用户名: 密码: 验证码:
滑动弧放电等离子体—生化法降解有机废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对气液滑动弧等离子体技术降解有机废水,进行了一系列的基础实验研究工作,主要研究结论如下:
     (1)对滑动弧等离子体水处理机理进行了分析。
     (2)以模拟有机废水酸性橙Ⅱ溶液为研究对象,考察了气液滑动弧等离子体反应器的性能参数,废水的性质,废水中含有的无机离子,气体的种类、流量及有机物的结构和种类对降解率的影响.结果表明:综合考虑降解率和能量效率,选择电极厚度为4mm,电极材料为不锈钢,放电电压为10kV;废水初始pH值和温度对降解率的影响不大;从能量效率上考虑,滑动弧放电适合高浓度有机废水的处理;加入体系的正丁醇在反应开始时明显影响了有机物的降解率,但随着降解时间的延长,影响不再明显;体系中CO_3~(2-)的存在明显影响了有机物的降解率,但随着降解时间的延长,影响变小;NO_3~-对降解率影响可以忽略;随着降解时间的延长和反应的进行,PO_4~(3-)对有机物降解率的影响不大。载气为氧气时有机物降解率最高,气体流速越大,降解效果越好。高浓度的Cl~-存在时,对降解率产生了较大的影响。气液滑动弧放电等离子体对不同结构的有机染料有广泛的适应性,分子结构不同的染料相互之间有促进的作用。
     (3)对模拟有机废水酸性橙Ⅱ溶液的降解动力学,降解机理,降解液的可生化性及毒性等进行了研究。结果表明:酸性橙Ⅱ的降解过程符合一级反应动力学规律,降解方程为dC/dt=-0.7587C_0~(-0.2889)C;降解液的BOD_5/COD_(cr)值升高,可生化性增强,降解后溶液的毒性降低。通过对降解过程中离子浓度的测定、对降解产物的紫外光谱、红外光谱和GC-MS结果的分析,推测了酸性橙Ⅱ的降解历程。降解后的主要产物是乙酸,乙二酸,丙二酸,苯酚,萘,苯磺酸,邻苯二甲酸(酐),β-萘酚,1,2-萘二酚,3-羟基苯乙酮,甲基萘,1,8-二甲基萘和2,6-二甲基萘等;酸性橙Ⅱ的降解历程是羟基自由基攻击酸性橙Ⅱ分子上的C-N键,导致C-N键断裂,生成对磺基苯二氮烯和β萘酚,磺基苯二氮烯极不稳定,很快转化成苯磺酸,苯磺酸经进一步氧化转化成苯酚;偶氮双键转化为氮气,放电后变为NO_3~-,β萘酚也经一系列氧化转化为苯酚,再经由苯酚降解途径矿化成低分子的有机脂肪酸、二氧化碳和水。
     (4)为了充分利用滑动弧等离子体放电过程中产生的紫外光,分别开展了与H_2O_2及TiO_2高级氧化工艺联用的研究。结果表明:与H_2O_2联用过程中,溶液的初始pH值对酸性橙Ⅱ降解率的影响可以忽略;氧气气氛下,有利于提高污染物的降解率;放电电压越高,酸性橙Ⅱ的降解效果越好;加入的过氧化氢越多,协同效应越明显,协同效应值越大,降解液放置时间延长有利于酸性橙Ⅱ降解率的提高。与TiO_2联用过程中,二氧化钛浓度为1.0 g/L时,光生电子能量得到最充分的利用,产生的活性粒子最多,H_2O_2的生成量和OH~*的相对量达到最大,酸性橙Ⅱ降解宰达最大值;光解体系中通入氧气,提高了污染物的降解率。滑动弧等离子体与H_2O_2和TiO_2联用,具有显著的协同效应,提高了COD和TOC的降解率,缩短了降解时间,节约了处理成本。
     (5)以实际有机印染废水为研究对象,研究了滑动弧放电等离子体对其降解的效果。结果表明:废水中CO_3~(2-)的存在消耗等离子体放电产生的羟基自由基,降低了反应速率,建议通过改变pH加酸方法或者投加生石灰等方法除去CO_3~(2-)离子;在不考虑CO_3~(2-)对反应速率影响的基础上,有机废水COD和TOC的降解动力学亦符合一级反应动力学规律。
     (6)研究了滑动弧等离子体/活性污泥法联合处理有机废水。经滑动弧等离子体处理5 min和10 min的实际印染废水,后续生化处理后,出水COD浓度分别达到GB8978-1996中规定的二级标准和一级标准;色度的去除率均达到GB8978-1996规定的一级标准。
     (7)最后,以COD浓度为20-30 g/L的废水为研究对象,对滑动弧等离子体/H_2O_2/活性污泥法联合工艺的运行费用进行了估算,并与现有的工艺进行了技术经济比较。结果表明,该联合工艺具有良好的发展前景。
This dissertation launched a series of exprimental study, which aims at the effect of gas-liquid gliding arc discharge (GAD) degrading organic wastewater. The objectives of the current research incolved as follows:
     (1) The mechanisms of gliding arc disposing wastewater are analysed.
     (2) With Acid OrangeⅡsolution as objective pollutant, the influences of the nature of reactor parameters, the nature of wastewater, inorganic ions contained in the wastewater, the gas flow and the structure and type of organic matter on the degradation rate are studied. The results show that: considering energy efficiency, the gas-liquid GAD is fit for treating high concentration level organic wastewater, and the influences of pH value and temperature are not apparent, and butanol has an obvious impact on the degradation rate at 5min, and the effects of CO_3~(2-) and high concentration Cl~- is obvious, and the effect of NO_3~- can be ignored, and the effect of PO_4~(3-) is not apparent after 10min, and the higher gas flow rate, and the higher degradation rate. The different structure of the organic dyes have a wide range of adaptability.
     (3) Degradation kinetics and degradation mechanism of Acid OrangeⅡ, the solution biodegradability, the toxicity of intermediate products are investigated. The results indicate that the degradation reaction of Acid OrangeⅡfollows the first-order law, and the kinetic pathway could be expressed as follows: dC/dt= - 0.7587C_0 ~(-0.2889)C. The solution biodegradability was significantly improved, and the toxicity of intermediate products is lower than that of the initial Acid OrangeⅡ. The possible degradation pathway of Acid OrangeⅡis proposed through the analysis of the main intermediates detected by ultraviolet-visible (UV-Vis) spectrum, ion chromatograph (IC) and gas chromatograph coupled with mass spectrophotometer (GC-MS) and fourier transform infrared spectroscopy(FTIR) techniques. The main intermediates are detected during the decomposition such as acetic acid, oxalic acid, malonic acid, phenol, 3-hydroxyhypnone, naphthalene, benzene sulfonic acid, near benzene dicarboxylic acid (anhydride), 8-naphthalene etc. The possible degradation channel of Acid OrangeⅡis that hydroxyl radicals react with the azo linkage-bearing carbon of a hydroxy substituted ring, with which process substituted phenyldiazene and naphthoxy radical are produced. Both of them are unstable extremely and could react further with hydroxyl radicals resulting in the degradation of aromatic ring.
     (4) To make full use of UV light produced in GAD, H_2O_2 and TiO_2 are added when plasma discharges. The results show that: when H_2O_2 are added, the initial pH has a little impact on the degradation rate, and oxygen atmosphere and higher discharge voltage are conducive to raise the degradation efficiency of pollutants. The combination H_2O_2 with GAD has a synergetic effect obviously, which increases remarkably decomposition rate and decreases treatment time. When the concentration of TiO_2 is 1.0 g/L, the degradation rate of Acid OrangeⅡis the hightest, because photovoltaic electron energy is used to fully and the more active particles are produced. Oxygen can increase degradation rate. The amount of H_2O_2 and the relative quantity OH~* are the greatest. The removals of COD and TOC increase, and treatment time becomes shorten, and treatment cost has been saved.
     (5) The industral waste is degraded by gas-liquid GAD. CO_3~(2-) existing in the wastewater consumes free radicals and decreases degradation rate, and changing initial pH or adding calcium oxide to the wastewater can get rid of CO_3~(2-). Without the influence of CO_3~(2-), the degradation kinetics also follow first-order law.
     (6) The industral waste decomposed by the combination GAD with biological treatment is studied. COD removal achieves the relative second and first State Effluent Standard, GB8978-1996, respectively, after biological treatment for 5min treatment and 10min GAD treatment. The removal of color achieves the relative first State Effluent Standard, GB8978-1996.
     (7) Finally, with COD concentration of 20-30 g/L as objective pollutant, operating costs are estimated for the GAD/H_2O_2/activated sludge, and compared with other existing technology. The results show that the technology has a good prospect for development.
引文
1. 2006中国环境状况公报.国家环境保护总局.2007:3-25.
    
