用户名: 密码: 验证码:
四川地西南地区构造几何学与运动学特征及其对青藏高原东南缘动力学背景的指示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川地属于扬子地块,位于青藏高原东南缘,是在中上扬子克拉通基础上发展起来的经历了多期构造演化过程的叠合地。其前新生代的构造沉积演化受华南板块、华北板块演化及其碰撞拼合后陆内俯冲作用的控制,新生代以来,明显又受到青藏高原隆升的制约。四川地西南地区则是二者相互作用最为强烈、表现最为清楚的地区。这些板块的碰撞拼合和高原隆升造成了四川地西南地区不同于地中部和北部的复杂构造特征,形成了一系列构造,反映了四川地在整体运动的过程中内部也发生着复杂的构造变化。另外,研究区内发育了不连续的侏罗系、白垩系、古近系和新近系沉积,这也反映了构造环境的转变以及构造隆升对本区的强烈影响。然而,这些构造隆升发生的时间、经历的若干阶段以及隆升速率等,都没有得到很好的解决,而这些问题恰恰对于四川地西南地区的构造变形时间、变形速率和变形机制等的限定,具有非常关键的约束作用。
     本文以构造年代学、断层相关褶皱理论、构造地质学和临界锥顶角构造楔理论等为基础,综合应用最新的地质、地震和钻井资料,结合野外地质剖面,对四川地川西南地区的构造变形时间进行约束,对研究区内地震剖面进行较为精确的限定和精细的分析,研究区内构造平面展布和几何学特征,定量分析不同构造的变形时间和缩短量等,建立区内地质结构剖面,为四川地西南地区的地质结构的解析提供合理的解释方案,为川西南地区油气的勘探提供有效的参考,并为青藏高原东南缘的动力学背景提供一定的信息和约束。论文主要取得了以下成果和认识:
     (1)区内构造在平面上成排出现,在平面上自北西到南东可分为龙门山山前带、大兴背斜(隐伏构造)、熊坡-东瓜场背斜带、龙泉山背斜、威远背斜、孔滩-邓井关背斜带和青山岭背斜。剖面上以震旦系软弱层和下三叠统嘉陵江组-中三叠统雷口坡组膏盐滑脱层为界分为浅、中、深三层构造样式。不同层次上各构造带的变形特征有差异。
     (2)区内浅、中、深三层总的缩短量分别为19.1km、5.8km和15.4km,这说明四川地西南地区存在分层滑脱现象。
     (3)根据磷灰石裂变径迹结果,龙门山南段、熊坡背斜和威远背斜等不同构造带在隆升时间、隆升阶段和隆升速率等方面表现出了一定的差异性。龙门山从晚白垩世以来开始快速崛起,而且至少是在30Ma开始加速,并在5Ma以来强烈隆升。表明青藏高原对四川地的影响可能是从30Ma开始,并在5Ma以来更加显著。
     (4)研究区存在两个临界锥顶角构造楔,分别为以震旦系基底软弱层与地表斜坡组成的深部临界锥顶角构造楔和以下三叠统嘉陵江组-中三叠统雷口坡组膏盐滑脱层与地表斜坡组成的浅部临界锥顶角构造楔。两个构造楔的强度可靠范围为0.5-1.0,底部滑脱层强度的范围分别为0.018-0.03和0.025-0.042,说明两个构造楔的滑脱层极其软弱。
     (5)深部构造楔的流体压力比要大于浅部构造楔的流体压力比,说明深层滑脱层要比浅层滑脱层更加软弱。
     (6)深部构造楔未达到临界状态,浅部构造楔则已经达到了临界状态。深部锥顶角构造楔的次临界状态是造成龙门山冲断带地震多发的原因。
Sichuan Basin belongs to Yangtze Plate, and lies on southeast margin ofQinghai-Tibet Plateau. It is a kind of superposed basin based on the Middle and UpperYangtze Craton and having undergone multi-stage evolution. Its tectono-deposintionalevolution was controlled by evolution of South China Plate, North China Plate andintracontinental subduction caused by collision of the two plates before Cenozoic.During Cenozoic, uplifting of Qinghai-Tibet Plateau had an apparent effect onformation of Sichuan Basin. Particularly, the southwest region of Sichuan Basin wasthe most obvious and the strongest area which was interacted by collision anduplifting. Moreover, this region had a lot of complex structures which were differentfrom other structures in the middle and north basin. These differences reflecte thatthere had been a complex structural changing in the basin. In addition, this region alsodeposited Jurassic System, Cretaceous System, Paleogene System and NeogeneSystem discontinuous in horizon, and this phenomenon reflectes the changing oftectonic environment and strong effect of structural uplifting. However, thesestructures’ uplifting time, rate and stages are not well answered, and the problemshave a key role in constraining structural deformational time, rate and mechanism.
