用户名: 密码: 验证码:
下保护层合理保护范围及在卸压瓦斯抽采中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国瓦斯动力灾害程度日趋严重,保护层开采作为首选和最有效的区域性防突措施越来越受到重视的现状。本文采用弹性力学、渗流力学、岩体力学等基础理论,通过理论分析、相似模拟、数值模拟和现场试验考察等研究途径,较为全面的研究了远距离下保护层开采后上覆煤岩体的应力分布、膨胀变形、被保护层的卸压保护范围、卸压瓦斯流动规律及煤层卸压瓦斯抽采方法,研究成果可为下保护层开采设计和上被保护层的卸压瓦斯抽采提供重要的参考。
     论文分析了近水平煤层工作面采场上覆煤岩体的受力状态(工作面倾向),得出了上被保护层的应力和下沉量的表达式。结合理论分析、数值模拟及现场考察结果,获得了倾向上被保护层工作面的应力分布及煤层膨胀变形规律。被保护层在保护层工作面机巷、风巷法向投影范围内均获得卸压效果。充分卸压边界(卸压角确定的边界)与煤柱边缘的法线投影之间区域(称为倾向扩界区域)煤体的应力降低和膨胀变形程度较工作面中部区域有所减少,但煤层透气性能明显改善,说明通过对其卸压瓦斯的抽采,扩界区域同样可处于保护范围内,近水平下保护层倾向卸压角可由锐角提高至90°,即被保护层工作面可与保护层工作面实现等宽布置。
     采用模型实验、数值模拟及现场考察等方法,获得了近水平上被保护层工作面走向上的应力变化及煤层膨胀变形规律。沿工作面走向,可分为原始应力区、集中应力区、卸压区和应力逐渐恢复区。保护层工作面采空区走向边界在被保护层上的法向投影范围内均获得卸压效果,在56°走向卸压角范围之内的被保护层,地应力下降及煤层膨胀变形较大,在充分卸压边界(卸压角确定的边界)与煤柱边缘的法线投影之间区域(称为走向扩界区域)的煤体的煤体地应力下降及煤层膨胀变形相对较小,但煤层透气性能同样明显改善,也说明通过对其卸压瓦斯的抽采,扩界区域同样可处于保护范围内,即走向卸压角可由56°提高至90°左右。
     结合远距离被保护层的裂隙发育特征,文章分析了远距离上被保护层的瓦斯流动及汇集特征,并获得了远距离上被保护层的卸压瓦斯抽采方法及相关技术参数,上被保护层卸压瓦斯抽采主要包括底板岩巷网格式上向穿层钻孔抽采和地面钻井抽采两种方式。通过对淮南潘三煤矿进行远距离下保护层开采现场试验,有效降低了上被保护层的瓦斯含量,彻底消除了突出煤层的危险性,实现了突出煤层的安全高效开采。根据考察结果,淮南潘三煤矿上被保护层C13煤层变形稳定后的相对膨胀变形为20.74‰,煤层透气性系数增大2592倍,煤层瓦斯抽采率达62%,煤层瓦斯压力由4.1MPa降为0.51MPa,瓦斯含量由10m3/t降为3.8m3/t。另外,根据现场试验考察验证,认为理论分析、相似材料模拟及数值模拟等方法得出的结论是可靠、合理的。
Exploitation of protective seam as a principal and effective measure for avoiding gas and coal outburst has received increasingly attention due to the severe degree of gas dynamic disaster. The present study utilizes fundamental theories such as elastic mechanics, percolation mechanics, rock mechanics, and the like to research on stress distribution, expanding deformation, the pressure-relief and protective range of protected seam, the law of pressure-relief gas flowing and the method of pressure-relief gas exploiting of upper coal and strata after the long distance protective seam exploited, using the following means: theoretical analysis, similar simulation, numerical value simulation and so forth. The results can provide the crucial reference for exploitation of protective seam as well as pressure-relief gas extraction.