    2. 丁忠浩.有机废水处理技术及应用[M].北京:化学工业出版社.2002:8-9.
    
    3. 于建伟.有毒难降解有机物-硝基酚的厌氧生物降解性和毒性研究[D]. 中国海洋大学硕士学位论文,2004:3-4.
    
    4. 李家珍.染料、染色工业废水处理[M].北京:化学工业出版社.1997:4-6.
    
    5. 丁忠浩.废水资源化综合利用技术[M].北京:国防工业出版社.2007: 254-271.
    
    6. 杨良玉.微波等离子体强化内电解处理活性染料废水[D].华中科技大学 硕士学位论文,2004:1-2.
    
    7. 张统,戴日成,郭茜等.印染废水水质特征及处理技术综述[J].给水排水, 2000,26(10):33-37.
    
    8. 程鸿德,傅平青.印染废水治理研究现状[J].地质地球化学,2001,29(4):86-91.
    
    9. 孟刚.强化生化前处理降解光盘染料废水的研究[D].重庆大学硕士学位 论文,2002:1-3.
    
    10. 汪言满.半导体光催化氧化法处理印染废水的研究[D].广东工业大学硕 士学位论文,2002:1-3.
    
    11. 郝瑞霞,程水源.SBR法处理印染废水的研究[J].环境科学进展,1996,4(5): 56-62.
    
    12. 张晓慧.催化臭氧氧化法处理有机废水的研究[D].天津大学硕士学位论 文,2006:1-2.
    
    13. 雷乐成,高东.用兼氧、好氧生物接触-气浮工艺处理高浓度印染废水[J]. 环境污染与防治,2000,22(4):20-22.
    
    14. 袁慧慧.电化学转盘法处理染料废水的研究[D].上海交通大学硕士学位 论文,2007:1-3.
    
    15. 冀滨弘,章非娟.染料工业废水处理的现状与进展[J].污染防治技术,1998, 11(4):20-25.
    
    16. 贾云,余协瑜.吸附法处理工业废水研究最新进展[J].表面技术,2004, 33(3):11-13.
    
    17. 俞飞,杨旭.树脂吸附法处理硝化废水[J].污染防治技术,2007,20(3):9-12.
    
    18. 张占吉,姚福琪,王孟歌.炉灰脱色剂对分散红染料废水的脱色处理研究 [J].河北化工,2003,2:45-47.
    
    19. 李惠娟.非平衡等离子体降解废水中苯酚的研究[D].广东工业大学学位 论文,2006:1-8.
    
    20. 肖羽堂.萃取法及其在含酚废水处理中的应用[J].污染防治技术,1997, 10(3):138-141.
    
    21. 罗猷元,杨义燕.络合莘取法处理高浓度有机废水[J].现代化工,1997, 17(3):10-13.
    
    22. 占晶,顾满刘,刘扬,等.炼油厂碱渣废水络合萃取法脱酚实验研究[J]. 环境科学与技术,2006,29(11):31-33.
    
    23. 秦炜,罗学辉,符钰,等.络合萃取法处理磺酸类染料中间体工业废水的 研究[J].化学工程,2003,31(2):51-55.
    
    24. 余健,侯文俊.印染废水处理技术的研究新进展[J].化工环保,2004, 24(增刊):105-107.
    
    25. 上海市环境保护局编.上海工业废水治理最佳实用技术[M].上海:科学普 及出版社.1992:9-10.
    
    26. 田玉萍.Fentno预处理-序批式生物膜反应器处理模拟染料生产废水研究 [D].四川大学硕士学位论文,2006.
    
    27. 陈英旭主编.环境学[M].北京:中国环境科学出版社.2001:217-238.
    
    28. 徐荣安.膜技术在饮用水深度处理中的应用[J].水处理技术,1999,25(5): 149-155.
    
    29. 孙世栋,黎阳.焚烧法处理高浓度有机废水[J].化学工程师,2003,94(1): 56-57.
    
    30. 杜长明.滑动弧放电等离子体降解气相及液相中有机污染物的研究[D]. 浙江大学博士学位论文,2006:11-139.
    
    31. S K Saha P K Malik. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst[J]. Separation and Purification Technology, 2003,31(3): 241- 250.
    