     Therefore, based on structural chronology, fault related folds, structural geologyand critical taper wedge, and generally taking advantage of geologic maps, fieldgeologic section, seismic reflection profiles and drilling data, this paper wellinterprets and analyzes seismic reflection profiles in order to study distribution andgeometrics of the structures in region of interest and to calculate quantitativelystructures’ deformational time and shortening and to build the regional geologicconfiguration section. The information can provide rational interpretation scheme forgeologic configuration and valid references for the oil and gas exploration in region ofinterest, and also provide some indications to uplifting settings of southeast margin ofQinghai-Tibet Plateau. The results and conclusions are as following:
     (1)The structures of region of interest distribute in rows in geologic map, and canbe divided into seven belts from northwest to southeast. They are Longmen Mountains frontier belt, Daxing Anticline (buried structure), Xiongpo-DongguachangAnticline belt, Longquanshan Anticline, Weiyuan Anticline, Kongtan-DengjingguanAnticline belt and Qingshanling Anticline, respectively. The geologic section can alsobe divided into three zones in vertical through the Sinian System weakness layer andLower Triassic Jialingjiang Formation-Middle Triassic Leikoupo Formation saltdetachment, which is shallow zone, middle zone and deep zone structural patterns.And different zones have different structural deformational features.
     (2)The shallow zone, middle zone and deep zone of region of interest have total19.1km,5.8km, and15.4km shortening, respectively, which reflect that there aremulti-detachment layers with different structural deformation.
     (3)According to the apatite fission track results, the south Longmen Mountains,Xiongpo Anticline and Weiyuan Anticline have some differences in uplifting time,stages and rate. Longmen Mountains begins to form quickly from Cretaceous, andrises more quickly from30Ma at least than ever before, and uplifts strongly from5Ma.This means that effect of Sichuan Basin which Qinghai-Tibet Plateau has had maybegin to be from30Ma, and be more obviously from5Ma.
     (4)The region of interest has two critical taper wedges. One is a deep critical taperwedge which is constituted by Sinian System weakness layer and surface slope. Andthe other one is a shallow critical taper wedge which is made up of Lower TriassicJialingjiang Formation-Middle Triassic Leikoupo Formation salt detachment andsurface slope. The reliable field of two wedges’ strength is0.5-1.0, and the reliablefields of their basement detachment strength are0.018-0.03and0.025-0.042,respectively, which reflect detachment of two wedges is extremely weak.
     (5)The fluid pressure ratio of deep wedge is larger than shallow wedge’s, whichmeans that the deep detachment is much weaker than shallow detachment.
     (6)The deep wedge is still not reaching to critical taper, but the shallow wedge hadreached. Therefore, the unstable, sub-critical deep taper wedge resulted in manyearthquakes in Longmenshan Mountains thrust belts.