     This dissertation analyzes the state bearing the force of upper coal-rock mass, yields the expressions of stress and squate with respect to the upper protected seam. Based on theoretical analysis, similar simulation, numerical value simulation and observation on the spot, the study concludes the laws of stress distribution and expanding deformation regarding the oblique working face of upper protected seam. The pressure-relief effect is obtained in the range of normal projection as regards the protected seam projecting roadway and wind roadway of protected seam’s working face, stress in the central section of oblique working face with a dramatically decline and a little change in the two sides of coal pillar. Also, coal seam occurs in expanding deformation. In particular, the central section of working face deforms a lot and two sides relatively small. The relative pressure-relief guide line of coal mass between the completely pressure-relief boundary (i.e. certain boundary of pressure-relief angle) and the normal projection of pillar edge(called oblique extending area) satisfies the request of protective seam exploiting. The area The normal projection between pressure-relief boundary and edge of coal pillar. This demonstrates that the expanding area still lies in its protected range. The widths of working faces regarding protective seam and protected seam are the similar with each other, i.e. inclining pressure-relief the angle can occur in change from acute angle to right angle 90°.
     The paper presents the laws of stress change and expanding deformation with regard to the working face of upper protected seam, adopting simulation test, numerical value simulation and observation on the spot and so on. Along direction of working face, the area can be divided into four sections,namely original stress area, concentrated stress area, pressure-relief area and gradual resuming area. All the pressure-relief effect is obtained in the range of normal projection which the gob along working face of protective seam projects protected seam. In the protected seam with the range of 56°direction of pressure-relief angle, terrestrial stress falls and expanding deformation occurs to a great extent in coal. The terrestrial stress of coal mass, which is between the completely pressure-relief boundary (i.e. certain boundary of pressure-relief angle) and the normal projection of pillar edge(called oblique extending area), declines and coal seam occurs in expanding deformation The expanding deformation satisfies the technique guide line, that is, pressure-relief angle can give rise to about 90°from 56°.
     As for long distance protected seam, this study, associating with fracture development characteristics of long distance upper protected seam, surveys the characteristics of gas flowing and influx, and found the methods of pressure-relief gas extraction and relative parameters. Pressure-relief gas extraction of upper protected seam mainly involves two ways: extraction from the net-like floor roadway to penetrating borehole and drilling extraction on the floor. The current study carries out an application test on exploitation of long distance lower protective seam in PanSan Coal Mine, HuaiNan, reduces the gas content of upper protected seam, eradicates the disaster of outburst coal seams and realizes their exploitation safely and effectively. According to the results of examination, relative expanding deformation is 20.74‰, permeability coefficient is 2592 times, the rate of gas extraction reaches 62%, gas pressure falls from 4.1MPa to0.51MPa and gas content from 10m3/t to 3.8m3/t after the deformation stabilization of upper protected seam C13 in PanSan Coal Mine, HuaiNan. In addition, results have a reliability and rationality applying the ways of the theoretical analysis, similar simulation numerical value simulation, etc.
引文
[1]国家煤矿安全监察局.2008年全国煤矿事故分析报告[R]. 2009.
    [2]胡省三. 2020年中国煤炭科学与技术发展重点领域研究[R]. 2004.
    [3]国家安全生产监督管理总局.国家矿山应急救援基地建设项目建议书[R]. 2010.
    [4]付建华.中国近年煤与瓦斯灾害情况分析[J].煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005,103-107.
    [5]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 1992.
    [6]国家煤矿安全监察局.煤矿安全技术“专家会诊”资料汇编[R]. 2005.
    [7]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2009.
    [8]国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [9] AQ 1026-2006,煤矿瓦斯抽采基本指标[S]. 2006.
    [10]郑永学,矿山岩体力学.北京:冶金工业出版社[M],1995.
    [11]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1984.
    [12]钱鸣高,缪协兴等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [13]张玉卓,徐乃忠.地表沉陷控制新技术[M].徐州:中国矿业大学出版社,1998.