    32. 钟先锦.高级氧化法降解对甲基苯磺酸机理的研究[D].河南大学硕士论 文,2007:6-7.
    
    33. 柳艳修,李锋,宋华,王宝辉,等.Fenton试剂预处理丙烯腈废水的研究[J]. 工业安全与环保,2007,33(1):21-23.
    
    34. 孙德智主编.环境工程中的高级氧化技术[M].北京:化学工业出版社, 2002:28-372.
    
    35. 何峰.UV-Fenton处理难降解有机废水的研究[D].浙江大学硕士学位论文, 2002:5-20.
    
    36. 杨尧.光催化氧化反应的研究进展[J].浙江化工,2007,38(5):17-21.
    
    37. 张红艳,陆雪梅,刘志英,等.湿式氧化法处理高盐度难降解农药废水[J]. 化工进展,2007,26(3):417-421.
    
    38. 张音波.TiO_2光催化降解甲基橙的试验及机理研究[D].广东工业大学硕 士学位论文,2002:1-9.
    
    39. 奚胜兰,竹湘锋,徐新华.邻氯苯酚废水Fenton氧化反应动力学研究[J]. 浙江大学学报(工学版),2004,31(6):669-673.
    
    40. 刘文占,雷雪飞,张洪林,等.纳米二氧化钛粉体光催化染料脱色的研究 [J].南昌大学学报·工科版,2006,28(1):12-14.
    
    41. L C Lei, X J Hu, G H Chen, P L Yue. Kinetic study into the wet air oxidation of Printing and dyeing wastewater[J]. Separation and PurificationTechnology, 2003,31:71-76.
    
    42. 严国奇.高压电晕与臭氧联用处理染料废水的研究[D].浙江工业大学硕 士学位论文,2006:19-20.
    
    43. 赵彬侠.湿式氧化处理毗虫琳农药生产废水的研究[D].西安建筑科技大 学博士论文,2007:10-19.
    
    44. Yan Liu, Dezhi Sun. Development of Fe_2O_3-CeO_2-TiO_2/g-Al_2O_3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition[J]. Applied Catalysis B: Environmental, 2007, 72: 205-211.
    
    45. 宫巍,邢铁玲,陈国强.超声技术在染料废水处理中的研究进展[J].印染, 2006,22:47-50.
    
    46. A Rehorek, M Tauber, G Gubitz. Application of power ultrasound for azo dye degradation [J]. Ultrasonics Sonochemistry, 2004,11:177-182.
    
    47. I. V. Perez, S. Rogak, R. Branion. Supercritical water oxidation of phenol and 2,4-dinitroph- enol [J]. Journal of Supercritical Fluids, 2004,30: 71-87.
    
    48. P Q Yuan, Z M Cheng, X Y Zhang, et.al. Catalytic denitrogenation of hydrocarbons through partial oxidation in supercritical water[J]. Fuel, 2006, 85: 367-373.
    
    49. 赵苏,李连君,杨合.超临界水氧化技术及在废水处理中的应用[J].工业 安全与环保,2005,31(4):24-25.
    
    50. 张飞白,肖羽堂.电化学氧化技术去除有机物的研究进展[J].江苏化工, 2007,35(1):6-10.
    
    51. Apostolos G Vlyssides. Degradation of Methylparathion in Aqueous Solution by Electrochemical Oxidation[J]. Environment Science and Technology, 2004, 38(6): 125-131.
    
    52. 王辉,于秀娟,闫鹤,等.电化学氧化对罗丹明B脱色的研究[J].重庆环 境科学,2003,25(3):42-44.
    
    53. 陈烨璞,贾瑞平.臭氧联合氧化技术在污水处理方面的新进展[J].工业水 处理,2007,27(5):4-9.
    
    54. 刘和义,包南,张敏,等.臭氧化降解呋吗唑酮模拟废水的实验研究[J].工 业水处理,2003,23(11):43-78.
    
    55. M.Koeh, A.Yediler, D.Lienert, et.al. Ozonation of hydrolyzed azo dye reactive yellow84(Cl)[J]. Chemosphere, 2002,46:109-112.
    
    56. 刘春晖.利用低温等离子体净化汽车尾气中氮氧化物的研究[D].江苏大 学硕士论文,2007:11-20.
    
    57. 郭照冰,郑正,胡文勇,等.2,4-二硝基酚的超声波及协同降解研究[J].环 境科学学报,2004,24(2):237-241.
    
    58. 徐宁.超声及其组合技术处理酚类溶液的研究[D].南京工业大学博士学 位论文,2004:11-13.
    
    59. 吴纯德,周彤,王晓蕾,等.超声协同纳米TiO_2光催化降解水中苯酚机理 的研究[J].分析科学学报,2005,21(3):259-261.
    
    60. Mason T. J, Lorimer J. P. Sonochemistry. Theory, Applications and Uses of Ultrasound in Chemistry[M]. Ellis Horwood Publishers, Chichester, 1988.
    
    61. 段丽杰.超声强化臭氧氧化模拟染料废水的研究[D].武汉大学硕士学位 论文,2005:11-42.
    
    62. 段丽杰,张道斌,张铭,等.超声强化臭氧氧化甲基橙的脱色研究[C].第 二届全国环境化学学术报告会,上海交通大学,2004,4:153-156.
    
    63. D Vogna, R Marotta, A Napolitano, et.al. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H_2O_2 and ozone[J]. Water Research, 2004,38(2): 414-422.
    
    64. A Chin, P R Berube. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process[J]. Water Research, 2005, 39 (10): 2136-2144.
    
    65. 童少平,褚有群,马淳安,等.O_3/UV降解水中的乙酸和硝基苯[J].中国 环境科学,2005,25(3):366-369.
    
    66. 孙贤波,陈琳玲,徐关燕,等.城市污水生化处理水UV/O_3法深度处理效 果及影响因素研究[J].环境污染与防治,2005,27(9):6d4-647.
    
    67. 韩冰,田俊莹,文晨.UV/O_3/H_2O_2协同体系光降解兰纳素橙OR的研究[J]. 天津工业大学学报,2007,26(3):61-65.
    
    68. 芮旻,高乃云,徐斌,等.UV、H_2O_2、O_3及其联用工艺对水中DMP的 去除效果和降解机理分析[J].环境科学学报,2005,25(11):1457-1463.
    
    69. Mohammad A. Alsheyab, Aurelio H. Munoz. Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H_2O_2/O_3)[J]. Desalination, 2006,194(3): 121-126.
    