引文
[1] Allmendinger R. W. Inverse and forward numerical modeling of trishear fault-propagation fold.Tectonics,1998,17:640-656
    [2] Alvar Braathen, Steffen G. Bergh, and Harmon D. Maher Jr. Application of a critical wedgetaper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. GSABulletin,1999,111(10):1468-1485
    [3] Arne D,Worley B,Wilson C et al.1997. Differential exhumation in response to episodicthrusting along the eastern margin of the Tibetan Plateau. Tectonophysics,280:239-256
    [4] Beck R. H., and P. Lehner. Oceans, new frontier in exploration. American Association ofPetroleum Geologists Bulletin,1974,58:376-395
    [5] Bilotti F., and Shaw J. H. Deep-water Niger Delta fold and thrust belt modeled as acritical-taper wedge: The influence of elevated basal fluid pressure on structural styles:American Association of Petroleum Geologists Bulletin,2005,89:1475-1491, doi:10.1306/06130505002
    [6] Borgia A., J. Burr W. Montero, L. D. Morales, and G. A. Alvarado. Fault propagation foldsinduced by gravitational failure and slumping of the central Costa Rica volcanic range:Implications for large terrestrial and Martian volcanic edifices. J. Geophys Res.,1990,95:14,357-14,382
    [7] Burchfiel B. C. Presidential address: New technology, new geological challenges. GSA Today,2004,14:4-9
    [8] Carena S., Suppe J., and Kao H. The active detachment of Taiwan illuminated by smallearthquakes and its control on first-order topography. Geology,2002,30:935–938
    [9] Chappie W. M. Mechanics of thin-skinned fold-and-thrust belts. Geological Society ofAmerica,1978,89,1189-1198
    [10]Chen S., Wilson C. J. L. Emplacement of the Longmen Mountain thrust-nappe belt along theeastern margin of the Tibetan Plateau. Journal of Structural Geology,1996,18(4):413-430
    [11]Chen Z., B. C. Burchfiel, Liu R., W. King, et al. GSA measurements from eastern Tibet andtheir implications for India/Eurasia intracontinental deformation. J. Geophys. Res.,2000,105:16,215-16,227
    [12]Clark M K, Royden L H, Whipple K X, et al. Use of a regional, relict landscape to measurevertical deformati on of the eastern Tibetan Plateau. J. Geophys. Res,2006,11, F03002, doi:10.1029/2005JF000294
    [13]Cooper K, Hardy S. The interaction between fault-related folding and sedimentation in3D.Thrust Tectonics Conference, Royal Holloway, University of London. Abstract,1999:156
    [14]Dahlen F. A., Suppe J., and Davis D. Mechanics of fold-and-thrust belts and accretionarywedges: Cohesive Coulomb theory. Journal of Geophysical Research,1984,89:10,087-10,101
    [15]Dahlen F. A., and J. Suppe. Mechanics, growth and erosion of mountain belts. Spec. Pap.Geological Society of America,1988,218:161-178
    [16]Dahlen F.A. Critical taper model of fold-and-thrust belts and accretionary wedges: AnnualReview of Earth and Planetary Sciences,1990,18:55-99
    [17]Davis D. M., and J. Suppe. Critical taper in mechanics of fold-andthrust belts. Abstr.Programs: Geological Society of America,1980,12:410
