用户名: 密码: 验证码:
宝浪油田异常破裂压力预测及降低破裂压力技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为中国石油化工股份有限公司先导项目“宝浪油田复杂条件压裂技术研究”的部分研究内容。勘探开发历程表明,宝浪油田具有储层渗透率低、水敏性强、油层上下或层内有煤层发育、地层破裂压力异常等特点,由于地层破裂压裂高,多数井压后效果不理想,有的井甚至不能压开地层。针对这种情况,本文在广泛文献调研的基础上,以地应力分析为手段,以岩石力学性能测试为基础,从多方面、多角度详细分析了宝浪油田破裂压裂异常的成因,提出了预测破裂压力的方法和降低破裂压力的技术措施,并开展了相关的定量化研究。
     本文完成的主要工作包括:
     (1)开展了室内岩心差应变分析、测井曲线分析和水力压裂数据分析求取地应力研究,并将各种方法的结果作了对比,压裂施工曲线解释的地应力远高于岩心差应变分析结果和测井曲线解释结果,压裂测量结果应当是较真实反映施工破裂压力的依据。
     (2)根据压裂液摩阻、地应力与破裂压力的关系分析及与其它油田的对比分析,探讨了宝浪油田在水力压裂中表现出的异常破裂压力的成因。沉积特征,构造特征和岩石结构等地质因素,是造成破裂压力异常的根本原因,射孔参数、工作液污染,压裂液性能等也与破裂压力异常有关。宝中区块构造作用更强烈,地层渗透性更低,成分成熟度更低,压实程度更强,因而地应力和破裂压力更高。
     (3)模拟油层条件下的拟三轴实验确定了岩石和煤层的杨氏弹性模量。宝浪油田岩石弹性模量偏低,容易引起岩石变形而产生较高地应力。岩石破裂实验表明,岩石破裂压力较高,且部分岩样并不产生明显主裂缝。
     (4)利用进口的CAD/CAE/CAM软件Pro/Engineer(pro/E)有限元分析程序分析计算了射孔参数、岩石力学性质参数和地应力对射孔眼附近应力分布的影响,认为采用大孔径、深穿透射孔参数有利于降低破裂压力,对套管强度没有实质影响。
     (5)根据地应力、孔隙流体压力、岩石力学性质等,建立了预测宝浪油田破裂压力的经验公式。
     (6)提出了降低异常破裂压力技术措施,包括高能气体压裂预处理、酸化预处理、优选射孔参数、减小储层伤害、调整压裂液性能等。
     (7)按强度理论和断裂理论分析讨论了高能气体压裂预处理降低的破裂压力的数值;讨论了酸化预处理降低破裂压力的机理和数值。给出了相应的理论计算公式。
     (8)建立了隔层评价(是否压窜)的简化模型,能够快速预测人工裂缝穿层状况,为调整压裂参数提供了快速方法。
This paper was prepared for Petrochemical of China LTD's pilot project: Investigation of Fracturing Technology in Complex Situation in Baolang Oil Field . Exploration and development history show low reservoir permeability, intense water sensitivity, coal layer growing in oil formation or above and below oil formation and high fracturing working pressure in Baolang oil field, it is different from other low permeability oil field and shows special technological difficult point and is very complex oil field. Based on extensively investigation and research of literature, Baolang oil field earth stress analysis, rock mechanics performance measurement. Baolang oil field reservoir's major feature and perforated well stress analysis, this paper analyzed the reason of abnormal fracture pressure in waterfrac operating and presented method of predicting fracture pressure and technological measurement of reducing fracture pressure and analyzed quantitatively all method's effect. This can direct not only efficient development of Baolang oil field but development of other region with high abnormal fracture pressure. This paper presented:(1) Based on the core differential strain analysis and interpretation of logs and fracture working pressure, earth stress in Baobei block and Baozhong block is analyzed and the friction drag of fracture fluid is explained. The results indicate that earth stress and friction drag of fracture fluid are high in Baolang oil field.(2) The elastic modulus and poisson's ratio of rocks in Baobei block and restraining barrier (mud shale, coal layer) in Baozhong block are measured under the condition of simulation of Baolang oil field's earth stress (confine pressure 50 Mpa) . In the main, low rock's elastic modulus indicates intense reservoir plastic feature in Baolang oil field. The results of rock-breaking experiments under condition of triaxial stress show that fracture pressure of core samples is very high and beyond 80Mpa, the breakdown of granule roundstone's core of well B2219 is not apparent and major fracture is not observed. These results are identical with pressure operating curve.(3) Based on the analysis of rock composition feature, deposition feature and structural feature in Baolang oil field, tectonic action and anomaly transportation and rapid accumulation of sedimentary derivation and intense rock heterogeneity are regarded as the reason that result in abnormal fracture pressure. In Baozhong block, earth stress and fracture pressure are higher because of more intense tectonic action and lower reservoir permeability and lower compositional maturity and more intense compaction degree . In addition, heavy reservoir damage and high friction drag of fracture fluid in Baozhong block are also important and external cause that result in abnormal fracture pressure in Baolang oil field.