    70. 康春莉,王向锋,郭平,等.UV/Fenton试剂降解染料甲基绿的研究[J].东 北师大学报自然科学版,2005,37(4):77-80.
    
    71. 陈琳,雷乐成,杜瑛.UV/Fenton光催化氧化降解对氯苯酚废水反应动力 学[J].环境科学学报,2004,24(2):225-230.
    
    72. Ulusoy Bali, Ebru Catalkaya, Füsun Sengiil. Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H_2O_2/Fe~(2+): a comparative study[J]. Journal of Hazardous Materials, 2004,114( 1-3): 159-166.
    
    73. 鲁奕良,徐新华,汪大晕.氯酚废水的UV-Fenton氧化.生化组合处理研 究[D].浙江大学学报(理学版),2003,30(4):439-448.
    
    74. 但锦锋.内电解.生化组合技术处理高浓度有机废水及工程应用[D].华中 科技大学硕士学位论文,2004:53.
    
    75. 张月峰.电解-生化法处理制药废水研究[D].浙江大学硕士学位论文, 2002:1-2.
    
    76. 任俊革.光催化与生化法组合处理难降解有机磷农药废水的研究[D].天 津大学硕士学位论文,2004:64-65.
    
    77. 李志建,李可成,周明.超声波-厌氧生化法处理碱法草浆黑液的研究[J]. 环境科学与技术,2000(2):42-44.
    
    78. 陈东顺,于铃娟.湿式氧化-生化法处理有机高分子化合物生产废水的研究 [J].化工环保,1987,7(3):130-134.
    
    79. X L Hao, M H Zhou, Y Zhang, et.al. Enhanced degradation of organic pollutant 4-chlorophenol in water by non-thermal plasma process with TiO_2[J]. Plasma Chemstry and Plasma Process, 2006 (26): 455-468.
    
    80. 郝小龙.高压脉冲等离子体放电技术催化降解有机污染物的研究[D].浙 江大学博士论文,2007:51-66.
    
    81. P.Lukes, M. Clupek, P. Sunka, et.al. Degradation of phenol by underwater pulsed corona discharge in combination with TiO_2 photocatalysis[J]. Research on Chemical Intermediates, 2005, 31 (4-6): 285-294.
    
    82. 黄冬玲.常用催化剂(活性炭,二氧化钛)在辉光放电等离子体水处理中的 应用[D].西北师范大学硕士学位论文,2006:7-8.
    
    83. 陈银生.高压脉冲放电等离子体降解酚类废水的研究[D].华东理工大学 博士论文,2003:14-15.
    
    84. 蒋达华,任如山.等离子体技术在环境污染治理中的应用研究[J].环境技 术,2004(2):16-19.
    
    85. 丁聚庆,刘志云,卞晓艳.气化及高温等离子体技术在废物处理中的应用 [J].中国环保产业,2004(5):36-37.
    
    86. 过增元,赵文华.电弧和热等离子体[M].北京:科学出版社.1986:9-12.
    
    87. 任兆杏.低温等离子体技术[J].自然杂志,1996,18(4):202-208.
    
    88. 尚书勇,梅丽,印永祥,等.等离子体技术在化工中的应用[J].化学工业 与工程,2005,22(5):386-392.
    
    89. Conrads H, Schmidt M. Plasma generation and Plasma sourees[J]. Plasma sources science and technology, 2000(9): 441-454.
    
    90. 金伟成.介质阻挡放电脱除NO的实验研究[D].南京理工大学硕士学位论 文,2006:6-9.
    
    91. 刘强,孙鹞鸿.水中脉冲电晕放电等离子体特性及气泡运动[J],高电压技 术,2006,32(2):54-56.
    
    92. 杨世东,史富丽,马军,等.水中高压脉冲放电机理与效能[J].工业水处 理,2005,25(8):5-9.
    
    93. 郑攀峰.高压脉冲放电协同臭氧处理模拟染料废水[D].大连理工硕士学 位论文,2006,5-49.
    
    94. Clements J S, Sato M, Dvais R H. Preliminary investigation of prebreakdown phenomena and chmeical reactions using a pulsed high-voltage diseharge in water[J]. IEEE Trans. Ind. APPI, 1997,23: 224-235.
    
    95. 文岳中,姜玄珍,吴墨.高压脉冲放电降解水中苯乙酮的研究[J].中国环 境科学,1999,19(5):406-409.
    
    96. Sengupta S K, Singh O P. Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolysis[J]. Journal of Electroanalytical Chemistry, 1994,369:113-120.
    
    97. 陆泉芳,俞洁.辉光放电等离子体处理有机废水研究进展[J].水处理技术, 2007,22(1):9-15.
    
    98. 裴晋昌.低温等离子体物理化学基础及其应用(二)[J].印染,2005,12:39-42.
    
    99. 刘永军.辉光放电等离子体降解水中有机污染物与苯一步合成苯酚的研 究[D].浙江大学博士论文,2007:8-18.
    
    100. 晏丽红,谢中华.等离子体技术及其在催化领域中的应用[J].天津化工, 2005,19(3):3-5.
    
    101. 俞洁.辉光放电等离子体降解水体中的有机污染物[D].西北师范大学硕 士学位论文,2005:8-18.
    
    102. 张九林.介质阻挡放电降解对氯苯酚废水实验研究[D].华南理工大学硕 士学位论文,2005:10-17.
    
    103. 王燕,赵艳辉,白希尧,等.DBD等离子体及其应用技术的发展[J].自然 杂志,2002,24(5):277-282.
    
    104. 章英慧.高压脉冲放电去除废水中氰化物的研究[D].华中科技大学硕士 学位论文,2005:21-29.
    
    105. 朱承驻.等离子体技术降解水相中有机污染物的机理研究[D].复旦大学 硕士学位论文,2002:1-67.
    
    106. 靳承铀.介质阻挡放电反应器在水处理中的实验研究[D].大连理工硕士 学位论文,2003:24-34.
    
    107. Czernichowski A. Gliding arc applications to engineering and environment control[J]. Pure and Applied Chemistry, 1994, 66(6): 1301-1310.
    
    108. Lesueur H, Czernichowski A. Device for generating low-temperature plasmas by formation of sliding electric discharges. Patent FR2639172,1990.
    
    109. F Richard, J M Cormier, S Pellerin, et al. Physical study of a gliding arc discharge[J]. Applied Physics Letters, 1996, 79(5): 2245-2250.
    