    [18]Davis D., Suppe J., and Dahlen F. A. Mechanics of fold-and-thrust belts and accretionarywedges. Journal of Geophysical Research,1983,88:1153-1172
    [19]Densmore A.L., Ellis M. A., et al. Active tectonics of the Beichuan and Pengguan faults at theeastern margin of the Tibetan Plateau. Tectonics,2007,26: TC4005
    [20]Dolan J. S,Christofferson S., Shaw J. H. Recognition of paleoearthquakes on the puente HillsBlind Thrust Fault California. Science,2003,300(4):115-118
    [21]Elliott D. The motion of thrust sheets, J. Geophys. Res.,1976,81:949-963
    [22]Epard J. L, Groshong R. H. Excess area and depth to detachment. American Association ofPetroleum Geologists Bulletin,1993,77:1291-1302
    [23]Fischer M. P., Wilkerson M. S. Predicting t he orientation of joints from fold shape: results ofpseudo-three-dimensional modeling and curvature analysis. Geology,2000,28(1):15-18
    [24]Goldburg B. L. Formation of critical taper wedges by compression in a sand box model. B.S.thesis. Princeton: Princeton Univ,1982,70
    [25]Guzofski C. A. Mechanics of fault-related folds and critical taper wedges. Ph.D. dissertation,Princeton: Princeton Univ., N.J.,2007
    [26]Hamilton, W. Tectonics of the Indonesian region. U.S. Geological Survey,1979,1078:345
    [27]Hardy S., Poblet J. Geometric and numerical model of progressivelimb rotation in detachmentfolds. Geology,1994,22:371-374
    [28]Hubbard J., Show J. Uplift of the Longmen Shan and Tibetan plateau, and the2008Wenchuan(Ms7.9) earthquake. Nature,2009,194-197
    [29]Jennifer Chambers, Randall Parrish, Tom Argles, et al. A short-duration pulse of ductilenormal shear on the outer South Tibetan detachment in Bhutan: Alternating channel flow andcritical taper mechanics of the eastern Himalaya. Tectonics,2011,30:1-12
    [30]Jia D., Li Y., Lin A., Wang M., Chen W., Wu X., Ren Z., Zhao Y., Luo L. Structural model of2008Mw7.9Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China.Tectonophysics,2009,51-61
    [31]J. Liu-Zeng, Z. Zhang, L. Wen, et al. Co-seismic ruptures of the12May2008, Ms8.0Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts alongthe eastern edge of Tibet. Earth and Planetary Science Letters286,2009:355-370
    [32]Li X. H., Li Z. X., Sinclair J. A., et al. Revisiting the“Yanbian Terrane”:Implications forNeoproterozoic tectonic evolution of the western Yangtze block,south China.PrecambrianResearch,2006,151(1-2):14-30
    [33]Li yiquan, Jia Dong, Wang maomao, et al. Structural interpretation of the coseismic faults ofthe Wenchuan earthquake:Three-dimensional modeling of the Longmen Shan fold-and-thrustbelt. Journal of Geophysical Res.,2010,115, B04317:1-26
    [34]Li Yong, Allen P A, Densmore A L, et al. Evoluti on of the Longmen Shan foreland basin(Western Sichuan, China) during the late triassic indosinian or ogeny. Basin Res,2003,15:117-138
    [35]Li Yong, EllisM A, Densmore A L, et al. Active tectonics in the Longmen Shan Region,Eastern Tibetan Plateau. EOS Transactions of the American Geophysical Union,2001,81(48):1109
