用户名: 密码: 验证码:
建筑物等效电参数测试方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家对环保的不断重视,电磁辐射问题也越来越受到人们的关注,因此电磁辐射预测系统成为了当今的热点研究方向之一。在对高压线、通信基站和广播电视发射塔等建于市区内的设备进行辐射预测时,需要考虑建筑物对电磁波传播的影响,这是因为电磁波在遇到建筑物阻挡时会产生一定的路径和幅相变化。传播路径的改变主要是由反射和衍射引起;幅度变化和相位变化则是由建筑物的介电特性产生,它会导致传播中的电磁信号强度出现损耗,那么系统的研究建筑物等效电参数则是很有必要的。
     本文的主要内容是建立在对建筑物等效电参数研究的基础之上,首先通过分析现代生活中的各种电磁辐射信号来源和阻碍辐射信号传播的主要原因,确定了测试的主要频率和目标物体。在人们的生存空间中最主要的辐射源为通信基站,它与手机的工作频率都为800MHz-2.1GHz,这也是本文建筑物墙体的主要测试频段。通过查阅大量的资料,发现近年来等效电参数测量常用的方法多为同轴传输/反射法,而由于建筑物的特性,需要利用无损测量技术,同轴探头法和自由空间法则正好符合了这样的要求。
     本文对这两种方法的测试理论和校准原理进行了详细的说明,其中同轴探头法的理论基础为准静态模型,该模型省略了多次模对测试结果的影响;自由空间法则是基于菲涅尔反射定律的基础之上,先通过金属板校准,然后反演出物质等效电参数。两种测试方法的适用环境也不尽相同,文中同轴探头法被用于实验室内测试建筑用混凝土块的研究中,这是由于其校准条件的特殊性所决定的;自由空间法则在实地测试中具有明显的优势,所以利用该方法对两处高大的户外建筑物墙体进行测试。在测试结果与理论值进行对比后,可以看出这两种测试方法都具有较高的准确性,最后把测试得到的建筑物等效电参数拟合成随频率变化的光滑曲线,以便于结果分析和建立电磁辐射预测系统中物质介电特性数据库。
With the national emphasis on the environmental cause, the problem of electromagnetic radiation becomes more and more serious. Electromagnetic radiation prediction system is one hot research. When forecasting the radiation of devices built in urban district, such as high tension line, communication base station, radio and television towers and so, we need to consider the affection of constructions on electromagnetic wave propagation, because path and gain/phase of electromagnetic wave may be changed by constructions. Propagation paths change is mainly caused by reflection and diffraction, and gain/phase change is mainly caused by dielectric property. It can lead to loss of the spreading electromagnetic signals. It is most important to study the equivalent electrical parameters of constructions based on above reasons.
     The main content of this article is built on the basis of researching equivalent electrical parameters of the building. Firstly, we determine the main test frequencies and objects by analyzing the causes of hindering the radiation signal propagation and the sources of electromagnetic radiation signals. The most main radiation source is electromagnetic waves of communication base stations, whose frequency range is between 800MHz and 2.1 GHz. By referring to lots of data, we find that the method of measuring equivalent circuit parameters is usually coaxial transmission/reflection method. But the coaxial probe method and the free space method is more suitable for characteristics of the building.
     We give the detail explanation about testing theory and calibration process of the two methods in this paper. The theoretical principle of coaxial probe method is based on quasi-static model, which omits repeatedly mode. And the theoretical principle of free space method is based on Fresnel law of reflection, which inverses equivalent electrical parameters of materials easily after using Metal plate calibration. From the differences between two methods, we know that the probe method is used in laboratory, which is decided by the process of calibration. And the free space method has advantage in the field tests. After using the free space method to measure two tall building walls, we find the data from the two methods is similar as theoretical value. Moreover the data of equivalent conductivity can be changed into versus frequency curve by curve fitting. This is good for set up the data of equivalent conductivity in electromagnetic radiation prediction system.
引文
[1]陈晓冬,余群.浅谈移动通信中电磁辐射的影响[J].电子质量,2006(1):70-72.