    110. 林烈,吴承康.大气压非平衡等离子体中非平衡度的探讨[J].核聚变与等 离子体物理,1998,18(2):57-61.
    
    111. 严建华,杜长明,李晓东,等.滑动弧等离子体技术用于环境治理领域的 研究进展[J].热力发电,2005(5):1-5.
    
    112. A Fridman, S Nester, L A Kennedy, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1998, 25 (2): 211-231.
    113. Czemichowski A, Nassar H. Spectral and electrical diagnostics of gliding arc[J]. Acta Physica Polonica A, 1996,89(5-6): 595-603.
    
    114. Pawelec E, Simek M. Temperature measurements in non-equilibrium "ferroelectric" plasma[J]. Acta Physica Polonica A, 1996,89(4): 503-507.
    
    115. Academician V D, Rusanow A S. Possibility of maintaining a highly nonequilibrium plasma in an arc discharge at atmospheric pressure[J]. Phys.Dokl, 1993,38(9): 398-340.
    
    116. O Mutaf-Yardimci, A V Saveliev, P I Porshnev, et al. "Non-equilibrium effects in Gliding Arc discharges" in Heat and Mass Transfer under Plasma Conditions[C]. Annals of the New York Academy of Sciences. New York:New York Acad Sciences, 1999, 891: 304-308.
    
    117. O Mutaf-Yardimci, A V Saveliev, A A Fridman, et al. Thermal and nonthermal regimes of gliding arc discharge in air flow[J]. Journal of Applied Physics, 2000, 87:1632-1641.
    
    118. I V Kuznetsova, N Y Kalashnikov, A F Gutsol, et al. Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge[J]. Journal of Applied Physics, 2002, 92: 4231-4237.
    
    119. Czemichowski A, Lefaucheux P. Pyrolysis of natural gas in the gliding arc reactor[J]. Hydrogen energy progress XI, 1996,1: 661-669.
    
    120. Czemichowski A. Destruction of waste or toxic gases and vapours in gliding arc reactor[C]. Destruction of Waste and Toxic Materials Using Electric Discharges,IEE Colloquium on, London, 1992,4/1-4/5.
    
    121. Dalaine V, Cormier J M, Lefaucheux P. A gliding discharge applied to H_2S destruction[J]. Journal of Applied Physics, 1998, 83(5): 2435-2442.
    
    122. Dalaine V, Cormier J M. H_2S destruction in 50 Hz and 25 kHz gliding arc reactors[J]. Jourmal of Applied Physics, 1998, 84(3): 1215-1222.
    
    123. Czemichowski A. Plasmas pour la destruction de l'H_2S et des mercaptans[J].Oil and Gas Science Technology, 1999,54(3): 337-355.
    
    124. Czemichowski A, Lesurur H. Sulphur and nitrogen conversion from oxide to elemental form. Patent FR2698090,1993.
    
    125. 郏其庚.活性炭的应用[M].上海:华东理工大学出版社,2002.
    
    126. Krawczyk K, Mlotek M. Combined plasma-catalytic processing of nitrous oxide[J]. Applied Catalysis B: Environmental, 2001,30(3-4):233-245.
    
    127. Krawczyk K, Mlotek M. Conversion of N_2O in gliding arc discharges[J]. Przemysl Chemistry, 2003, 82(10): 1387-1390.
    
    128. Krawczyk K, Mlotek M. Oxidation and decomposition of N_2O by gliding discharge combined with a bed of catalyst[J]. High Temperature Materials and Processes, 2001,5(3): 349-353.
    
    129. Krawczyk K, Ulejczyk B. Decomposition of Chloromethanes in Gliding Discharges[J]. Plasma Chemistry and Plasma Processing, 2003, 23(2): 265-281.
    
    130. Krawczyk K, Ulejczyk B. Influence of water vapour on CCl_4 and CHCl_3 conversion in gliding discharge[J]. Plasma chemistry and plasma processing, 2004(24): 155-167.
    
    131. Cezernichowski A, Ranaivosoloarimanana A. Zapping VOCs with a discontinuous electric arc[J]. Chemine Technologija, 1996, 26(4):45-49.
    
    132. Opalinska T, Opalska A Proc. Gliding-discharge CF_2Cl_2 and CHF_2Cl decomposition in reducing conditions[C]. 16th Int. Symp. On Plasma Chemistry, Taormina, Italy, 2003.
    
    133. Czernichowski A, Lefaucheux P. Electrically assisted partial oxidation of light hydrocarbons by oxygen. Patent FR2768424,1999.
    
    134. Meguernes K, Chapelle J, Czernichowski A. Valorization of methane in electric arcs and high pressure cold discharges[J]. High Temperature Material and Processes, 2001, 5(3): 363-374.
    
    135. Czernichowski A. GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases[J]. Oil and Gas Science and Technology, 2001, 56(2): 181-98.
    
    136. Czernichowski A. Electrically assisted conversion of natural gas into syngas[J]. Karbo-Energochem-Ekol, 1998, 43(11): 359-369.
    137. Lefaucheux A, Czernichowski P, Ranaivosoloarimanana A. Plasma pyrolysis of natural gas in gliding arc reactor[C]. Proc. 11th World Hydrogen Energy Conference, Stuttgart, 1996,661-666.
    
    138. Schmidt-Szalowski K, Krawczyk K, Ruszniak J. Processing of methane by gliding arc discharges[C]. Proc. 15th Int. Symp. on Plasma Chemistry, Orleans,2001.
    
    139. Czernichowski A, Wesolowska K. GlidArc-assisted production of synthesis gas through partial oxidation of natural gas[C]. First International Conference on Fuel Cell Science, Engineering and Technology, New York, 2003,181-185.
    
    140. Meguernes K, Chapelle J, Czernichowski A. Oxidization of CH4 by CO2 in an electric arc and in a cold discharge[C]. Proc. 11th Int. Symp. on Plasma Chemistry, Loughborough, England, 1993,710-715.
    
    141. Meguernes K, Czernichowski A? Chapelle J. Oxidation of CH4 by H_2O in gliding electric arc[J]. VDI Berichte, 1995,1166: 495-500.
    
    142. Lesueur H , Czernichowski A. Electrically assisted partial oxidation of methane[J]. International Journal of Hydrogen Energy, 1994,19:139-144.
    
    143. Mutaf-Yardimci O, Saveliev A V. Hydrogen production using non-equilibrium plasma reformers[C]. Int. Conf. on Energy and environment,Shanghai, China, 1998.
    