    [36]Marc-André Guscher and Nina Kukowski. Episodic imbricate thrusting and underthrusting:Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge.Journal of Geophysical Research,1998,103(B5):10,161-10,176
    [37]Matthew J. Kohn. P-T-t data from central Nepal support critical taper and repudiate large-scalechannel flow of the Greater Himalayan Sequence. GSA Bulletin,2008,120(3-4):259-273; doi:10.1130/B26252.1
    [38]McClay K. R., and N. J. Price (Eds.). Thrust and Nappe Tectonics. Oxford, Geological Societyof London,1981,9:539
    [39]Medwedeff D. A., Suppe J. Multibend fault-bend folding. Journal of Structural Geology.1997.19:279-292
    [40]Mitra S. Balanced structural interpretations in fold and thrust belts. MITRA S, FISHER GW.Structural Geology of Fold and Thrust Belts. Baltimore: John Hopkins University Press,1992:53-77
    [41]Morley C. K. Interaction between critical wedge geometry and sediment supply in adeep-water fold belt. Geological Society of America,2007,35(2):139–142
    [42]Mount V. S. State of stress in California and a seismic structural analysis of the Perdido FoldBelt, northwest Gulf of Mexico. Ph.D. dissertation, Princeton: Princeton Univ., N.J.,1989
    [43]Mount V. S., J. Suppe, and S.C. Hook. A forward modeling strategy for balancing crosssections. AAPG Bull.,1990,74:521-531
    [44]Nasu N., Y. Tomoda, K. Kobayashi, et al. Multi-channel seismic reflection data across theJapan Trench. Tokyo: IPOD-Japan Basic Data Ser., Ocean Res.,1979,3:22
    [45]Nina Kukowski, Jens Greinert, Stuart Henrys. Morphometric and critical taper analysis of theRock Garden region, Hikurangi Margin, New Zealand: Implications for slope stability andpotential tsunami generation. Marine Geology,272:141-153
    [46]Poblet J.,Mc Clay K. Geometry and kinematics of single-layer detachment fold. AmericanAssociation of petroleum Geologists Bulletin,1996,80(7):1085-1109
    [47]Ren J. S. The continental tectonics of China. Journal of the Southeast Asian Earth Sciences,1996,13(3-5):197-204
    [48]Rich J. L. Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrustblock, Virginia, Kentucky and Tennessee. American Association of Petroleum GeologistsBulletin,1934,18:1584-1596
    [49]Royden L. H. Surface deformation and lower crustal flow in eastern Tibet.Science.1997,276:788-790
    [50]Royden L.H., Burchfiel B.C., vander Hilst R. D. The geological evolution of the TibetanPlateau. Science,2008,321:1054-1058
    [51]Seely D. R., P. R. Vail, and G. G. Walton. Trench slope model. In: C. A. Burk, and C. L. Drake,eds. The Geology of Continental Margins. New York: Springer-Verlag,1974.249-260
    [52]Shaw J. H. Earthquake hazards of active blind-thrust faults under the central Los AngelesBasin, California. Journal of Geophysical Research,1996,101:8623-8642
    [53]Shaw J. H., Shearer P. An elusive blind-thrust fault beneath metropolitan Los Angeles.Science,1999,283:1516-1518