    [2]王毅,徐辉,麻桂荣等.城市电磁环境的新问题[J].城市管理与科技,2001,3(3):14-18.
    [3]陆健贤等,移动通信分布系统原理与工程设计[M].北京:机械工业出版社,2008:388.
    [4]尼尔逊A.H主编.混凝土结构设计.第1版[M].过镇海译.北京:中国建筑工业出版社,2003.629.
    [5]Xiaoyang Huang, Bingquan Chen, Hong-Liang Cuiet al. Radio-propagation model based on the combined method of ray tracing and diffraction[J]. Antennas and Propagation, IEEE Transactions on,2006,54 (4):1284-1291.
    [6]Holloway C. L., Allen K. C., Laflin M. G., Analysis of composite walls for short path propagation modeling[M],1995:526-529.
    [7]Richalot E., Bonilla M., Wong M. F.et al, Electromagnetic propagation into reinforced-concrete walls[M],1998:1255-1258.
    [8]Pena D., Feick R., Hristov H. D.et al. Measurement and modeling of propagation losses in brick and concrete walls for the 900-MHz band[J]. Antennas and Propagation, IEEE Transactions on,2003,51 (1):31-39.
    [9]Chang-Fa Yang, Boau-Cheng Wu, Chuen-Jyi Ko. A ray-tracing method for modeling indoor wave propagation and penetration[J]. Antennas and Propagation, IEEE Transactions on, 1998,46 (6):907-919.
    [10]Grubisic S., Carpes W. P., Lima C. B.et al. Ray-tracing propagation model using image theory with a new accurate approximation for transmitted rays through walls[J]. Magnetics, IEEE Transactions on,2006,42 (4):835-838.
    [11]Liebendorfer M., Zehnder M., Dersch U., Multi channel coupling:interactive prediction of 3D indoor propagation[M],2000:215-221.
    [12]Dersch U., Zollinger E. Propagation mechanisms in microcell and indoor environments[J]. Vehicular Technology, IEEE Transactions on,1994,43 (4):1058-1066.
    [13]Chaigneaud L., Guillet V., Vauzelle R., A 3D ray-tracing tool for broadband wireless systems[M],2001:2043-2047.
    [14]李纪鹏,龚勋,蔡树榛.开口波导法无损测量微波集成电路基片复介电常数[J].微波学报,1999(4):317-322.
    [15]Roberts S., Von Hippel A. A new method for measuring dielectric constant and loss in the range of centimeter waves[J]. Journal of Applied Physics,1946,17 (7):610-616.
    [16]Shen L. A laboratory technique for measuring dielectric properties of core samples at ultrahigh frequencies[J]. Old SPE Journal,1985,25 (4):502-514.
    [17]Zheng H., Smith C. E. Permittivity measurements using a short open-ended coaxial line probe[J]. Microwave and Guided Wave Letters, IEEE,1991,1 (11):337-339.
    [18]Blackham D. V., Pollard R. D. An improved technique for permittivity measurements using a coaxial probe[J]. Instrumentation and Measurement, IEEE Transactions on,1997,46 (5) 1093-1099.
    [19]Hoshina S., Kanai Y., Miyakawa M. A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement[J]. Magnetics, IEEE Transactions on,2001,37 (5):3311-3314.
    [20]金钦汉,微波化学[M].北京:科学出版社,1999:324.
    [21]唐宗熙,张彪.用自由空间法测试介质电磁参数[J].电子学报,2006(1):189-192.
    [22]康国军,陈森鑫,房德斌等.岩矿石介电常数的测量方法与技术[J].世界地质,1995(2):91-96.
    [23]Stuchly Maria A., Stuchly Stanislaw S. Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review[J]. Instrumentation and Measurement, IEEE Transactions on,1980,29 (3):176-183.
    [24]Belhadj-Tahar N. E., Fourrier-Lamer A. Broad-Band Analysis of a Coaxial Discontinuity Used for Dielectric Measurements [J]. Microwave Theory and Techniques, IEEE Transactions on,1986,34 (3):346-350.