(4) The CAD/CAE/CAM software Pro/Engineer (Pro/E) finite element analysis program on workstation are used to calculated the effect of stress distribution near perforating tunnel, which are caused by perforating parameter and low stress, it shows that big aperture and deep penetrating parameter can reduce fracture pressure, do not affect casing strength.(5) The cause of abnormal fracture pressure is diverse in waterfrac of Baolang oil field .It is related to perforating parameter and damage of working fluid to reservoir and high fluid
    
    friction drag caused by bad fracture fluid, but preliminary affecting factors are such geofactor as deposition feature, structural feature and rock structure. This paper presented technological measure to reduce breakdown pressure, it includes high energy gas fracture preliminary processing and acidizing preliminary processing and optimized perforating parameter at the basis of optimized fracture fluid performance.(6) According to kinetic process of high energy gas fracture , rock-breaking function was explained . The degree that high energy gas fracture reduce fracture pressure was determined quantitatively, according to the strength theory and failure mechanism of rock mechanics.(7) Ba
引文
1 宝浪油田宝北区块采油工程方案,河南石油勘探局采油工艺研究所,1997.5
    2 中国地质大学、河南石油局勘探院:宝浪油田低孔低渗储层综合研究.2000
    3 万庄酸化压裂中心、河南石油局工程院:宝浪油田复杂条件下压裂可行性研究1999
    4 宝浪油田焉参1井区开发方案(油藏工程部分)。河南石油局地质勘探院,北京石油勘探开发研究院开发所。1998.3
    5 宝浪油田整体压裂方案。河南石油局采油所,西南石油学院石油工程系。1997.6
    6 I yang. D G Grosby et al: Investigation of the factors influencing hydraulic fracture initiation in highly stressed formation, SPE 38043,1997
    7 GRI: Staged Field Experiment No.4 application of advanced technologies in tight gas sandstone-Frontier Formation, chimney Butte field, Sublette county, Wyoming. Report No.GRI-92/0394
    8 Enever et al: Recent experience with extended leak-off tests for in-stitu stress measurements in Australia.APPEA Journal, 1996,P528
    9 J F Shao, S Homand: Influences of Heat Convection of the Factors Influencing Hydraulic Fracture Initiation in Highly Stressed Formation. SPE/ISRM 47387
    10 万仁溥:《采油技术手册》(九).石油工业出版、北京。1998
    11 王鸿勋:水力压裂原理,石油工业出版社,北京 1987
    12 胡永全、赵金洲:水力压裂原理与设计方法,西南石油学院,南充 1999
    13 Economides M J油井开采系统。石油工业出版社,北京 1987
    14 G C豪瓦德,C R法斯特(付灿帮、任书泉译):油层水力压裂。石油工业出版社.北京,1980
    15 王平:含油盆地构造力学原理。石油工业出版社.北京,1993.11
    16 陶振宇、潘别桐:岩石力学原理与方法,中国地南大学出版社。
    17 周维垣:高等岩石力学.水电出版社。北京.1990
    18 范天佑:断裂力学基础,江苏科技出版社,南京 1980
    19 布洛克:工程断裂力学,科学出版社,北京 1981
    20 Chrisman S A: Offshore Fracture Gradient. JPT, 1973, Aug. 910-914
    21 胡博仲:大庆油田高含水稳产技术.石油工业出版社.北京。
    22 Hubbert M K, Wills D G: Mechanics of Hydraulic Fracturing. Trans., AIME (1957), 210, 153-160
    23 B A Eaton: Fracture Gradient Prediction and Its Application in Oilfield Operation. JPT, Oct. 1969, 1353-1360
    
    24 梁何生等 一种地层破裂压力估算的方法及应用 石油钻探技术 1999 No.6
    25 Mattews W R, Kelly J: How to Predict Formation Pressure and Fracture Gradient from Electric and Sonic Logs. Oil & Gas Journal, Feb. 20, 267
    26 黄荣樽 一种新的地层破裂压力预测方法。石油钻采工艺。1986,8(3)
    27 <钻井手册(甲方)>编写组:钻井手册(甲方)。北京,石油工业出版社,1990。
    28 Aadnoy B S: Geomechanical Analysis for Deep-water Drilling. IADC/SPE 39339, 1998.
    29 Holbrook P W: The Use of Petro-phsical Data for Well Planning. Drilling Safety and Effience. Houston, SPWLA, 37th Annual Logging Symposium, June 16-19, 1996.