    [54]Shen Z. K., J. B. Sun, P. Z. Zhang, et al.Slip maxima at fault junctions and rupturing ofbarriers during the2008Wenchuan earthquake. Nature Geoscience,2009,2:718-724
    [55]Stockmal G. S., and W. M. Chappie. Modelling accretionary wedge deformation using arigid-perfectly plastic rheology (abstract). Eos Trans. AGU,1981,62:397-398
    [56]Suppe J. Geometry and kinematics of fault-bend folding. American Journal of Science,1983,283:684-721
    [57]Suppe J., Medwedeff D. A. Geometry and kinematics of fault propogation folding.Eclogacgeol Helv,1990,83(3):409-454
    [58]Suppe J., Connors C. Critical Taper Wedge Mechanics of Fold-and-Thrust Belts on Venus:Initial Results From Magellan. Journal of Geophysical Research,1992,97(E8):13,545-13,561
    [59]Suppe J. Bed-by-bed fold growth by kink-band migration:Sant Lloren de Morynys, EasternPyrenees. Journal of Structural Geology,1997,19:443-461
    [60]Suppe J. Absolute fault and crustal strength from wedge tapers. The Geological Society ofAmerica,2007,35(12):1127-1130; doi:10.1130/G24053A.1
    [61]Tapponnier P., and P. Molna. Active faulting and tectonics in China. J. Geophys. Res. R,1977,82:2905-2930
    [62]Wilkerson M. S., Fischer M. P., Apotria T., et al. Fault-related folds: The Transition from2-Dto3-D. Journal of Structural Geology,2002,24:591-592
    [63]Worrall D. M., and S. Snelson. Evolution of the northern Gulf of Mexico, with emphasis onCenozoic growth faulting and the role of salt. In The Geology of North America, The Geologyof North America: An Overview, edited by A. W. Bally, Geological Society of America,Boulder, Colo.,1989, vol. A,97-137
    [64]Yang, Z., Besse, J. New Mesozoic apparent polar wander path for South China: tectonicimplications. Geo-phys Res.,2001,106:8493-8520
    [65]Zhang P. Z, Shen Z., Wang M., et al. Continuous deformation of the Tibetan Plateau fromGlobal Positioning System data. Geology,2004,32:809-812
    [66]Zhao, X. X., COE, R. S. Paleomagnetic constraints on the collision and rotation of north andsouth China. Nature,1987,327:141-144
    [67]白玉柱,徐杰,徐锡伟,等.2008年汶川8.0级地震地表位移场的模拟——映秀-北川断裂逆冲兼右旋走滑错动形成的地表位移场[J].地震地质,2010,32(1):16-27
    [68]包茨,杨先杰,李登湘.四川地地质构造特征及天然气远景预测[J].天然气工业,1985,5(4):1-11
    [69]蔡学林,曹家敏,刘援朝,等.青藏高原多向碰撞—楔入隆升地球动力学模式[J].地学前缘,1999,6(3):181~189
    [70]蔡学林,王绪本,朱介,寿,等.汶川8.0级特大地震震源断裂特征及其动力学分析[J].中国地质,2010,4:954~965
    [71]曹剑,谭秀成,陈景山.川西南犍为地区下三叠统嘉陵江组沉积相及其演化特征[J].高校地质学报,2004,20(3):429-438
    [72]曹俊兴,刘树根.对四川汶川大地震有关问题的思考与初步认识[J].成都理工大学学报(自然科学版),2008,(04):414~425
    [73]常利军,王椿镛,丁志峰.四川及邻区上地幔各向异性研究[J].中国科学(D辑):地球科学,2008,38:1589~1599
    [74]陈更生,岳宏.四川地川西南地区下二叠统气藏类型及有效缝洞分布规律[J].天然气工业,1995,15(6):10-13
    [75]陈剑,卢华复,于景宗等.断层相关褶皱的几何学模型及其应用[J].地球学报,2005,26(1):89-92管树巍,汪新,杨树锋等.南天山库车秋里塔格褶皱带三维构造分析[J].地质论评,2003,(5):464~473
    [76]陈竹新,贾东,张惬,等.2005a.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,79(1):38~45
    [77]陈宗清.川南、川西南地区三叠系嘉陵江组断层圈闭气藏[J].大庆石油地质与开发,1993,12(2):8-12
    [78]陈宗清.川西南地区二、三叠系碳酸盐岩断裂带气藏[J].石油学报,1995,16(3):37-43
    [79]成艳,陆正元,赵路子等.四川地西南边缘天然气保存条件研究[J].石油实验地质,2005,27(3):218-221
    [80]戴建全.龙门山冲断带构造变形期次及动力学成因.西南石油大学学报(自然科学版),2011,33(2):61-67
