学与工程学报,1996,15(1):55~61.
    [59]李皓.岩石细观损伤理论及其力学过程模型的研究.武汉:武汉水利电力大学博士学位论文,1997.
    [60]杨友卿.岩石强度的损伤力学分析.岩石力学与工程学报,1999,18(1):23~27.
    [61]朱建明,徐秉业,任天贵等.基于三轴试验的破裂岩石损伤演化方程的建立.工程地质学报,2000,8(2):175~179.
    [62]刘立等,复合岩石损伤本构方程与试验.重庆大学学报(自然科学版),2000,23(3):57~60.
    [63]Kayoya T, Ichikawa Y, Kawamoto T. A damage mechanics theory for discontinous rock mass.5th International Conference on Numerical Methods in Geomechanics. Nagoya,1985.
    [64]Kayoya T, Kusabuka M, Ichikawa Y et al. A damage mechanics analysis for underground excavation in jointed rock mass. Proc. Int. Symp. Engng. in Complex Rock Formations. Beijing, 1986,506~513.
    [65]Kayoya T, Ichikawa Y, Kawamoto T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory, Int. J. for Numerical and Analysis Methods in Geomechanics. 1988,12:1~30.
    [66]Ichikawa Y, Kayoya T, Kawamoto T. Incremental theory of plasticity for rock. Proc.5th International Conference on Numerical Methods in Geomechanics. Nagoya,1985. Vol.1,451~462.
    [67]吴澎.节理岩体的损伤模型及非线性有限元分析.岩石力学与工程学报,1988,7(3):193~202.
    [68]周维垣.高等岩石力学.北京:水利电力出版社,1990.
    [69]孙卫军,周维垣.裂隙岩体弹塑性损伤本构模型.岩石力学与工程学报,1990,9(2):108~119.
    [70]杨延毅.裂隙岩体非线性流变形态与裂隙损伤扩展过程关系研究.工程力学,1994,11(2):81~90.
    [71]陶振宇等.节理岩体损伤模型及验证.水利学报,1991,10(6):52~58.
    [72]朱维申等.节理岩体等效连续模型与工程应用.岩土工程学报,1992,14(2):1~11.
    [73]凌建明等,非贯通裂隙岩体力学特性的损伤力学分析.岩石力学与工程学报,1992,11(4):373~383.
    [74]Cai M et al. A Constitutive model and FEM analysis of jointed rock masses. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1993,30(4):351~359.
    [75]韩贝传,王思敬.一种计算多组节理系统损伤张量的方法.岩石力学与工程学报,1993,12(1):46~54.
    [76]凌建明等.应变空间表述的岩体损伤本构关系.同济大学学报,1994,22(2):135~140.
    [77]Yang Qiang, Swoboda G. An elastoplastic damage model for geomaterials and its application to arch dams.见:朱维申编.中国青年学者岩土工程力学及其应用讨论会论文集.北京:科学出版社,1994.825~831.
    [78]李术才.加锚断续节理岩体断裂损伤模型及其应用.中国科学院武汉岩土力学研究所博士学位论文,1996.
    [79]袁建新.岩体损伤力学问题.岩土力学,1993,14(1):1~31.
    [80]Labuz J F, et al. Microcrack-dependent fracture of damaged rock. Inter. J. of Fracture,1991,51: 231~240.
    [81]周维垣等.岩体弹脆性损伤本构模型及工程应用.岩土工程学报,1998,20(5):231~240.
    [82]陈文玲等.含非贯通裂隙岩体介质的损伤模型.岩土工程学报.2000,22(4):430~434.
    [83]肖洪天,杨若琼,周维垣.三峡船闸花岗岩亚临界裂纹扩展试验研究.岩石力学与工程学报,1999,18(4):447~450.
    [84]Inglis C E. Stress in a plane due to the presence of cracks and sharp corners. Transactions of the Institution of Naval Architects,1913,55:219-230.
    [85]Graffith A A. The phenomena of rupture and flow in solid. Philosophical Transactions of the Royal Society of London, Series A,1920,221:163~198.
    [86]Irwin G R. Fracture dynamics[A]. Fracturing of metals seminar, Chicago:American Society for Metals,1947:147~166.
    [87]Orowan E. Fracture and strength of solids. Reports on Progress in Physics, London,1949, 185~232.
    [88]Begley J A, Lands J D. Serendipity and the J-integral. International Journal of Fracture,1976,12: 764.
    [89]Dugdele D S. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids,1960,8:100.
    [90]Knott, J. F. Fundamental of fracture mechanics. London:Butterworth,1973.
    [91]Lawn B R, Wilshaw T R. Fracture of brittle solids. Cambridge:Cambridge University Press,1975.