    [14]刘宗才,于红.“下三带”理论与底板突水机理[J].中国煤田地质,2004,33(2):38-41.
    [15]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [16]胡千庭,刘林等.开采高瓦斯煤层群瓦斯灾害综合防治技术[J].“十五”国家重点科技攻关项目专题研究报告.2004.
    [17]于不凡.解放层理论探讨[J].中国煤炭学会1979.
    [18]刘林.煤层群多重保护层开采防突技术的研究[J].矿业安全与环保,2001年第5期.
    [19]煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社, 1995:25-30.
    [20]徐光祥.裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究[D].重庆:重庆大学,2001(8)
    [21]陶振宇,沈小莹.库区应力场的耦合分析.武汉水利电力学院学报[J] 1988.1:8-14.
    [22] Kelsall,P.C.,Case,J.B.,Chabames,C.R.,Evaluation1 of Excavation-induced Changes in Rock Permeability, Int.J.Rock Mech. Min. Sci. & Geomech. Abstr.,Vol.21,No.3,1984,p123-135.
    [23] ]Barton,N.,Bandis,S.,Bakhtar,K.,Strength,Deformation and Conductivity Coupling of Rock Joints, Int.J.Rock Mech. Min. Sci.&Geomech. Abstr.,Vol.22,No.3,1985,p121-140.
    [24] Raven,K.G.,Gale,J.E.,Water Flow in a Nutured Rock Fracture as a ;Function of Stress and Sample Size, Int.J.Rock Mech. Min. Sci.&Geomech. Abstr.,Vol.22,No.4,1985,p251-261.
    [25] Neuzll,C.E.,Flow Through Fractures, Water Resources Research,Vol.17,No.1,1981.
    [26] Long J.C.S.,Gilmour,P., Witherspoon,P.A.,A Model for Steady Fliud in Random Three Dimensional Networks of Disc-shaped Fractures, Water Resources Res. Vol.21, No.8, 1985.
    [27] Elsworth,D. & Goodman.R.E., Characterization of Rock Fissure Hydraulic Conductivity Using idealized Wall Roughness Profiles,Int.J.Rock Mech. Min. Sci. & Geomech. Abstr., Vol.23,No.3, p233-243,1986(b).
    [28] Tsang,Y.W. & Tsang,C.F., Channel Model of Flow Through Fracture Media, Water Resources Research,Vol.23,No.3,1987.3. ,p467-479.
    [29] Elsworth,D. & Doe,T.W.,Application of Non-linear Flow Laws in Determining Rock Fissure Geometry From Single Borehole Pumping Tests,Int.J.Rock Mech. Min. Sci.&Geomech. Abstr.,Vol.23,No.3, p245-254,1986.
    [30] Erban,P.J.,Gell,K..用耦合的力学、水力学有限元法考虑大坝和基岩的相互作用[J].水电工程研究,1990.2.
    [31]杨映涛.论岩石体积应变与孔隙中流体压力的关系及其应用途径[J].水文地质及工程地质, 1992.1:29-34.
    [32]郭雪莽,林皋.岩体变形与渗流的相互作用[C].泰安:第四届全国岩石力学数值分析及解析方法讨论会文集, 1991.4.
    [33]段小宁,李鉴初,刘继山.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报, 1992.6:712-717.
    [34]陈祖安.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995.2:155-159.
    [35]哈秋舲,李建林等.江三峡工程节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社, 1998.11.
    [36]聂孟荀.岩石力学[M].北京:煤炭工业出版社.
    [37]周维垣.高等岩石力学[M].北京:水利电力出版社, 1989.
    [38]哈秋舲,刘国霖等.三峡工程永久船闸陡高边坡岩体卸荷非线性力学研究[C].国家自然科学基金会会议交流,中国长江三峡开发总公司,葛洲坝水电工程学院,重庆建筑大学, 1996.8.
    [39]朱岳明,张燎军等.裂隙岩体渗透系数张量的反演分析[J].岩石力学与工程学报,1997.10:461-470.