    [81]戴勇,李正文,张华军,等.川西南部地区上三叠统构造及断裂特征[J].天然气工业,2006,26(1):43-45
    [82]邓宾,刘树根,李智武,等.青藏高原东缘及四川地晚中生代以来隆升作用对比研究.成都理工大学学报(自然科学版),2008,35(4):477-486
    [83]葛良胜,郭晓东,邹依林.川西南陆内俯冲造山带地质特征及金矿成矿作用[J].贵金属地质,1998,7(1):32-42
    [84]葛良胜,张吉宽.川西南地区大地构造演化及其金矿大地构造成矿带[J].贵金属地质,1996,5(1):23-32
    [85]管树巍,Andreas Plesch,李本亮,等.基于地层力学结构的三维构造恢复及其地质意义[J].地学前缘,2010,(4):140~150
    [86]管树巍,李本亮,何登发,等.复杂构造解析中的几何学方法与运用[J].地质科学,2007,42(4):722-739
    [87]管树巍,李本亮,何登发,等.构造楔形体的识别与勘探—以准噶尔地南缘为例[J].地学前缘,2009,16(3):129~137
    [88]管树巍,张朝军,何登发,等.前陆冲断带复杂构造解析与建模—以准噶尔地南缘第一排背斜带为例[J].地质学报,2006,80(8):1131~1140
    [89]郭安林,程顺有,张朝锋,等.川西南多重褶皱构造及背景分析[J].西北大学学报(自然科学版),2009,39(3):484-489
    [90]郭正吾,邓康龄,邓永辉,等.四川地形成与演化[M].地质出版社,1996,p155-157
    [91]何登发,李德生,张国伟,等.四川多旋回叠合地的形成与演化[J].地质科学,2011,46(3):589-606
    [92]何登发,鲁人齐,樊春等.四川地及周缘多重滑脱构造系统[P].南京大学构造地质与地球动力学会议.2011
    [93]何登发,Suppe J,贾承造.断层相关褶皱理论与应用研究新进展.地学前缘,2005,12(4):353-364
    [94]何登发,杨庚等.前陆地构造建模的原理与基本方法[J].石油勘探与开发,2005,32(3)7-11
    [95]侯明才,李智武,陈洪德.中—新生代龙门山的差异隆升[J].吉林大学学报(地球科学版),2012,42(1):104-111
    [96]胡建中.四川地西南部构造体系成生发展早期特征与三迭纪成盐地的关系.四川地质学报,1982,(10):57-58
    [97]胡新伟,邓江红.龙门山中段推覆构造带构造特征.成都理工学院学报(自然科学版),1996,23(3):101-106
    [98]金文正,汤良杰,万桂梅,王俊鹏.川西龙门山冲断带构造油气藏类型及分布预测[J].现代地质,2009,(6):1070~1076
    [99]金文正,汤良杰,杨克明,等.川西龙门山褶皱冲断带分带性变形特征[J].地质学报,2007,81(8):1073~1080
    [100]来庆洲,丁林,王宏伟,等.青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约.中国科学(D辑),2006,36(9):785-796
    [101]李本亮,管树巍,陈竹新,等,断层相关褶皱理论与应用—以准葛尔地南缘地质构造为例[M].北京:石油工业出版社.2010
    [102]李峰,张莉,李树晶等.流体包裹体在川西南上三叠统天然气成藏研究中的应用[J].天然气地球科学,2009,20(2):174-181
    [103]李景明,罗霞,冉君贵.三大古板块是中国寻找大气田的重要领域[J].天然气工业,2006,(12):15~19
    [104]李启桂,李克胜,唐欢阳.四川地不整合发育特征及其油气地质意义.天然气技术,2010,4(6):21-25
    [105]李熙喆,张满郎,谢武仁等.川西南地区上三叠统须家河组沉积相特征[J].天然气工业,2008,28(2):54-57
    [106]李一泉,贾东,罗良,等.川西盐井沟断层传播褶皱的三维构造建模与磁组构分析[J].地学前缘,2007,(4):74~84
    [107]李勇.论龙门山前陆地与龙门山造山带的耦合关系.矿物岩石地球化学通报,1998,17(2):77-81
    [108]李勇,孙爱珍.龙门山造山带构造地层学研究[J].地层学杂志,2000,24(3):201~205
    [109]李勇,徐公达,周荣军,等.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].地质通报,2005,(12):20~32
    [110]李勇,周荣军,Alexander L,等.映秀—北川断裂的地表破裂与变形特征[J].地质学报,2008,82(12):1689–1695
    [111]李智武,陈洪德,刘树根,等.龙门山冲断隆升及其走向差异的裂变径迹证据.地质科学,2010,45(4):944-968
    [112]李智武,刘树根,陈洪德,等.龙门山冲断带分段—分带性构造格局及其差异变形特征[J].成都理工大学学报,2008,35(4):440~451
    [113]刘德良,宋岩,薛爱民,等.四川地构造与天然气聚集区带综合研究[M],2000,p13-17
    [114]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆地演化[J].地质学报,1994,68(2):101~118
    [115]刘树根,罗志立.四川龙门山地区的峨眉地裂运动.四川地质学报,1991,11(3):174~180
    [116]刘树根.龙门山冲断带与川西前陆地的形成演化[M].成都:成都科技大学出版社,1993
    [117]刘树根,邓宾,李智武,等.盆山结构与油气分布——以四川地为例[J].岩石学报,2011,27(3):621-635
    [118]刘树根,李智武,刘顺等.大巴山前陆地——冲断带的形成演化[M].北京:地质出版社,2007
    [119]刘树根,罗志立,戴苏兰,等.龙门上冲断带的隆升和川西前陆地的沉降[J].地质学报,1995,69(3):204~214
    [120]刘树根,杨荣军,吴熙纯,等.四川地西部晚三叠世海相碳酸盐岩—碎屑岩的转换过程[J].石油与天然气地质,2009,(5):556~565
    [121]鲁人齐,何登发,John Suppe,等龙门山中段山前带构造楔的发现及其几何学、运动学特征:对青藏高原东南缘隆升动力学机制的约束[J].地学前缘,2010,(5):93~105
    [122]鲁人齐,何登发,John Suppe,等.龙门山中段山前带浅层冲断系统的结构、形成与演化.《地质科学》,2010,45(4):997~1010