    [92]Liebowitz H. Fracture:An advanced treatise. New York:Academic Press,1963.
    [93]Price N J. Fault and joint development in brittle and semi-brittle rock. Pergaman:Oxford,1966.
    [94]Das S, Scholz C H. Theory of Time-Dependent Rupture in the Earth. Journal of Geophysical Research,1981,86:6039~6051.
    [95]J W Rudnicki. Fracture Mechanics Applied to the Earth's Crust. Annual Review of Earth and Planetary Science,1980,8:489~525.
    [96]Rice J R. The mechanics of earthquake rupture. Physics of the Earthe's Interior, Bologna:Italian Physical Society,1980:555~649.
    [97]Rice J R. Theory of Precursory Processes in the Inception of Earthquake Rupture. Gerlands Beitr. Geophysik,1979,88:91~127.
    [98]Crampin S, Evans R, Atkinson B k. Changes in shear wave splitting at Anza near the time of the North Palm Springs earthquake. Geophysical Journal of the Royal Astronomical Society,1984,76: 147~156.
    [99]Li V C, Rice J R. Preseismic Rupture Progression and Great Earthquake Instabilities at Plate Boundaries. Journal of Geophysical Research,1983,88:4231~4246.
    [100]Anderson O L, and Grew P C. Stress corrosion theory of crack propagation with applicationa to geophysics. Reviews of Geophysics and Space Physics,1977,15:77~104.
    [101]Bruner W M. Crack growth during unroofing of crustal rocks:effects on thermoelastic behavior and near-surface stresses. Journal of Geophysical Research,1984,89:4167~4184.
    [102]Abou-Sayed A S, Brechtel C E, Clifton R J. In situ stress determination by hydro fracturing:a fracture mechanics approach. Journal of Geophysical Research,1978,83:2851~2862.
    [103]Demarest H H. Application of stress corrosion to geothermal reservoirs. Report La-6148-Ms, New Mexico,1976.
    [104]Liu H W, Miller K J. Fracture Toughness of Fresh-Water Ice. Proceedings of IUTAM Symposium on the Physics and Mechanics of Ice, Copenhagen:Springer-Verlag,1979.
    [105]邱祥波,李术才,陈卫忠等.大型复杂洞室稳定性三维弹塑性有限元分析.岩石力学与工程学报,2002,21(增):2065~2068.
    [106]朱维申,王可钧,朱家桥等.二滩电站坝肩厂房三维有限元分析及围岩变形观测反分析.岩土力学,1988,9(3):11~21.
    [107]李银平.岩石类材料损伤断裂机理分析.武汉:华中科技大学博士学位论文,2003.
    [108]Masahiro,SETO, Venkata S. VUTUKURI, Dilip K. NAG and Kunihisa KATSUYAMA. The effect of chemical additives on the strength of rock. In:Rock Mechanics 98. Japanese Committee for IRSM.1998,201-210.
    [109]Horii, H. and Nemat-Nasser, S., Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res.,1985,90(B4):3105-3125
    [110]Nemat-Nasser S. and Horri H., Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockbursts, J. Geophys. Res.,1982,87(B8):6805-6821
    [111]Reyes O. Experimental study and analytical modeling of compressive fracture in brittle materials. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,1991
    [112]Reyes O, Einstein HH..Fracture mechanism of fractured rock-a fracture coalescence model.roceeding of the Seventh International Conference On Rock Mechanics, vol.1, 333-340,1991.
    [113]Shen, B., Stephansson, O. and Einstein, H. H. and Ghahreman, b., Coalescence of fracture under shear stresses in experiments, J. Geophys. Res.,1995,100(B4):5975-5990
    [114]Shen BT, Stephansson O. Numerical analysis of mixed mode Ⅰ and mode Ⅱ fracture propagation.Int J Rock Mech Min Sci Geomech Abtr,1993,30(7):861-867.
    [115]Shen B.The mechanics of fracure coalescence in compression experimental study and numerical simulation.Engng Fract Mech,1993,51(1):73-85.
    [116]Robet A,Einstein H H. Fracture coalescence in rock-like marerials under uniaxial and biaxialcompression. International Journal of Rock Mechanics and Mining Sciences.1998.35: 863-888.
    [117]R.H.C. Wong, K.T. Chau, C.A. Tang, P. Lin. Analysis of crack coalescence in rock-like marerials containing three flaws-Part Ⅰ:experimental approach. International Journal of Rock Mechanics and Mining Sciences.2001.38:909-924.
    [118]李银平,岩石类材料损伤断裂机理研究.博士学位论文.华中科技大学,2003
    [119]李银平,王元汉,肖四喜.类岩石材料中压剪裂纹的相互作用分析.岩石力学与工程学报,2003(4)
    [120]R.H.C.WONG, K.T.CHAU. Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences,1998,35(2):147-164.