    144. Janca J, Czernichowski A. Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure[J]. Surface and Coatings Technology, 1998,98(1-3): 1112-1115.
    
    145. Janca J. Process for bleaching and improvement in the behaviour of dyes on organic materials. Patent FR2711680,1994.
    
    146. Bellakhal N, Dachraoui M. Study of the benzotriazole efficiency as a corrosion inhibitor for copper in humid air plasma[J]. Materials Chemistry and Physics, 2004, 85(2-3): 366-369.
    
    
    147. Kohno H, Berezin A A, Chang Jen-Shih, et al. Destruction of Volatile Organic Compounds Used in a Semiconductor Industry by a Capillary Tube Discharge Reactor[J]. IEEE transactions on industry applications. 2000,34(5):953-965.
    
    148. Antonius I, Choi J W, Lee H W, et al. Decomposition of CCl_4 and CHCl_3 on gliding arc plasma[J]. Journal of Environmental Sciences, 2006,18(1): 83-89.
    
    149. Antonius Indarto, Dae Ryook Yang, Che Husna Azhari, et al. Advanced VOCs decomposition method by gliding arc plasma[J]. Chemical Engineering Journal, 2007,131(1-3): 37-341.
    
    150. 薄拯,严建华,李晓东,等.滑动弧等离子裂解正已烷实验研究[J].环境 科学学报,2006,26(6):1-5.
    
    151. Czernichowski A, Labbe P. Plasma-assisted cleaning of flue gas from a sooting combustion[C]. Emerging Technologies in Hazardous Waste management, Washington, 1995:144-154.
    
    152. Ch M Du, J H Yan, X D Li, et al. Simultaneous Removal of Polycyclic Aromatic Hydrocarbons and Soot Particles from flue Gas by Gliding arc Discharge Treatment Plasma[J]. Chemsry and Plasma Process, 2006, 26(5): 517-525.
    
    153. 杜长明,严建华,李晓东,等.利用滑动弧放电脱除烟气中多环芳烃和碳 黑颗粒[J].中国电机工程学报,2006,26(1):77-81.
    
    154. Antonius Indarto, Dae Ryook Yang, Jae-Wook Choi, et.al. Gliding arc plasma processing of CO_2 conversion[J]. Journal of Hazardous Materials, 2007,146 (1-2): 309-315.
    
    155. 严建华,李晓东,杜长明,等.一种滑动弧放电等离子体有机废水处理装 置.专利CN2672046,2005.
    
    156. F Abdelmalek, S Gharbi, B Benstaali, et al. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4GL, Scarlet Red Nylosan F3GL and industrial waste[J]. Water Research, 2004,38(9): 2339-2347.
    
    157. D Seguin, J L Brisset, L Estel. Non thermal plasma treatment for oxidation of halogenated organic molecules. www.blackwell-synergy.com/doi/abs/10.1111/j.1749-6632.1999.tb08766.x.
    
    158. 杜长明,严建华,李晓东,等.气液两相流滑动弧放电降解苯酚废水[J].工 程热物理学报,2005,26(3):534-536.
    
    159. Jianhua Yan, Changming Du. Xiaodong Li, et al. Plasma chemical degradation of phenol in solution by gas-liquid gliding arc discharge[J]. Plasma Sources Science and Technology, 2005,14:637-644.
    
    160. J H Yan, Ch M Du, X D Li, et al. Degradation of Phenol in Aqueous Solutions by Gas-Liquid Gliding Arc Discharges[J]. Plasma Chemistry and Plasma Processing, 2006,26(1): 31-40.
    
    161. 杜长明,严建华,李晓东,等.气液两相滑动弧等离子降解4-氯酚溶液的 研究[J].中国电机工程学报,2006,26(13):89-93.
    
    162. 李晓东,杜长明,严建华,等.气液两相滑动弧等离子降解高浓度有机废 水的研究[J].工程热物理学报(赠刊),2006,27(2):237-239.
    
    163. 孙晓丹,严建华,李晓东,等.气液两相流滑动弧放电循环降解高浓度苯 酚废水的实验研究[J].能源工程,2006(1):32-35.
    
    164. 孙晓丹.滑动弧等离子体降解模拟有机废水的初步研究[D].浙江大学硕 士论文,2006:29-48.
    
    165. Radu Burlica, Michael J Kirkpatrick, Wright C Finney, et al. Organic dye removal from aqueous solution by glidarc discharges[J]. Journal of Electrostatics, 2004,62: 309-321.
    
    166. Moussa D, J L Brisset, Hnatiuc E, et al. Plasma-Chemical Destruction of Trilaurylamine Issued from Nuclear Laboratories of Reprocessing Plants[J]. Industrial and Engineering Chemistry Research, 2006,45: 30-33.
    
    167. Moussa D, Brisset J L. Disposal of spent tributylphosphate by gliding arc plasma[J]. Journal of Hazardous Materious B, 2003,102:189-200.
    
    168. M R Ghezzar, F Abdelmalek, M Belhadj, et al. Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO_2. Applied Catalysis B: Environmental, 2007, 72(3-4): 304-313.
    
    169. Kheira Marouf-Khelifa, Fatiha Abdelmalek, Amine Khelifa, et al. TiO_2-assisted degradation of a perfluorinated surfactant in aqueous solutions treated??by gliding arc discharge[J]. Separation and Purification Technology, 2006, 50 (11):373-379.
    
    170. 张若兵.双向窄脉冲放电染料废水脱色技术研究[D].大连理工博士学位 论文,2005:38-47.
    
    171. Joshi A A, Locke B R, Arce P, et al. Formation of Hydroxyl Radicals, Hydrogen Peroxide and Aqueous Electrons by Pulsed Streamer Corona Discharge in Aqueous Solution[J]. Journal of Hazardous Materials, 1995,41:3-30.
    
    172. Radu Burlica, Michael J Kirkpatrick. Formation of reactive species in gliding arc discharges with liquid water[J]. Journal of Electrostatics, 2006,64: 35-43.
    
    173. 卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究[D]. 浙江大学博士论文,2004:63-79.
    
    174. Benstaali B, Boubert P, Cheron B G. Density and rotational temperature measurements of the OH and NO radicals produced by a gliding arc in humid air[J]. Plasma Chem and Plasma Process, 2002, 22(4): 553-571.
    
    175. 刘亚纳,严建华,李晓东,戴尚莉,等.滑动弧等离子体处理酸性橙Ⅱ废 水[J].化工学报,2008,59(1):221-227.
    
    176. 戴尚莉.气液两相滑动弧放电特性的研究[D].浙江大学硕士论文,2007: 3-58.
    