    [123]鲁人齐,何登发,John Suppe,等.龙门山中段彭灌断裂带汶川Ms8.0地震同震破裂断层识别及其浅、表构造特征.《地质科学》,2011,46(3)1015~1029
    [124]罗志立.略论地裂运动与中国油气分布[J].中国地质科学院院报,1984,(3):93~101.
    [125]罗志立.试评A-俯冲带术语在中国大地构造学中应用[J].石油实验地质,1994,16(4):317-324
    [126]罗志立.四川地基底结构的新认识[J].成都理工学院学报,1998,25(2):191-200
    [127]任纪舜.中国大陆的组成、结构、演化和动力学[J].地球学报,1994,(3)-(4):5-13
    [128]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造:中国及邻区大地构造图简要说明[M].北京:地质出版社,1999,1-50
    [129]四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991,1-680
    [130]四川油气区编写组.中国石油地质志(卷十)[M],石油工业出版社,1989,p96
    [131]宋文海,庞家黎.四川地西南部上二叠统玄武岩含气性研究[J].天然气工业,1994,14(5):11-15
    [132]孙肇才.政策、思路与选区—就发展我国天然气工业政策和后备基地问题在中国科学院地学部“我国天然气和东南核能研讨会”上的发言摘要[J].石油实验地质,1989,(4)::301~313
    [133]谭凯旋,龚革联,龚文君等.四川地西南缘二叠系页岩铜银矿床地质地球化学特征和流体对流成矿机制[J].大地构造与成矿学,1999,23(3):230-239
    [134]唐俊红,张同伟,鲍征宇等.川西南震旦系储集层有机包裹体在油气运移研究中的应用[J].地球科学——中国地质大学学报,2005,30(2):228-232
    [135]唐俊红,张同伟,鲍征宇等.四川地西南部流体包裹体特征及其在石油地质上的应用[J].地质科技情报,2003,22(4):60-64
    [136]唐俊红,张同伟,鲍征宇等.四川地西南部储层有机包裹体组成和碳同位素特征及其对油气来源的指示[J].地质评论,2005,51(1):100-106
    [137]唐哲民,郭宪璞,乔秀夫.龙门山中、南段中-新生代隆升史:来自裂变径迹的证据.岩石学报,2011,27(11):3471-3478
    [138]田在艺,张庆春.中国含油气沉积地论[M].石油工业出版社,1996,p25
    [139]童崇光.四川地构造演化与油气聚集[M].地质出版社,1992,p10-36
    [140]童崇光.新构造运动与四川地构造演化及气藏形成[J].2000,27(2):124-130
    [141]王二七,尹纪云.川西南新生代构造作用以及四川原型地的破坏[J].西北大学学报(自然科学版),2009,39(3):359-366
    [142]汪新,贾承造等.南天山库车褶皱冲断带构造几何学和运动学[J].地质科学,2002,37(3)372-384
    [143]王兴志,穆曙光,方少仙等.四川地西南部震旦系白云岩成岩过程中的空隙演化[J].沉积学报,2000,18(4):549-554
    [144]汪泽成,赵文智,张林,等.四川地构造层序与天然气勘探[M].地质出版社,2002
    [145]夏吉文,李凌,罗冰等.川西南寒武系沉积体系分析[J].西南石油大学学报,2007,29(4):21-25
    [146]谢武仁,李熙喆,张满郎等.川西南地区上三叠统须家河组砂岩储层综合评价[J].天然气地球科学,2008,19(1):94-99
    [147]邢会民,韩永刚,余彬等.川西南地区须三段底部岩性特征及识别[J].天然气工业,2007,27(11):46-48
    [148]徐锡伟,李峰.汶川地震发震构造研究现状与存在的科学问题[J].防灾博览,2009,(3):32~37
    [149]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597~629
    [150]许志琴,李化启,侯立炜,等.青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制.地质通报,2007,26(10):1262-1276
    [151]许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-151
    [152]杨克明,谢用良,段文燊,等.川西坳陷须家河组圈闭评价与深层天然气有利勘探目标优选.中国石化西南分公司,2003
    [153]杨毅,张本健,蒋德生等.四川地西南部上二叠统峨眉山玄武岩成藏模式初探[J].地质勘探,2010,30(5):1-4
    [154]雍自权,刘庆松,李倩.川西前陆地的发展演化-地层充填及其对油气成藏的意义[J].天然气工业,2008,28(2):26-30
    [155]于贵华,徐锡伟,陈桂华,等.汶川8.0级地震地表变形局部化样式与建筑物破坏特征关系初步研究[J].国际地震动态,2010,(6):10
    [156]翟光明,宋建国,靳久强,等.板块构造演化与含油气地形成与评价[M].北京:石油工业出版社,2002
    [157]张本健,裴森奇,尹宏等.川西南嘉陵江组储层特征及主控因素[J].岩性油气藏,2011,23(3):80-83
    [158]张国伟,董云鹏,姚安平.造山带与造山作用及其研究的新起点[J].西北地质,2001,(1):1~9
    [159]张培震,徐锡伟,闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,(4):1066~1073
    [160]张若祥,王兴志,蓝大樵等.川西南地区峨眉山玄武岩储层评价[J].天然气勘探开发,2006,29(1):17-20
    [161]张维宸.四川地中新生代区域构造格架与构造演化过程研究.北京:中国地质大学(北京),2009
    [162]张毅,李勇,周荣军,等.晚新生代以来青藏高原东缘的剥蚀过程:来自裂变径迹的证据.沉积与特提斯地质,2006,26(1):97-102
    [163]曾联波,李跃纲,王正国等.川西南部须二段低渗砂岩储层裂缝类型及其形成序列[J].地球科学——中国地质大学学报,2007,32(2):194-200
    [164]曾联波,李跃纲,张贵斌等.川西南部须二段低渗砂岩储层裂缝分布的控制因素[J].中国地质,2007,34(4):622-627
    [165]朱露,胡明毅,段健等.四川地西南地区下三叠统嘉陵江组沉积相研究[J].海洋石油,2010,30(1):43-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700