    [121]R.H.C.WONG, K.T.CHAU, C.A.TANG, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part Ⅰ:experimental approach. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):909-924.
    [122]Wawersik W R, Fairhurst C. Int. J. Rock Mech. And Min Sci.,1970,7:561~575.
    [123]葛修润主编,岩土损伤力学宏细观试验研究.科学出版社,2004.
    [124]黄明利.岩石多裂纹相互作用破坏机制的研究.岩石力学与工程学报,2001,20(3):423~423.
    [125]Sagong M, Bobet A. Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences,2002,39:229-241.
    [126]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析.武汉:中国科学院武汉岩土力学研究所博士学位论文.2008.
    [127]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应.岩石力学与工程学报,2003,22(4):547-551.
    [128]Mark Kachanov. Elastic solids with many cracks:A simple method of analysis. Int. J. Solids Structures.1987.23(1):23-43.
    [129]Gorbatikh L, Kachanov M. A simple technique for constructing the full stress and displacement fields in elastic plates with multiple cracks. Engng Fract Mech,2000,66:51-63.
    [130]Chen Y Z. Multiple crack problems of antiplane elasticity in an infinite body. Engng Fract Mech,1984,20:767-775.
    [131]Chen Y Z. Solutions of multiple crack problems of a circular plate or an infinite-plate containing a circular hole by using fredholm integral equation approach. Int J Fract,1984, 25:155-168.
    [132]Erdogan F. Stress intensity factors. J Appl Mech,1983,50:992-1002.
    [133]Wang J, Fang J, Karihaloo BL. Asymptotics of multiple crack interactions and predition of effective modulus. Int J Solids Structures,2000,37:4261-4273.
    [134]Lematre J. How to use damage mechanics. Nuclear Engineering and Design,1984,80(1): 233~244.
    [135]Krajcinovic D. Statistical aspects of the continuous damage theory. International Journal Soild Structures,1982,18(7):551~562.
    [136]张学言,闫澍旺.岩土塑性力学基础.天津:天津大学出版社,2004.
    [137]韩放,纪洪广,张伟.单轴加卸荷过程中岩石声学特性及其与损伤因子关系.北京科技大学学报,2007(5):452~455.
    [138]史瑾瑾,郭学彬,肖正学等.岩石冲击损伤特性与超声波波速的实验研究.矿业研究与开发,2005,25(6):27~29.
    [139]林大能,陈寿如.循环冲击荷载作用下岩石损伤规律的试验研究.岩石力学与工程学报,2005,24(22):4094~4098.
    [140]林大能,陈寿如,刘优平.岩石循环冲击损伤演化围压效应的实验研究.矿冶工程,2005,25(4):12~15.
    [141]郭霄.岩体结构面抗剪强度经验估算方法的试验对比研究.浙江工业大学硕士学位论文,2004.
    [142]贺建明,吴刚.岩体异性结构面的抗剪强度准则.重庆大学学报,1994,17(2):105~110.
    [143]夏才初,孙宗颀.工程岩体节理力学.上海:同济大学出版社,2002.
    [144]Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. J Soil Mech Found Div ASCE,1968,94(3):637~658.
    [145]Bandis S, Lumsden A, Barton N. Experimental studies of scale effects on the shear behavior of rock joints. Int J Rock Mech Min Sci Geomech Abstr,1981,18(1):1~21.
    [146]Bandis S, Lumsden A, Barton N. Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr,1983,20(6):249~268.
    [147]周建民.岩体节理法向变形的数学模型分析.岩石力学与工程学报,2000,19(S1):853~855.
    [148]Glough G W, Duncan J M. Finite element analysis of retaining wall behavior. J Soil Mech and Found Div, ASCE,1971,97(12):1657~1674.
    [149]许宏发,金丰年.岩体节理剪切变形的幂函数模型.岩石力学与工程学报,2000,19(3): 314~317.
    [150]Desai C S, Fishman K L. Plasticity-based constitutive model associated testing for joints. Int J Rock Mech Min Sci Geomech Abstr,1991,28(1):15~26.
    [151]殷有泉,张宏.岩体工程有限元分析中的节理单元.力学与实践,1981,2:52~54.
    [152]Plesha M E. Constitutive models for rock discontinuities with dilatancy and surface degradation. Int J Numer anal meth geomech,1987,11(4):345~362.
    [153]Wang J Q Ichikawa Y, Leung C F. A constitutive model for rock interfaces and joints. Int Rock Mech Min Sci,2003,40(1):41~53.
    [154]殷有泉.考虑损伤的节理本构模型.工程地质学报,1994,2(4):1~6.