    177. Moras F, Brisset J L. Pollutants removal from aqueous solutions by gliding arc treatment in humid air[C]. Proc of Hakone VI, Cork, Ireland, 1998.
    
    178. Simek M, Clupek M. Efficiency of ozone production by non-thermal electrical discharges in synthetic air-comparative study[C]. Proc. 16th Int. Symp. On Plasma Chemistry, Taormina, Italy, 2003.
    
    179. 文岳中.高压脉冲放电降解水中有机污染物及CO_2为CO的研究[D].浙江 大学博士论文,2000:28-70.
    
    180.http://www.chemyq.com/xz/xz6/54264moyop.htm.
    
    181. 赵化桥.等离子体化学和工艺[M].中国科学技术大学出版社,1993:3-30.
    
    182. 颜军.非脉冲直流辉光放电等离子体降解有机染料及对苯二甲酸合成研 究[D].浙江大学硕士学位论文,2006:25-36.
    
    183. 刘志刚.负载型TiO_2光催化剂在脉冲放电水处理技术中的应用[D].大连 理工大学硕士学位论文,2005:64-67.
    
    184. 朱承驻,董文博.等离子体降解水相中有机物的机理研究[J].环境科学学 报,2002,22(4):428-433.
    
    185. 田依林.Fenton试剂氧化法在工业废水处理中的应用基础研究[D].河南大 学硕士学位论文,2003:23-30.
    
    186. D R Grymonpré, A K Sharma, W C Finney, et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors [J]. Chemical Engineering Journal, 2001, 82:189-207.
    
    187. 王积涛,胡青眉,张宝申.有机化学[M].天津:南开大学出版社.1998:553.
    
    188. 毛立群,杨建军,郭泉辉,等.活性艳红X-3B水溶液的光化学与光催化 协同脱色反应[J].催化学报,2002,22(2):181-184.
    
    189. B Sun. M Sato, J S Clements. Optical study of active species produced by a pulsed streamer corona discharge in water[J]. Journal of Electrostatics, 1997, 39:189-202.
    
    190. M Sato, T Ohgiyama, J S Clements. Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water[J]. IEEE Transactions on Industry Application, 1996,32(1):106-112.
    
    191. 陶美君.垃圾渗滤液的超声降解研究[D].华中科技大学硕士学位论文, 2005:50-60.
    
    192. 许韵华.多相催化氧化降解含酚废水的研究[D].北京交通大学博士学位 论文,2005:61-63.
    
    193. 叶孟兆.有机化学[M].北京:中国农业出版社,2001:143.
    
    194. 陈庆云.超声辐射Fenton反应耦合降解水相酚的研究[D]西安交通大学 硕士学位论文,2003:59-60.
    
    195. 王侃.负载型TiO_2催化剂可见光降解染料污染物的研究[D].浙江大学博 士论文,2004:110-115.
    
    196. LuMC, Chen J N, Chang C P. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton' reagent [J]. Chemosphere, 1997, 35(10): 2285-2293.
    
    197. 漆新华.染料废水的多相光催化氧化降解行为研究[D].南开大学博士论 文,2003.
    
    198. 戴树桂,宋文华,庄源益,等.偶氮染料定量结构-生物降解关系(QSBR) 研究[J].环境化学,1998,17(2):115-119.
    
    199. 董永春,朱红星,刘瑞华,等.水溶性阴离子偶氮染料光催化氧化脱色性 能的QSPR研究[D].太阳能学报,2005,26(3):429-434.
    
    200. 王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解[J].催化学 报,2000,21(4):327-331.
    
    201. X L Liu, S Z Zhang, X Q Shan, et al. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat[D]. Chemosphere, 2005,61: 293-301.
    
    202. 李荣生,胡哲森,时忠杰.模拟酸雨对蕹菜种子发芽的影响[D].农业环境 保护,2001,20(5):355-356.
    
    203. 刘睿,周启星,张兰英,等.不同工艺阶段味精废水对作物种子发芽和根 伸长的毒性效应[J].应用生态学报,2006,17(7):1286-1290.
    
    204. 郑雪松.臭氧氧化萘磺酸系列化合物水溶液的反应动力学和可生物降解 性影响研究[D].上海交通大学硕士论文,2001.
    
    205. D Bila, A F Montalvao, A C Dezotti, et al. Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement[J]. Journal of Hazardous Materials, 2005,117(2-3): 235-242.
    
    206. G Yu, W P Zhu, Z H Yang. Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater[J]. Chemosphere, 1998, 37(3): 487-494.
    
    207. A Goi, M Trapido, T Tuhkanen, et.al. A study of toxicity, biodegradability, and some by-products of ozonised nitrophenols[J]. Advances in Environmental Research, 2004 (8): 303-311.
    
    208. P C Sangave , A B Pandit. Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater[J]. Ultrasonics Sonochemistry, 2004,11:197-203.
    
    209. W Baran, J Sochacka, W Wardas. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006,65:1295-1299.
    
    210. P Kajitvichyanukul, N Suntronvipart. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method[J]. Journal of Hazardous Materials, 2006, B138:384- 391.
    
    211. J H Sun, M Mohseni. A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane usingozone and hydrogen peroxide[J]. Water Research, 2004,38(10): 2596-2604.
    
    212. 王怡中,陈梅雪,胡春,等.光催化氧化与生物氧化组合技术对染料化合 物降解研究[J].环境科学学报,2000,20(6):772-775.
    
    213. 徐明仙,林春绵,周红艺.超临界水氧化法改善有机污染物可生化性的研 究[J].环境污染治理技术与设备,2002,3(3):24-26.
    
    214. 吴杰.阳离子染料生物降解性能的研究[D].东华大学硕士论文,2003: 22-24.
    
    215. 沈廷.直接染料的可生化降解性研究[D].东华大学硕士论文,2006:26-27.
    
    216. 沈廷,姜佩华,李茵,等.直接染料的好氧生物降解性能研究[J].贵州环 保科技,2006,12(2):27-35.
    
    217. 林建清.生物标志物法研究多环芳烃对海水养殖鱼类的毒性效应[J].厦门 大学博士学位论文,2002.
    
    218. 王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化 学,2002,21(5):430-435.
    
    219. 章飞芳.化学氧化活性染料及其降解机理的研究[D].中国科学院大连化 学物理研究所博士学位论文,2003:59-66.
    