    [25]Marsland T. P., Evans S. Dielectric measurements with an open-ended coaxial probe[J]. Microwaves, Antennas and Propagation, IEE Proceedings H,1987,134 (4):341-349.
    [26]Xu Dening, Liu Liping, Jiang Zhiyau, Measurement of Dielectic Properties of Biological Substances Using Improved Open-Ended Coaxial Line Resonator Method[M],1987: 251-254.
    [27]Misra D. K. A Quasi-Static Analysis of Open-Ended Coaxial Lines (Short Paper)[J]. Microwave Theory and Techniques, IEEE Transactions on,1987,35 (10):925-928.
    [28]肖宏跃,雷宛,地电学教程[M].北京:地质出版社,2008:288.
    [29]方大纲,电磁理论中的谱域方法[M].合肥:安徽教育出版社,1995:470.
    [30]吴明忠,姚熹,张良莹.同轴探头法测量片状介质材料的微波介电常数[J].压电与声光,2001,23(1):63-67.
    [31]李庆扬,王能超,易大义,数值分析[M].武汉:华中科技大学出版社,2006:249.
    [32]陈才生,数学物理方程[M].南京:东南大学出版社,2002:234.
    [33]吴俊军.开口同轴法测试岩石电性参数的方法研究[D].[硕士学位论文].长春:吉林大学,2009.
    [34]李智群,射频集成电路与系统[M].北京:科学出版社,2008:485.
    [35]吴俊军,刘四新,董航等.基于开口同轴法的岩矿石样品介电常数测试[J].地球物理学报,2011,54(2):457-465.
    [36]Belhadj-Tahar N., Meyer O., Fourrier-Lamer A. Broad-band microwave characterization of bilayered materials using a coaxial discontinuity with applications for thin conductive films for microelectronics and material in air-tight cell[J]. Microwave Theory and Techniques, IEEE Transactions on,1997,45 (2):260-267.
    [37]王德生,袁伟群,王珏等.退火处理对聚甲基丙烯酸甲酯(PMMA)介电性能的影响[J].绝缘材料,2007(2):51-53.
    [38]邹澎,周晓萍,电磁兼容原理、技术和应用[M].北京:清华大学出版社,2007:360.
    [39]赵艳丽.典型地物微波介电特性及其室内测量方法研究[D].[硕士学位论文].成都:电子科技大学,2009.
    [40]胡晓冬,董辰辉,MATLAB从入门到精通[M].北京:人民邮电出版社,2010:410.
    [41]Khosrowbeygi A., Griffiths H. D., Cullen A. L., A new free-wave dielectric and magnetic properties measurement system at millimetre wavelengths[M],1994:1461-1464.
    [42]黄扬,杨习荣,耿淮滨.土壤含水量与其微波反射特性关系的研究[J].环境遥感:101-106.
    [43]Umari M. H., Ghodgaonkar D. K., Varadan V. V.et al. A free-space bistatic calibration technique for the measurement of parallel and perpendicular reflection coefficients of planar samples[J]. Instrumentation and Measurement, IEEE Transactions on,1991,40 (1):19-24.
    [44]张俊荣,张德海,王丽巍.微波遥感中的介电常数[J].遥感技术与应用,1994(2):30-43.
    [45]陈志雨,周冬青.双极化位相法测量半空间介质介电常数[J].电子科学学刊:851-855.
    [46]Cem Hasar U., Far-Field Microcontroller Based Automated Microwave Measurement System for Characterization of Dielectric Permittivity of High-Loss Materials[M],2006: 942-947.
    [47]Vilovic I., Nad R., Sipus Z.et al, A non-destructive approach for extracting the complex dielectric constant of the walls in building[M],2008:609-612.
    [48]邹澎,周晓萍,电磁场与电磁波[M].北京:清华大学出版社,2008:353.
    [49]贾明权.典型地物微波介电特性实验研究[D].[硕士学位论文].成都:电子科技大学,2008.
    [50]Hoekstra P., Cappillino P. Dielectric properties of sea and sodium chloride ice at UHF and microwave frequencies[J]. Journal of Geophysical Research,1971,76 (20):4922-4931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700