    [155]Dong J J, Pan Y W. A hierarchical model of rough rock joints based on micromechanics. Int J Rock Mech Min Sci Geomech Abstr,1996,33(2):111~123.
    [156]Lee S W. Stability around underground openings in rock with dilative, non-persistent and multi-scale wavy joints using a discrete element method. USA:The University of Illinois,2003.
    [157]许宝田,阎长虹,陈汉永等.边坡岩体软弱夹层力学特性试验研究.岩土力学,2008,29(11):3077~3081.
    [158]李克钢,许江,李树春.三峡库区岩体天然结构面抗剪性能试验研究.岩土力学,2005,26(7):1063~1067.
    [159]邢皓枫,刘振红,叶观宝,等.南水北调西线工程现场剪切试验及成果分析.岩土力学,2007,28(增):69~73.
    [160]赵建军,王思敬,尚彦军,等.全风化花岗岩抗剪强度影响因素分析.岩土力学,2005,26(4):624~628.
    [161]赵建军,王思敬,尚彦军,等.香港全风化花岗岩饱和直剪试验中的剪胀问题.工程地质学报,2005,13(01):44~48.
    [162]WANG Yi-min, CHEN Ye-kai, LIU Wei, Large-scale direct shear testing of geocell reinforced soil. Journal of Central South University of Technology (English Edition),2008,15: 895~900.
    [163]WONG R C K, MA S K Y, WONG R H C, et al, Shear strength components of concrete under direct shearing. Cement and Concrete Research,2007, (37):1248~1256.
    [164]刘斯宏,肖贡元,杨建州,等.宜兴抽水蓄能电站上库堆石料的新型现场直剪试验.岩土工程学报,2004,26(6):772~776.
    [165]周平根.地下水与岩土介质相互作用的工程地质力学研究.地学前缘,1996,3(1~2):176.
    [166]周平根.滑坡中地下水与岩土体相互作用研究概论//工程地质-面向21世纪(第四届全国青年工程地质大会论文集).武汉:中国地质大学出版社,1997:642~649.
    [167]Colback P S B, Wild B L. The influence of moisture content on the compressive strength of rocks[c]//Proceedings of the 3rd Canadian Rock Mechanics Symposium.1965:65~83.
    [168]Hawkins A B, McConnell B J. Sensitivity of sandstone strength and deformability to changes in moisture content. Quarterly Journal of Engineering Geology,1992,25:115~130.
    [169]康红普.水对岩石的损伤.水文地质工程地质,1994,21(3):39~41.
    [170]周瑞光,成彬芳,杨计申等.糜棱岩流动变形与含水量的关系.工程勘察,1997(5):34~37.
    [171]Erguler Z A, Ulusay R. Water-induced variations in mechanical properties of clay-bearing rocks. International Journal of Rock Mechanics and Mining Sciences,2009(46):355~370.
    [172]Fukuda M, Rock weathering by freeze-thaw cycles. Low Temp Sci Series A Phys Sci,1974, 32:243~249.
    [173]Hall K. A laboratory simutation of rock breakdown environment. Earth Surface Processes and Landforms due to freeze-thaw in a Maritime Antarctic,1988,13:369~382.
    [174]Prick A. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles. Catena,1995,25:7~20.
    [175]Yamabe T, Neaupane K M. Determination of some thereto-mechanical properties of Sirahama sandstone under subzero temperature conditions. International Journal of Rock Mechanics & Mining Science,2001,38(7):1029~1034.
    [176]杨更社,张全胜,蒲毅彬.冻结温度对岩石细观损伤特性的影响.西安科技学院学报,2003,23(2):139~142.
    [177]杨更社,张全胜,蒲毅彬.冻结温度影响下岩石细观损伤演化CT扫描.长安大学学报:自然科学版,2004,24(6):40~42.
    [178]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究.岩石力学与工程学报,2005,24(7):3076~3082.
    [179]Badger C W, Cummings A D, Whitmore R L. The disintegration of shale. Journal of the Institute of Fuel,1956,29:417~423.
    [180]Terzaghi K, Peck R B. Soil mechanics in engineering practice. New York London Sydney: John Wiley and Sons,1967.
    [181]Kennard M F, Knill J L. Reservoirs and limestones, with particular reference to the Cow Green Scheme. Journal of the Institute of Water Engineers,1968,23:87~113.
    [182]鲁祖德,丁梧秀,冯夏庭,张友良.裂隙岩石的应力-水流化学耦合作用试验研究.岩石力学与工程学报,2008,27(4):796-804.
    [183]鲁祖德,陈从新,陈建胜等.岭澳核电三期强风化角岩边坡岩体现场直剪试验研究.岩土力学,2009,30(12):3783-3792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700