    [40]哈秋舲,刘国霖.长江三峡工程岩石边坡卸荷岩体工程地质研究[M].北京:中国建筑工业出版社,1997.9.
    [41]哈秋舲,张永兴.三峡船闸岩石陡高边坡稳定与控制研究[M].重庆:重庆大学出版社,1997.12
    [42]哈秋舲.加载岩体力学与卸荷岩体力学[J].岩土工程学报, 1998.11:114.
    [43]周维垣.高等岩石力学[M].北京:水力电力出版社, 1993.6.
    [44] Biot MA. General solution of the equation of elasticity and consolidation for porous material. J. Appl. Phys., 1956.
    [45] Tsang YW and Witherspoon PA. Hydromechanical behavior of a deformable rock fracture subject tonormal stress. J. Geophys. Research, 1981.
    [46]缪协兴,刘卫群等.采动岩体渗流理论[M].北京:科学出版社,2004.
    [47] Raven,K.G.,Gale,J.E.,Water Flow in a Nutured Rock Fracture as a ;Function of Stress andSample Size, Int.J.Rock Mech. Min. Sci.&Geomech. Abstr.,Vol.22,No.4,1985,p251-261.
    [48]张有天.裂隙岩体中水的运动与水工建筑物相互作用[R].水利水电科学研究院, 1992.
    [49]耿克勤.复合岩基的渗流力学及其耦合分析研究及工程应用[D].北京:清华大学, 1994.4.
    [50] Kelsall,P.C.,Case,J.B.,Chabames,C.R.,Evaluation1 of Excavation-induced Changes in Rock Permeability, Int.J.Rock Mech. Min. Sci. & Geomech. Abstr.,Vol.21,No.3,1984,p123-135.
    [51]陈洪凯.三峡工程永久船闸岩体渗流与排水机理研究[D].重庆:重庆建筑大学, 1996.
    [52]赵阳生.矿山岩石流体力学[M].北京:煤炭工业出版社, 1994.
    [53]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1996.
    [54]天府煤矿、四川矿业学院和重庆煤炭科学研究所三结合研究组.天府煤矿远距离解放层解放效果考察报告.1975.
    [55]王海锋.采场下付煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D].徐州:中国矿业大学.
    [56]程远平,俞启香等.上覆远程卸压岩体移动特性与瓦斯抽放技术研究[J].辽宁工程技术大学大学学报,2003,22(4).132-138.
    [57]俞启香,程远平等.高瓦斯特厚煤层煤与瓦斯卸压共采原理及实践[J].中国矿业大学学报,2004,33(2):127-131.
    [58]程远平,周德永等.保护层工作面瓦斯涌出规律研究[J].采矿与安全工程学报,2005,(1).
    [59]程远平.回采工作面采空区瓦斯涌出控制[J],矿井通风安全理论与技术[M],中国矿业大学出版社,1999.
    [60]石必明.远距离下保护层开采上覆煤层变形及透气性变化规律的研究[D].徐州:中国矿业大学
    [61]朱岩华.底板岩层采动破坏影响范围的分带研究[D].徐州:中国矿业大学.
    [62] S.C.Blair, N.G.W.Cook, 1998, Analysis of compressive fracture in rock using statistical techniques: partⅠ. A non-linear rule-based model, Int. J. Rock Mech. Min. Sci.,Vol.35, No.7, pp.837-848.
    [63] S.C.Blair, N.G.W.Cook, 1998, Analysis of compressive fracture in rock using statistical techniques: partⅡ.Effect of microscale heterogeneity on macroscopic deformation, Int. J. Roch Mech. Min. Sci., Vol. 35, No.7, pp.849-861.
    [64] Z.Liu, L.R.Myer & N.G.W.Cook, 1994, Numerical simulation of the effect of heterogeneities on macro-behavior of granular materials[C]. Computer methods and advances in geomechanics. Siriwardane & Zaman(eds), Balkema, Rotterdam, pp.611-616.