    30 Holbrook P W: Discussion of a New Simple Method to Estimate Fracture Pressure Gradients. SPE Drilling and Completion, Marcg, 1997.
    31 葛洪魁等:修正Holbrook地层破裂压力预测模型。石油钻探技术。2001,Vol.29,No.3。
    32 李传亮,孔详言:油井压裂过程岩石破裂压力计算公式的理论研究。石油钻采工艺。2000,Vol.22,No.2。
    33 Haimson B, Fairhurst C: Initiation and Extension of Hydraulic fractures in Rock. SPEJ, Sept. 1967, 310-318
    34 Lade P V, Boer R De: Concept of Effective Stress for Soil, Concrete and Rock. Geotechnique. Vol.47, No.1, Mar. 1997, 61-78.
    35 耶格 J C,库克 N G W著:岩石力学基础(中国科学院工程力学所译)。北京,科学出版社,1981,7:267-272。
    36 李传亮,孔详言等:多孔介质的双重有效应力。自然杂志。1999,Vol.21 No.5,287-292.
    37 W K Miller et al: In-stiu stress profiling and prediction of hydraulic fracture azimuth for the Canyon sands formation, Sonora and sawyer Field, Sutton county, Texas, SPE 21848
    38 N R Warpinski, L W Teufel: In-situ stress measurement at Rainier Mesa, Nevada test site-Influene of topography and lithology on stress state in Tuff. Int. J. Rock Mech., Min, Sci & Geomech. Abstract, V.28. No.2/3.
    39 N R Warpinski, L W Teufel: In-situ stresses in low permeability, Non-marine rocks. SPE16402
    40 B M Robinson et al: The Gas Research Institute second staged field experiment: A study of hydraulic fracturing. SPE 21459
    41 P R Sheorey: A theory for in-situ stress in isotropic and transversely isotropic rock.. Int. J. Rock Mech., Min, Sci. & Geomech.. Abstract, V.28. No.2/3.)
    
    42 J. Geertsma: The effect of fluid pressure decline on volumetric changes of porous rocks.AIME.210.1957,P331-340
    43 L W Teufel, D W Rhett & H E Farell: Effect of Reservoir Depletion and Pore Pressure Drowdown on In-situ Stress and Deformation in the Ekoffisk Field, North Sea, Rock Mechanics as a Multidisplianary Science, Roegiers (ed.), Balkerma, Roffordan.
    44 Lesage Marc et al: Pore-pressure and Fracture-gradient Prediction.SPE 21607. W Thiercelin, 1991
    45 李志明、张金珠:地应力与油气勘探开发,石油工业出版社.北京 1998
    46 Yale: In-situ Stress Orientation and the Effects of Local Structure-Sott Field, North Sea. SPE 28146,1994
    47 R.I.Keda: In-situ Stress Heterogeneity and Crack Density Distribution. Int. J Rock Mech. Min. Sci. & Geomech. Abstract. Vol.30 No.7, 1013-1018,1993
    48 Peska P, Zoback M D: Stress and Failure of Inclined Borehole. Published 1996 by Stanford University Department of Geophysics
    49 Peska P, Zoback M D: Compressive and Tensile Failure of Inclined Well and Determination of In-situ Stress and Rock Strength. JGR, 1995. 100:B7, 12,791-12811
    50 Newberry B.M: Prediction of Vertical Hydraulic Fracture Migration Using Compress ional and Shear Wave Slowness. SPE 13895
    51 Thiercelin & plumb
    52 M Prats: Effect of burial history on the subsurface horizontal stresses of formation having different material properties. SPEJ. Dec. 1981