    220. 徐润林,莫燕.垃圾渗滤液浇灌对红壤原生动物群落的影响[J].应用与环 境生物学报,2001,7(1):41-44.
    
    221. S Srivastava, I S Thakur. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm[J]. Soil Biology and Biochemistry, 2006,38:1904-1911.
    
    222. 黄宏,王晓栋,郁亚娟,等.部分苯衍生物对黄瓜种子发芽率的抑制毒性 及QSAR研究[D].环境化学,2004,23(1):75-79.
    
    223. 高吉喜,沈英娃.垃圾土上植物的生长与生态毒性试验[J].环境科学研究, 1999,10(3):51-53.
    
    224. 朱世云,张全兴,王连生,等.萘系化合物臭氧化对其COD、DOC及可 生化性影响研究[J].环境污染治理技术与设备,1999,7(4):48-53.
    
    225. J Donlagic, J Levec. Comparison of catalyzed and noncatalyzed oxidatiob of azo dye and effect on biodegradability[J]. Environmental Science and Technology, 1998 (32): 1294-1302.
    
    226. A Sema, V Aviyente. Experimental and modeling approach to decolorization of azo dyes by ultrasound: degradation of the hydrazone tautomer[J]. Journal of Physical Chemistry A, 2005,109: 3506 -3516.
    
    227. J T Spadaro, L Isabele, V Renganathan. Hydroxyl radical mediated degradation of azo dyes: Evidence for benzene generation[J]. Environmental Science and Technology, 1994(28): 1389-1393.
    
    228. K Wang, Y X Chen, F X Ye. Photodegradation of dye pollutants over TiO_2 particles under UV-Vis light irradiation [J]. Acta Energiae Solaris Sinica, 2005, 26: 39-43.
    
    229. F Abdelmalek, M R Ghezzar, M Belhadj, et al. Bleaching and Degradation of Textile Dyes by Nonthermal Plasma Process at Atmospheric Pressure [J]. Industrial and Engineering Chemistry Research, 2006,45: 23-29.
    
    230. E Guivarch, S Trevin, C Lahitte. Degradation of azo dyes in water by Electro-Fenton process[J]. Environmental Chemistry Letters, 2003 (1): 38-44.
    
    231. M Joseph, H Destaillats, H M Hung. The sonochemical degradation of azobenzene and related azo dyes: rates enhancements via Fenton's reactions[J]. Journal of Physical Chemistry A, 2000,104: 301- 307.
    
    232. Li G T, Qua J H, Zhang X W, et al. Electrochemically assisted photocatalytic degradation of Orange II: Influence of initial pH values[J]. Journal of Molecular Catalysis A: Chemical, 2006, 259: 238-244.
    
    233. 王侃,陈英旭,叶芬霞,等.不同光源对TiO_2光催化降解染料污染物的影 响[J].太阳能学报,2005,26(1):39-43.
    
    234. 杨曦.典型有机污染物的光降解研究[J].南京大学博士学位论文,2000:79-80.
    
    235. 赵伟荣.阳离子红X-GRL染料的UV、O_3、O_3/UV氧化处理研究[J].浙江 大学博士学位论文,2004:67-69.
    
    236. 林春绵,王军良,徐明仙,等.萘酚在超临界水中氧化降解路径的研究[J]. 环境化学,2004,23(3):283-288.
    
    237. 王建信.超声-Fenton氧化技术降解水中苯酚和对硝基苯酚的研究[D].同 济大学博士学位论文,2004:57-74.
    
    238. Fujikawa J Sano N. A kinetic model of degradation of phenol in water by direct contact of gas nonpulsed corona dsicharge[J]. Chemical Engineering Technology, 2004, 27(5): 548-552.
    
    239. 蒲陆梅.低温辉光放电等离子体技术在水体中酚类降解中的应用[D].西 北师范大学博士学位论文,2005:50-51.
    
    240. Sugiarto A T, Ito S, Ohshima T, et al. Oxidative decoloration of dyes by pulsed discharge plama in water [J]. Journal of Electrostatics, 2003, 58: 135-145.
    
    241. 杨彬.高压脉冲放电降解染料废水的研究[D].浙江大学硕士学位论文, 2004:47-49.
    
    242. 徐涛,肖贤明,刘红英.UV/H_2O_2光化降解水中邻二氯苯的反应机理[J].中 国环境科学,2004,24(5):547-55.
    
    243. 陈德强,吴振斌,成水平,等.UV/H_2O_2体系光降解邻苯二甲酸二丁酯研 究.环境科学研究,2005,18(6):50-52.
    
    244. 张文兵,贤明,博家谟,等.UV/H_2O_2降解水中硝基酚及影响因素[J].环 境科学研究,2001,4(6):9-15.
    
    245. Lukes P, Clupek M, Lupek P, et al. Degradation of phenol by underwater pulsed corona discharge in combination with TiO_2 photocatalysis[J]. Res Chem Intermed, 2005, 31(5): 285-294.
    
    246. 罗洁.光催化氧化法处理有机废水的研究[D].广东工业大学硕士学位论 文,2001:23-65.
    
    247. 柏双鹏,崔鹏.光催化氧化法降解水溶性染料罗丹明B的研究[J].当代化 工,2004,33(4):227-230.
    
    248. 张莉,王立明,张立娟,等.有机污染物的半导体光催化降解研究进展[J]. 太阳能学报,2005,26(2):228-234.
    
    249. S Ong, E Toorisaka, M Hirata, et al. Treatment of azo dye Orange II in aerobic and anaerobic-SBR systems[J]. Process Biochemistry, 2005,40: 2907-2914.
    
    250. 王华.石化碱渣废水催化湿式氧化反应动力学研究[D].同济大学博士学 位论文,2003:116-117.
    
    251. G B Seetharam , B A Saville. Degradationof phenol using tyrosinase immobilized on siliccous supports[J]. Water Research, 2003,37: 436-440.
    
    252. 徐新华.邻氯苯酚废水的光助Fenten-生化法处理研究[D].浙江大学博士 学位论文,2001:34.
    
    253. Lanouete K H. Treatmentof phenolic wastes[J]. Chemical Engineering Journal, 1997,17: 99-106.
    
    254. 胡文伟,高亚岳.焚烧法处理含酚废水[J].工业用水与废水,2000,31(4):28-29.
    
    255. 张天祥.脱除高浓度废液中有机物的研究[J].石油化工环境保护,1994,3: 5-12.
    
    256. 徐茂蓉.高浓度有机废液焚烧二次污染物排放特性研究.浙江大学硕士学 位论文[D],2005:8-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700