    [65]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [66]郑宏兴,王培麟,张全举. Mathcad简明教程[M].武汉:华中科技大学出版社,2002.
    [67]白矛,刘天泉,仲惟林.用力学方法研究岩层及地表移动[J].煤炭学报,1982,3:27-38.
    [68]李东印,邢奇生,张瑞林.深部复合巷道变形破坏机理研究[J].河南理工大学学报,2006,25(6):457-460.
    [69]吴家龙.弹性力学[M].北京:高等教育出版社,2001.
    [70]郭惟嘉,毛仲玉.覆岩沉陷离层及工程控制[M].北京:地震出版社,1997.
    [71]徐芝纶.弹性力学[M].北京:高等教育出版社,1990.
    [72]徐学增.南屯煤矿采场覆岩运动规律及其智能分析系统[D].硕士论文2003.
    [73]刘宝安.下保护层开采上覆煤岩变形与卸压瓦斯抽采研究[D].安徽理工大学,2006.
    [74] W. Park and D.DEB. Interactive long wall mining-strata control and maintenance system.
    [75] Chien (Qian) Minggao. A study of the behaviour of overlying strata in long wall mining and its application to strata control [M]. Strata Mechanics,Elsevi-er Scientific Publishing Company,1982. 13-17.
    [76]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践.中国矿业第10卷第6期2001.
    [77]袁亮.松软低透气性煤层瓦斯综合治理技术[M].北京:煤炭工业出版社,2004.
    [78]刘泽功.高位巷道抽放采空区瓦斯实践〔J〕.煤炭科学技术,2001,29(12):10-13.
    [79]袁亮,刘泽功.淮南矿区开采煤层顶板抽放瓦斯技术研究[J].煤炭学报,2003,28(2):149-15.
    [80]刘泽功,袁亮,戴广龙,等.开采煤层顶板环形裂隙圈内走向长钻孔法抽放瓦斯研究[J].中国工程科学,2004,6(5):32-3.
    [81]吴林高,缪俊发.渗流力学[M].上海:上海科学技术文献出版社,1996.
    [82]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社, 1992.
    [83]林伯泉,周士宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报, 1987, 1: 21-27.
    [84]魏磊.下保护层开采覆岩结构演化及卸压瓦斯抽放技术研究[D].安徽理工大学,2007.
    [85] WJ.Gale. Strata Control Dtillising Rock Reinforcement Techniques and Stress Control Methods in Australia Coal Mines Mining Engineer,1991(l).
    [86] Hill R W.南非煤层群开采[J].Advances in Rock Mechanics in underground Mining. 1989,9.
    [87]刘林,程远平.开采远距离下保护层卸压保护角的相似模拟研究[J].矿业安全与环保, 2006.
    [88]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社, 1995.
    [89]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社, 1990.
    [90]孔祥言.高等渗流力学[M].合肥:中国科技大学出版社, 1993.
    [91] AQ1018-2006.矿井瓦斯涌出量预测方法[S].2006.
    [92]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社.2005.
    [93] AQ1050-2008.保护层开采技术规范[S].2008.
    [94] B.B.霍多特.宋士钊译.煤与瓦斯突出[M].北京:煤炭工业出版社,1966.
    [95] Gan H, Nandi S P, Walker P L. Nature of porosity in American coals[J]. Fuel, 1972, 51: 272- 277.
    [96]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987 (4).51- 57.
    [97]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [98]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性[M].北京:科学出版社,2004.
    [99] Enever J R E,Henning A.The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir modelling[A]. Proceedings of the 1997 International CoalbedMethane Symposium[C].1997,13-22.
    [100]李传亮.岩石压缩系数与孔隙度的关系[J].中国海上油气(地质),2003,17(5):355-358.
    [101]吴世跃.煤层气与煤层耦合运动理论及其应用的研究[D].东北大学博士学位论文,2005年11月.
    [102]林海飞.采动裂隙椭抛带中瓦斯运移规律及其应用分析[S].西安科技大学硕士学位论文,2004年4月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700