    53 孙均等:地下结构有限元法解析.国济大学出版社.上海,1988
    54 K.J.贝斯:工程分析中的有限元法.机械工业出版社.北京 1991
    55 郑宏等:关于岩土工程有限元分析中的若干问题.岩土力学,1995.No.3
    56 张顺,林春明等:松辽盆地头台油田现代地应力场分布特征研究.高校地质学报,2001,No..2
    57 陶良军,冯兴武等:宝浪油田地应力和裂缝特征研究与应用.钻采工艺,2001,No.2
    58 王世泽:川西洛带构造蓬莱镇组地层现今地应力场特征 矿物岩石 2000.3
    59 刘发喜:高能气体压裂的适用范围与选井选层,西安石油学院学报,1992,No.2
    60 长庆石油局科委编译:国外爆燃气体压裂技术研究现状与前景展望,甘肃科技出版社,1991年,兰州
    61 李文魁,周春虎:地层压裂时的残余裂缝的形成,石油学报,1999.No.4
    62 用压力脉冲处理油层近井地带,油气田开发工 程译丛。1991.No.6
    63
    
    63 韩常省,阳庆云:可控脉冲压裂技术的发展与应用,西安石油学院学报,1989.No.3
    64 杨卫宇,赵刚:高能气体压裂火药燃烧射孔泄流规律研究,西安石油学院学报,1992.No.2
    65 杨卫宇:高能气体压裂对套管井壁的破坏,西安院报,1989.No.2
    66 杨卫宇、周春虎:高能气体压裂瞬态压力耦合分析,石油学报,1993.No.3
    67 尉立岗等:高能气体压裂瞬态压力耦合分析,石油钻采工艺,1994.No.4;
    68 杨卫宇等:高能气体压裂缝延伸数值模拟方法,西安院报,1993.No.3
    69 杨卫宇、周春虎:高能气体压裂设计关键因素量化分析。石油钻采工艺,1992.No.6
    70 杨卫宇、周春虎:浅议高能气体压裂设计方法.西安院报,1991.No.4
    71 李文魁:深井高能气体压裂技术试验研究,石油钻采工艺,1995.No.2
    72 杨宝君、回春兰:复合压裂技术研究与应用,石油钻井工艺,1998.No.1
    73 B B Wiliams:油层酸化原理。石油工业出版社,1980,北京
    74 任书泉、熊宏杰:酸化原理与设计方法,西南石油学院,1987年,四川南充
    75 李颍川 主编:《采油工程》。石油工业出版社,2001,北京
    76 Economides,Nolt:油藏增产措施.石油工业出版社,北京。
    77 王鸿勋、张琪:采油工艺原理(修订本).石油工业出版社,北京.1987
    78 万仁溥:采油工程手册(下),石油工业出版社,北京.2000
    79 牛华:试论射孔与油气井产能的关系.大庆石油学院学报,1995,No.2
    80 许广明,孔祥言,卢德唐:利用非稳定渗流方程研究射孔参数对产能的影响.石油钻采工艺.2000 No.4
    81 李海涛,王永清,祝渝培,谭灿 裂缝性油藏射孔完井产能的有限元分析.石油学报.2001,No.5
    82 熊友明,潘迎德:各种射孔系列完井方式下水平井产能预测研究。西南石油学院学报.1996,No.2
    83 范学平,黄建民等:用边界元方法分析射孔完井非稳定渗流问题。西南石油学院学报 1996,No.3
    84 刘想平,蒋志祥等:射孔完井的水平井向井流动态关系石油勘探与开发。199902
    85 万仁溥、罗英俊:现代完井工程,石油工业出版社。北京。1999.6
    86 R S Clarke et al: Perforating for Stimulation: An Engineered Solution. SPE 56471
    87 万仁溥:《采油技术手册》(九).石油工业出版、北京。1998
    
    88 王鸿勋:水力压裂原理,石油工业出版社,北京 1987
    89 Bebrmann L A, Elbel J L: Effect of Perforations on Fracture Initiation. JPT, May, 1991
    90 Rump J, Conway M: Effects of Perforation Entry Friction on Bottom hole Treating Analysis. JPT, Aug. 1988.
    91 C H yew, M E Chang et al: On perforating and fracturing of deviated cased wallbores.SPE 26514
    92 Chen M J Economides: Fracture pressures and near, well bore fracture geometry of arbitrarily oriented and horitontal wells,SPE-30531,1995
    93 R Papanastiou, A Zervos: Three-dimension stress analysis of a well bore with peforations and a fracture, SPE/ISRM-47378
    94 P M Halleck, J Robins et al: Mechanical Damage Caused by Perforations May Affect Fracture Breakdown. SPE 51051
    95 Lestz & Clarke Halleck et al: Estimating Perforation Flow Performance from Variation in Indentation Hardness. SPE Drilling and Completions. Dec. 1995.
    96 中国石油科学院,河南石油局采油所:宝北区块天然裂缝特征与地应力研究。1997
    97 中国石油科学院,河南石油局采油所:宝中区块天然裂缝特征与地应力分布。1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700